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KEY PO INT S

l A PI3K inhibitor with
predominant a/d
activity, copanlisib,
induces apoptosis and
modulates BCL-xL and
MCL-1 activity in BCR-
dependent DLBCLs.

l In BCR-dependent
DLBCLs with genetic
alterations of BCL2,
the BCL-2 antagonist,
venetoclax, and
copanlisib are
synergistic.

Inhibition of the B-cell receptor (BCR) signaling pathway is a promising treatment strategy
in multiple B-cell malignancies. However, the role of BCR blockade in diffuse large B-cell
lymphoma (DLBCL) remains undefined. We recently characterized primary DLBCL subsets
with distinct genetic bases for perturbed BCR/phosphoinositide 3-kinase (PI3K) signaling
and dysregulated B-cell lymphoma 2 (BCL-2) expression. Herein, we explore the activity of
PI3K inhibitors and BCL-2 blockade in a panel of functionally and genetically characterized
DLBCL cell line models. A PI3K inhibitor with predominant a/d activity, copanlisib,
exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. The proapoptotic effect of
copanlisib was associated with DLBCL subtype-specific dysregulated expression of BCL-2
family members including harakiri (HRK) and its antiapoptotic partner BCL extra large
(BCL-xL), BCL2 related protein A1, myeloid cell leukemia 1 (MCL-1), and BCL2 interacting
mediator of cell death. Using functional BH3 profiling, we found that the cytotoxic activity
of copanlisib was primarily mediated through BCL-xL and MCL-1–dependent mechanisms
that might complement BCL-2 blockade. For these reasons, we evaluated single-agent
activity of venetoclax in the DLBCLs and identified a subset with limited sensitivity to BCL-2

blockade despite having genetic bases of BCL-2 dysregulation. As these were largely BCR-dependent DLBCLs, we
hypothesized that combined inhibition of PI3Ka/d and BCL-2 would perturb BCR-dependent and BCL-2–mediated survival
pathways. Indeed, we observed synergistic activity of copanlisib/venetoclax in BCR-dependent DLBCLs with genetic bases
for BCL-2 dysregulation in vitro and confirmed thesefindings in a xenograftmodel. These results providepreclinical evidence
for the rational combination of PI3Ka/d and BCL-2 blockade in genetically defined DLBCLs. (Blood. 2019;133(1):70-80)

Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most common
lymphoid malignancy in adults. Although ;65% of patients with
DLBCL can be cured with standard induction therapy, those with
nonresponsive or relapsed disease have more limited options,
highlighting the need for new targeted therapies. DLBCL is
a genetically heterogeneous disease that is transcriptionally
subclassified into germinal center B-cell (GCB) and activated
B-cell (ABC) subtypes.1 A subset of both GCB- and ABC-DLBCLs
have known dependence on proximal B-cell receptor (BCR)
signaling2,3 (reviewed in Bojarczuk et al4). Following phosphor-
ylation of BCR-associated CD79a and b, downstream signaling
is propagated via the spleen tyrosine kinase (SYK), phosphoi-
nositide 3-kinase (PI3K)/AKT, and Bruton tyrosine kinase (BTK)/
phospholipase C, g 1 (PLCg)/NF-kB.2 In contrast to GCB tumors,
ABC-DLBCLs have high baseline NF-kB activity.5

In a previous study, we defined distinct BCR/PI3K-mediated
survival pathways and subtype-specific apoptotic mechanisms

in BCR-dependent DLBCLs.2 In BCR-dependent DLBCLs with
low baseline NF-kB activity (GCB tumors), targeted inhibition or
genetic depletion of proximal BCR/PI3K pathway components
induced expression of the proapoptotic sensitizer protein,
harakiri (HRK). In BCR-dependent DLBCLs with high NF-kB ac-
tivity (ABC tumors), BCR/PI3K blockade decreased expression of
the antiapoptotic B-cell lymphoma 2 (BCL-2) family member and
NF-kB target, BCL2 related protein A1 (BFL-1).

Antiapoptotic BCL-2 family members such as BCL-2, myeloid
cell leukemia 1 (MCL-1), BCL extra large (BCL-xL), and BFL-1
suppress apoptosis by 2 mechanisms. First, these proteins bind
and prevent the oligomerization of the proapoptotic effector
proteins, BAX and BAK, which initiate apoptosis by forming
pores in the mitochondrial outer membrane that release cyto-
chrome c (reviewed in Montero and Letai6). Additionally, the
antiapoptotic BCL-2 family members bind and sequester the
proapoptotic BH3-only activator proteins, BCL2 interacting
mediator of cell death (BIM) and BID, which activate BAX and
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BAK.6 Proapoptotic sensitizers such as HRK, PUMA, BAD, or
NOXA do not induce apoptosis on their own, but compete with
BH3-only activators for binding to antiapoptotic BCL-2 family
members, thereby releasing BIM or BID.6 Functional BH3 pro-
filing can be used to measure apoptotic sensitivities and changes
in apoptotic priming in response to targeted therapies.7,8

Our recent genetic analyses revealed structural bases for
perturbed proximal BCR/PI3K signaling and defined poor-
prognosis DLBCL subsets with discrete BCR/PI3K/Toll-like
receptor pathway alterations (cluster 3 and cluster 5 DLBCLs).9

Cluster 3 DLBCLs (largely GCB-DLBCLs) exhibited frequent
PTEN deletions and inactivating mutations and additional
GNA13 and HVCN1 mutations that likely increase BCR/PI3K
signaling.9 Cluster 5 DLBCLs (largely ABC-DLBCLs) had frequent
activating MYD88L265P and CD79B mutations that often occurred
together.9 Of interest, these DLBCL subtypes also had distinct
genetic bases for dysregulated BCL-2–BCL2 translocations in
cluster 3 and arm-level 18q or focal 18q21.33 (BCL2) copy-
number gains in cluster 5.9 These observations prompted us
to explore the activity of BCR/PI3K inhibitors and BCL-2
blockade in genetically defined DLBCLs.

Materials and methods
DLBCL cell lines
The 10 DLBCL cell lines SU-DHL2 (DHL2), SU-DHL4 (DHL4), SU-
DHL6 (DHL6), HBL1, Karpas422 (K422), OCI-LY1 (LY1), OCI-LY7
(LY7), OCI-LY19 (LY19), TMD8, and TOLEDO were cultured as
previously described10 and reported to be Epstein-Barr virus–
negative by the respective repositories (ATCC, Manassas, VA
and DSMZ, Braunschweig, Germany). The identities of the
DLBCL cell lines used in this study were confirmed via the STR
profiling PowerPlex 1.2 system from Promega (Madison, WI).
These cell lines were characterized by whole-exome sequencing
with expanded bait set as previously described.9

Reagents
The SYK inhibitor entospletinib (GS-9973), the BTK inhibitor
ibrutinib (PCI-32765), the PI3Kd inhibitor idelalisib (CAL-101), the
PI3Kb inhibitor AZD6482, and the pan-PI3K inhibitor pictilisib
(GDC-0941) were purchased from Selleckchem (Houston, TX).
The PI3Ka inhibitor alpelisib (BYL-719), the PI3Kb/d inhibitor
AZD8186, the PI3Ka/d-predominant inhibitor copanlisib (BAY
80-6946), and the BCL-2 inhibitor venetoclax (ABT-199) were
obtained from MedChem Express (Monmouth Junction, NJ).
The MCL-1 inhibitor (S63845) was purchased from Apexbio
(Houston, TX).

Proliferation assay
Following 72-hour incubation with tested BCR/PI3K inhibitors,
DLBCL cell proliferation was assayed with Alamar Blue (Invi-
trogen, Carlsbad, CA) as previously described.10 The 50% ef-
fective concentration (EC50) concentrations (micromolar) of
tested inhibitors were calculated using GraphPad Prism 7.01
(GraphPad Software, La Jolla, CA) and log (inhibitor concen-
tration) vs normalized response nonlinear least squares fit.

Apoptosis assay
The percentages of viable cells were determined 96 hours
after treatment by flow cytometric analyses of cells stained with

propidium iodide (PI) and annexin V–fluorescein isothiocyanate
conjugate (BD Pharmingen, San Jose, CA) using FACSCanto II
cytometer (BD). Double-negative cells were considered viable
and all results were normalized to 100% viable cells (0% dead
cells) in dimethyl sulfoxide (DMSO)-treated group. Annexin V/PI
assessments were done using FlowJo software V7.6.1 for
Windows (FlowJo LLC, Ashland, OR).

Immunoblotting
Immunoblotting was performed as previously published2 and as
in supplemental Materials and methods (available on the Blood
Web site). Unmodified raw images were arranged and labeled
using CorelDRAW X7 (Corel Corporation, Ottawa, ON, Canada).

RT-qPCR
Reverse transcription–quantitative polymerase chain reaction
(RT-qPCR) was performed as previously described2 with specific,
intron-spanning primers for HRK, BCL2A1 (BFL-1), BCL2L11
(BCL-xL), BCL2L1 (BIM), and cyclophilin A (PPIA) genes, according
to themanufacturer’s recommendations. Calculation of trans-
cript abundance was performed with the comparative cycle
threshold (Ct) method (22DCt, where DCt5 Ct HRK or BCL2A1 or
BCL2L11, or BCL2L1 2 Ct PPIA). Sequences of the primers for
genes of interest were previously published.2 To measure the
differences in expression of target genes in DMSO- vs copanlisib-
treated groups, multiple Student t tests were performed with
the 2-stage linear stepup procedure of Benjamini, Krieger, and
Yekutieli; q , 0.1 was considered statistically significant.

BH3 profiling by intracellular staining
BH3 profiling of DLBCL cells was performed as previously de-
scribed11 and in supplemental Materials and methods. The
correlations between mitochondrial outer membrane per-
meabilization (MOMP) and copanlisib cytotoxicity were mea-
sured with the Pearson test, and 1-sided P values from all tested
peptides were analyzed with the Benjamini-Hochberg pro-
cedure; q , 0.1 was considered statistically significant.

Assessment of copanlisib and venetoclax synergy
Combination indexes (CIs) for combinations of copanlisib and
venetoclax were calculated using Compusyn (Combosyn Inc,
Paramus, NJ) according to the Chou-Talalay algorithm.12 The
median CIs for all assessed combinations are shown.

In vivo xenograft analyses
All murine studies were performed according to Dana-Farber
Cancer Institute Institutional Animal Care and Use Committee–
approved protocol. The DLBCL cell line LY1 was engineered for
in vivo imaging as previously described.13 Subsequently, 5 3 106

viable Luc-mCherry–expressing lymphoma cells in 250 mL of
sterile phosphate-buffered saline were injected via the lateral tail
veins of 7-week-old female NOD SCID Il2rgnull mice (The Jackson
Laboratory, Bar Harbor, ME). Three days following tumor inoc-
ulation, animals with established disease documented by im-
aging were divided into 4 cohorts with an average total flux
bioluminescence (sum of prone and supine values) of 1.72 3
104 6 1.73 3 103 photons (ph)/sec/cm2/steradian (sr) and
treated with: (1) 12 mg/kg copanlisib IV, 2 days on/5 days off;
(2) 100 mg/kg venetoclax orally, daily; (3) both drugs at the
indicated doses; or (4) corresponding vehicles: 10% 0.1 N HCl
and 90% saline for copanlisib (modified from Liu et al14) and 60%
Phosal 50PG, 30% PEG400, 10% ethanol for venetoclax.15 We
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used previously reported doses of copanlisib14 and venetoclax15

that were judged to be equivalent to those administered in human
clinical trials.16 After 21 days, all treatments were stopped, and the
mice were observed for changes in total-body bioluminescence
and survival. Diseaseburdenwas quantifiedusingbioluminescence
imaging as previously described,13 and data are presented as
mean plus or minus standard error of the mean (SEM) with
statistical significance determined by 1-sided t test. Differences
in survival between the treatment groups were assessed with
the log-rank test.

Results
Activity of multiple BCR/PI3K inhibitors in
genetically and functionally defined DLBCL
cell lines
We used a panel of 10 DLBCL cell lines that capture the
previously characterized distinctions of BCR-dependent vs
-independent and GCB vs ABC subtypes (Figure 1A).2 A subset

of these cell lines exhibited hallmark genetic features of the re-
cently described clusters 3 and 5 DLBCLs9 (Figure 1A). These
include: (1) alterations that modulate BCR/PI3K signaling (inacti-
vating mutations/deletions of PTEN and/or mutations of GNA13
or HVCN1) and BCL2 translocations (DHL4, DHL6, LY1 [BCR-
dependent], K422 [BCR-independent], cluster 3) and (2)MyD88L265P

CD79B mutations and arm-level 18q copy gains that encom-
pass the BCL2 locus (HBL1, TMD8 [BCR-dependent], cluster 5)
(Figure 1A). The DLBCL panel also includes additional BCR-
independent GCB lines with BCL2 translocations (TOLEDO, LY19),
a BCR-dependent GCB line with no BCL-2 expression (LY7) and
a BCR-independent ABC line (DHL2) without genetic alterations
of BCL2 (Figure 1A).

In previous studies, we found that BCR-dependent DLBCLs
were sensitive to chemical inhibition or genetic depletion of
SYK or chemical inhibition of PI3K.2 Others have described
selective sensitivity of BCR-dependent ABC-DLBCLs to BTK
blockade.3 In our earlier analyses of PI3K signaling in DLBCL,
we used the pan-PI3K inhibitor and tool compound, LY294002.
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Figure 1. Genomic characterization of DLBCL cell line models and prioritization of BCR/PI3K inhibitors. (A) Alterations in MYD88, CD79B, PTEN (mutation or copy loss),
GNA13, HVCN1, and BCL-2 (translocation [structural variant (SV)] or copy-number gain) in a panel of 10 DLBCL cell lines. (B) Cellular proliferation after 72-hour exposure
to specific inhibitors of BCR/PI3K signaling (as indicated in the figure). EC50 values in a colorimetric scale: very sensitive (,0.05 mM) in red, sensitive (51 mM) in white, to resistant
(.20 mM) in black. Results were averaged from 4 biological replicates.
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However, there are 4 isoforms of PI3K, 2 of which (a and d) have
defined roles in germinal B-cell biology17,18 (supplemental
Figure 1A). All 4 PI3K isoforms are expressed in the 10 DLBCL
cell lines (supplemental Figure 1B). Of note, PIK3CA (encoding
PI3Ka) is a FOXO1 target that is upregulated following

BCR/PI3K blockade and associated nuclear retention of FOXO1
(supplemental Figure 1C).2 For these reasons, we selected
a range of PI3K inhibitors to profile in these DLBCLs, with
the expectation that an optimal PI3K inhibitor might target
both the PI3Ka and d isoforms.
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Figure 2. Inhibitors of BCR signaling differentially regulate expression of proapoptotic and antiapoptotic BCL2 family members. (A) Top panel, Induction of apoptosis
after 96-hour exposure to DMSO, entospletinib (ENTO, 2 mM), ibrutinib (IBRU, 0.1 mM), copanlisib (COPA, 0.25 mM), or pictilisib (PICTI, 0.5 mM) shown as percentage of
annexin V/PI-positive cells plus or minus SEM from at least 3 biological replicates. Bottom panel, Induction of PARP cleavage after 24-hour exposure to the drugs listed in the
panel A description was assessed by immunoblotting, b-actin–loading control. One representative image of 3 independent replicates is shown. Vertical lines have been
inserted to indicate repositioned gel lanes. (B) HRK, BCL-xL, BFL-1, or BIM transcript abundance after 24-hour exposure to DMSO, entospletinib (2 mM), ibrutinib (0.1 mM),
copanlisib (0.25 mM), or pictilisib (0.5 mM) was determined with RT-qPCR relative to PPIA. Bars show the average of 3 technical replicates plus or minus SEM. The statistically
significant differences between DMSO- and copanlisib-treated groups (q# 0.05) are noted. (C) MCL-1 and BCL-2 protein abundance in DLBCL cells treated as in panel B was
assessed by immunoblotting. b-actin–loading control. One representative image of 3 independent biological replicates is shown. Vertical lines have been inserted to indicate
repositioned gel lanes.
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We first used a cell-proliferation assay to assess the sensitivity of
the DLBCL cell lines to chemical inhibitors of SYK, PI3K, and BTK
that are currently in clinical trials (Figure 1B). We confirmed
selective activity (low micromolar EC50s) of the SYK inhibitor,
entospletinib, in the majority of BCR-dependent GCB- or ABC-
DLBCLs (Figure 1B). Additionally, we confirmed the previously
described low nanomolar activity of the BTK inhibitor, ibrutinib,
in BCR-dependent ABC-DLBCLs (Figure 1B).3 Of interest, the
BCR-independent ABC cell line, DHL2, was insensitive to
ibrutinib treatment.

We then analyzed the antiproliferative activity of isoform-
specific, a/d-predominant, dual b/d and pan-PI3K inhibitors in
the DLBCL panel (Figure 1B). The single isoform a-, b-, and
d-specific PI3K inhibitors and the dual PI3Kb/d inhibitor were
largely ineffective in these assays (Figure 1B). In contrast, the
PI3Ka/d-predominant inhibitor, copanlisib, exhibited low
nanomolar antiproliferative activity in BCR-dependent DLBCLs
of both GCB and ABC subtypes and more modest activity in
the BCR-independent cell lines (Figure 1B). The pan-PI3K
inhibitor, pictilisib, closely mirrored the antiproliferative ac-
tivity of copanlisib, although the EC50 concentrations were
consistently higher than those of copanlisib (Figure 1B). These
findings (lack of activity of a- or d-isoform–selective inhibitors
and potent activity of dual PI3Ka/d blockade) led us to pri-
oritize the PI3Ka/d-predominant inhibitor, copanlisib, and
the pan-PI3K inhibitor, pictilisib, in subsequent functional
analyses.

Inhibitors of BCR/PI3K signaling differentially
regulate expression of proapoptotic and
antiapoptotic BCL-2 family members
We next assessed induction of apoptosis in the DLBCLs using
doses of the respective BCR/PI3K inhibitors that captured the
distinctions between sensitive and resistant cell lines in pro-
liferation assays (Figure 2A top panel and key). The SYK inhibitor,
entospletinib, did not induce .50% apoptosis in any of the
examined DLBCL cell lines. The BTK inhibitor, ibrutinib, selec-
tively induced .50% apoptosis in the BCR-dependent ABC-
DLBCL cell lines (HBL1, TMD8), but not in the BCR-independent
ABC-DLBCL (DHL2) or the GCB-DLBCLs. In contrast, the PI3Ka/
d-predominant inhibitor, copanlisib, induced.50% apoptosis in
all of the BCR-dependent cell lines (Figure 2A). In the majority of
these DLBCLs, copanlisib was more effective than pictilisib in
inducing apoptosis (Figure 2A). Consistent with these findings,
copanlisib was also the most active at inducing poly ADP
ribose polymerase (PARP) cleavage in the BCR-dependent
DLBCLs (Figure 2A bottom panel). Additionally, copanlisib
was the most potent inhibitor in abolishing baseline and anti-
immunoglobulin–induced phosphorylation of AKT (pAKT
S473) (supplemental Figure 2).

To characterize bases of apoptosis in BCR-dependent DLBCLs
treated with proximal BCR/PI3K inhibitors, we first assessed
the transcriptional modulation of BCL-2 family genes (Figure 2B).
In BCR-dependent DLBCLs with low NF-kB activity (GCB
tumors), there was highly significant induction of the proapoptotic
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sensitizer, HRK, following treatment with the PI3Ka/d-predominant
inhibitor, copanlisib. In BCR-dependent DLBCLs with high
NF-kB activity (ABC tumors), the NF-kB target and antiapo-
ptotic BCL-2 family member, BFL-1, was transcriptionally
downregulated after copanlisib exposure (Figure 2B). In these
DLBCLs, there was also significant transcriptional down-
regulation of BCL-xL, another NF-kB target and antiapoptotic
partner of HRK, following copanlisib treatment (Figure 2B).
Additionally, in all BCR-dependent DLBCLs, copanlisib in-
creased the transcript abundance of the FOXO1 target and
proapoptotic activator, BIM. In BCR-dependent GCB-DLBCLs,
a potential basis for the increased efficacy of copanlisib, in
comparison with entospletinib, was the more robust modulation
of HRK and BIM (Figure 2B). In BCR-dependent ABC-DLBCLs,
copanlisib was as effective as ibrutinib in decreasing BCL-xL
and BFL-1 abundance and as or more effective in inducing BIM
(Figure 2B). In the BCR-independent DLBCLs, there was less
striking modulation of HRK and BIM and no changes in BCL-xL
or BFL-1 transcript abundance following BCR/PI3K blockade
(Figure 2B).

We also analyzed protein expression of another anti-
apoptotic BCL-2 family member, MCL-1, which is regulated

posttranscriptionally by AKT19 (Figure 2C). The BCR-dependent
DLBCL cell lines with low NF-kB activity (DHL4, DHL6, LY1, and
LY7) exhibited MCL-1 downregulation following SYK or PI3Ka/d
inhibition (Figure 2C). An additional line (Karpas422) with ge-
netic bases for increased PI3K/AKT activity (PTENdel, PTENmut,
GNA13mut) had decreased MCL-1 levels following PI3K block-
ade. The MCL-1 data highlight an additional posttranscriptional
mechanism of regulating the viability of BCR-dependent DLBCLs.
In contrast toMCL-1, BCL-2 protein expression was not altered by
BCR/PI3K inhibition (Figure 2C).

Copanlisib-induced apoptotic cell death is
dependent on BCL-xL– and MCL-1–mediated
mitochondrial priming
We next used an orthogonal approach, BH3 profiling, to define
BCL-2 family member dependencies and correlate these data
with sensitivity to copanlisib. With BH3 profiling, we analyzed
the induction of MOMP by specific peptides derived from BH3
domains of proapoptotic BCL-2 family members11 (Figure 3A).
The output of BH3 profiling is shown as the area under the curve
(AUC) of cytochrome c release from mitochondria (indicative of
MOMP) over the dose range of evaluated BH3 peptides (Figure 3B).
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For each DLBCL cell line, the AUC values (Figure 3C-D y-axes)
were compared with the percentage of apoptosis induced by
copanlisib (Figure 3C-D x-axes).

Of interest, the MOMP induction by the HRK peptide strongly
correlated with the cytotoxic activity of copanlisib in the DLBCL
cell lines (Figure 3C). These data align with our finding that
copanlisib increased HRK transcript abundance in DHL4,
DHL6, LY1, and LY7 or decreased transcript levels of the HRK
partner, BCL-xL, in HBL1 and TMD8 (Figure 2B). Additionally,
there was a significant correlation between MOMP induced by
the MS-1 peptide (which binds to MCL-1) and apoptosis in-
duced by copanlisib (Figure 3D). In DHL4, DHL6, LY1, and LY7,
this likely reflects the decreased abundance of MCL-1 protein
following copanlisib treatment (Figure 2B) and an associated
reduction in the amount of MCL-1 complexed with the proa-
poptotic BIM protein (supplemental Figure 3A). In TMD8 and
HBL1, the MS-1 data reveal an additional functional dependence
onMCL-1, as well as other antiapoptotic BCL-2 familymembers, in
copanlisib-treated cells (Figure 3D). The MOMP induced by BIM,
PUMA, BAD, or FS-1 peptides (Figure 3A) did not correlate with
apoptosis induced by copanlisib (data not shown).

Copanlisib sensitizes DLBCL cells to venetoclax
In this series of DLBCL cell lines, PI3Ka/d inhibition did not alter
BCL-2 expression (Figure 2C). Given the genetic bases for
BCL-2 dysregulation in a subset of these DLBCLs, we assessed
the activity of the BCL-2 inhibitor, venetoclax, by measuring
the induction of apoptosis in vitro (Figure 4A). DLBCL cell
lines treated with single-agent venetoclax showed a range of
responses. DLBCL cell lines with wild-type BCL2 (DHL2) or no
BCL-2 expression (LY7) were resistant to venetoclax. A subset of
DLBCL cell lines with BCL2 genetic alterations was sensitive to
venetoclax treatment (LY1, TOLEDO, LY19). An additional

group of DLBCL cell lines was partially or completely re-
sistant to venetoclax despite having genetic alterations of
BCL2 and documented BCL-2 expression (Figure 2C; supple-
mental Figure 3B).

To further characterize the BCL-2 dependency of the DLBCL cell
lines, we compared their sensitivity to venetoclax with MOMP
induction by BH3 profiling (Figure 4B). In these analyses, we
assessed MOMP induced by the BAD peptide, which targets
BCL-2 and BCL-xL, minus MOMP induced by HRK, which se-
lectively targets BCL-xL (Figure 3A; Figure 4B y-axis). We found
that BCL-2 dependency, as reflected by BH3 profiling (MOMP-
induced by BAD minus that induced by HRK), was highly pre-
dictive of response to venetoclax (Figure 4B).

We postulated that DLBCLs with BCL2 alterations and more
limited sensitivity to single-agent venetoclax depended on
additional antiapoptotic BCL-2 family members. In BCR-
dependent DLBCLs with low baseline NF-kB (GCB), copanli-
sib treatment decreased MCL-1 protein abundance and the
interaction of MCL-1 with proapoptotic BIM (Figure 2C; sup-
plemental Figure 3A). These findings prompted us to assess
the additional antiapoptotic role of MCL-1 in BCR-dependent
DLBCL cell lines with low baseline NF-kB, BCL-2 structural
variants (SVs), and more limited sensitivity to single-agent
venetoclax (DHL4 and DHL6). Of interest, pharmacologic in-
hibition or genetic depletion of MCL-1 synergized with ven-
etoclax treatment in these DLBCLs (Figure 4C; supplemental
Figure 3C). Taken together, these data suggested that BCR-
dependent DLBCLs with structural alterations of BCL2 might
exhibit increased sensitivity to combined PI3Ka/d and BCL-2
blockade.
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Copanlisib and venetoclax are synergistic in in vitro
DLBCL models
For these reasons, we assessed the cytotoxic activity of com-
bined PI3Ka/d and BCL-2 inhibition in the representative
DLBCL cell line panel using copanlisib (0-250 nM) and ven-
etoclax (0-250 nM) (Figure 5). The combination therapy was
synergistic in DLBCL cell lines that are BCR-dependent and
have genetic bases for BCL-2 dysregulation (DHL4, DHL6, LY1,
HBL1, and TMD8) (Figure 5). Synergy was also observed in
Karpas422, which has BCR-independent genetic mechanisms
of activating the PI3K/AKT pathway and BCL2 translocation.
In addition, there was single-agent activity of venetoclax in
BCR-independent cell lines with BCL2 SVs (TOLEDO, LY19)
(Figure 5). Conversely, venetoclax and copanlisib were not
synergistic in DLBCL cell lines without genetic BCL2 alterations
(LY7, DHL2). This observation is concordant with the LY7 and
DHL2 cell lines having the lowest BCL-2 dependency as
measured by BH3 profiling (Figure 4B). Taken together, these
in vitro findings set the stage for assessing the combination of

copanlisib and venetoclax in BCR-dependent DLBCL models
in vivo.

Combination of copanlisib and venetoclax is
synergistic in an in vivo DLBCL model
We next assessed copanlisib and venetoclax activity in a xeno-
graft model using a DLBCL cell line with PTENdel, GNA13mut,
HVCN1mut, and BCL2 translocation (LY1; Figure 1A). Animals
with established disease documented by imaging (supplemental
Figure 4) were divided into 4 cohorts of 7 to 9 animals each.
Thereafter, the animals were treated with vehicle alone; single-
agent copanlisib on days 1, 2, 8, 9, 15, 16 (IV, 12 mg/kg); single-
agent venetoclax on days 1 to 21 (orally, 100 mg/kg); or the
combination of copanlisib and venetoclax. All treatments were
stopped on day 21.

In this model, single-agent copanlisib did not delay tumor
growth (Figure 6A-B) or improve survival (Figure 6C). In contrast,
single-agent venetoclax delayed tumor growth (P , .0001)
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(Figure 6A-B) and improved median survival (27 vs 51 days;
P 5 .0002) (Figure 6C). Most notably, we found that the combi-
nation of copanlisib and venetoclax delayed tumor growth
significantly longer than single-agent venetoclax (P , .0001)
(Figure 6A-B). Additionally, the combination of copanlisib and
venetoclax extended the median survival of treated mice sig-
nificantly longer than single-agent venetoclax (51 days vs not
reached on day 139; P 5 .0013) (Figure 6C). At the end point of
this experiment (139 days), 2 of 8 animals (25%) treated with the
combination of copanlisib and venetoclax died of progressive
disease and 6 of 8 mice (75%) remain disease-free (Figure 6A,C).

Discussion
We have characterized BCR/PI3K-dependent signaling path-
ways and associated therapeutic vulnerabilities in genetically
defined DLBCL models. Dual inhibition of PI3Ka/d was active
in BCR-dependent DLBCLs with low and high baseline NF-kB
activity (GCB and ABC, respectively). In these DLBCLs with
characteristic genetic alterations of BCR-PI3K signaling pathway
components, PI3Ka/d blockade modulated distinct apoptotic
pathways. In BCR-dependent NF-kB–low (GCB) DLBCLs, which
often have inactivating mutations of PTEN and/or GNA13 (as in
cluster 3), PI3Ka/d blockade induced the proapoptotic HRK and

BIM peptides and decreased the abundance of the anti-
apoptotic MCL-1 protein (Figure 7A). In BCR-dependent NF-
kB–high (ABC) DLBCLs with frequent MYD88L265P and CD79B
mutations (as in cluster 5), PI3Ka/d inhibition decreased the
abundance of NF-kB targets including the antiapoptotic BCL-xL
and BFL-1 family members (Figure 7B). In DLBCLs with genetic
alterations of BCL2 (translocations, cluster 3; copy gain, cluster 5)
and functional BCL-2 dependency, BCL-2 blockade released
proapoptotic BH3 peptides from the antiapoptotic BCL-2 pro-
tein (Figure 7). These findings prompted our evaluation of
combined PI3Ka/d and BCL-2 inhibition, with copanlisib and
venetoclax, which was synergistic in multiple BCR-dependent
DLBCL models.

The current preclinical studies highlight the importance of PI3K
as a therapeutic target in DLBCL and emphasize the need to
block both the PI3Ka and d isoforms. These findings build on
earlier work by our group2 and others who identified an ABC-
DLBCL subset that depended on PI3K–NF-kB cross talk20 and
a GCB-DLBCL subset with PTEN loss and sensitivity to pan-PI3K
blockade.21

In our studies, BCR-dependent DLBCLs with low and high
baseline NF-kB (GCB and ABC, respectively) were largely
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resistant to single-agent PI3Ka or PI3Kd inhibition but were
sensitive to the PI3Ka/d-predominant inhibitor, copanlisib
(Figure 1B). These findings align with previous studies in which
PI3Ka was induced by proximal BCR/PI3K inhibition (supple-
mental Figure 1C)2 and PI3Kawas activated by PI3Kd blockade22

in specific DLBCL subsets. Additionally, isoform-specific PI3Kd
inhibition was largely inactive in DLBCL in early clinical trials.23,24

Moreover, the combined application of isoform-specific PI3Ka
and PI3Kd inhibitors was more effective than either single agent
in in vitro analyses of select ABC-DLBCL cell lines.25 In these
studies, the PI3Ka/d-predominant inhibitor, copanlisib, mim-
icked the increased efficacy of combined isoform-specific PI3Ka
and PI3Kd inhibitors in certain ABC-DLBCLs.25 These data in-
formed the development of an ongoing phase 2 clinical trial
of copanlisib in unselected patients with relapsed/refractory
DLBCL.26 In this single-agent study, 19% of patients had an
objective response, including 7.5% complete responses; the
overall response rate was 31.6% in patients with ABC-DLBCL
and 13.3% in those with GCB-DLBCL.26

Although previous studies highlight the role of PI3Kb in PTEN-
deficient solid tumor models,27,28 we found that PI3Kb or PI3Kb/d
inhibitionwas largely inactive in the examinedDLBCLs (Figure 1B).
However, copanlisib exhibits more modest PI3Kb blockade in
addition to predominant PI3Ka/d inhibition.14 It is possible that the
additional PI3Kb blockade contributes to the efficacy of copanlisib
in DLBCLs with specific alterations of PI3K pathway members.

Our recent comprehensive genomic analysis of DLBCLs identifies
additional genetic heterogeneity in transcriptionally defined ABC
andGCB subtypes, including structural alterations of BCL2 in select
DLBCL subsets.9 These data suggest that it may be advantageous
toblock PI3Ka/d-dependent survival pathways aswell as structurally
dysregulated BCL2 in genetically defined DLBCL groups (Figure 7).
These findings are of particular importance because only 18% of
unselected patients with relapsed/refractory DLBCL responded to
single-agent venetoclax in an initial clinical trial.29

The concept of intrinsic and acquired resistance to BCL-2
antagonists mediated by other members of the BCL-2 family
such as MCL-1, BCL-xL, or BFL-1 has been proposed by us30 and
others.31,32 In our current study of genetically and functionally
characterized DLBCL cell lines, we used BH3 profiling to cor-
relate BCL-2 dependency with sensitivity to venetoclax. We
identifiedDLBCL cell lines with wild-type BCL2 or BCL-2 loss and
venetoclax resistance, lines with BCL2 structural variants and
sensitivity to venetoclax, and additional lines with BCL2 alter-
ations and more limited sensitivity to single-agent venetoclax.
In BCR-dependent DLBCLs with genetic alterations of BCL2,
PI3Ka/d inhibition modulated additional BCL-2 family mem-
bers and synergized with BCL-2 blockade in vitro and in vivo
(Figures 5-7). These findings are of additional interest because
venetoclax treatment was reported to decrease PTEN expression
and increase AKT activation in select DLBCL cell lines.33

Taken together, our results provide in vitro and in vivo preclinical
evidence for the rational combination of PI3Ka/d and BCL-2
blockade in BCR-dependent DLBCLs and set the stage for
clinical evaluation of copanlisib and venetoclax in patients with
genetically defined tumors.
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