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MYELOID NEOPLASIA

Integrative genomic analysis reveals cancer-associated
mutations at diagnosis of CML in patients with
high-risk disease
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KEY PO INT S

l Next-generation
sequencing revealed
variants in cancer-
associated genes at
diagnosis of CMLmore
frequently in patients
with poor outcomes.

l All patients at BC had
mutated cancer genes,
including fusions, that
predated BCR-ABL1
kinase domain
mutations in a
majority.

Genomic events associatedwith poor outcome in chronic myeloid leukemia (CML) are poorly
understood. We performed whole-exome sequencing, copy-number variation, and/or RNA
sequencing for 65 patients to discover mutations at diagnosis and blast crisis (BC). Forty-six
patientswith chronic-phasediseasewith the extremesof outcomewere studied at diagnosis.
Cancer gene variants were detected in 15 (56%) of 27 patients with subsequent BC or poor
outcome and in 3 (16%) of 19 optimal responders (P 5 .007). Frequently mutated genes at
diagnosis were ASXL1, IKZF1, and RUNX1. The methyltransferase SETD1B was a novel
recurrently mutated gene. A novel class of variant associated with the Philadelphia (Ph)
translocation was detected at diagnosis in 11 (24%) of 46 patients comprising fusions and/or
rearrangement of genes on the translocated chromosomes, with evidence of fragmentation,
inversion, and imperfect sequence reassembly. These were more frequent at diagnosis in
patients with poor outcome: 9 (33%) of 27 vs 2 (11%) of 19 optimal responders (P 5 .07).
Thirty-nine patients were tested at BC, and all had cancer gene variants, including ABL1
kinase domain mutations in 58%. However, ABL1mutations cooccurred with other mutated
cancer genes in 89% of cases, and these predated ABL1 mutations in 62% of evaluable

patients. Gene fusions not associatedwith the Ph translocation occurred in 42%of patients at BC and commonly involved
fusion partners that were known cancer genes (78%). Genomic analysis revealed numerous relevant variants at diagnosis
in patients with poor outcome and all patients at BC. Future refined biomarker testing of specific variants will likely
provide prognostic information to facilitate a risk-adapted therapeutic approach. (Blood. 2018;132(9):948-961)

Introduction
Chronic myeloid leukemia (CML) represents the prototype of
genetically based diagnosis and management, and tyrosine
kinase inhibitors (TKIs) exemplify the success of molecularly
targeted therapy, with average life expectancy approaching that
of the general population.1 However, therapy still fails in a
proportion of patients. At 10 years of first-line imatinib, 47%
of patients were alive and still receiving imatinib.2 Up to 26% of
all imatinib discontinuation was for drug resistance.2-4 More-
potent inhibitors rescued response for a proportion of pa-
tients with resistant chronic-phase (CP) disease; however, the risk

of transformation and death for imatinib-resistant patients was
34% to 43%.5,6

BCR-ABL1 kinase domain (KD) mutations remain the major
known mechanism of acquired TKI resistance,7-12 but they are
rarely responsible for primary resistance. The events initiating
BCR-ABL1–independent resistance remain poorly understood.13

However, studies have demonstrated that transformation to blast
crisis (BC) is due to the accumulation of genetic abnormalities
detectable as additional cytogenetic changes and mutations in
individual genes identified by deep sequencing.14-22 Furthermore,
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gene expression changes may distinguish CP from BC and predict
response to TKI therapy.23-27 The increasingly mainstream use
of next-generation sequencing for studying cancer genomes is
advancing our understanding of disease pathogenesis and
prognosis.28-32 In CML, this technology may reveal the most
pathologically relevant additional genetic events to identify high-
risk patients and direct trials to test new combinational treatment
approaches.

Here, we used whole-exome (WES) and whole-transcriptome
sequencing (RNA-Seq) to determine somatic point or small
insertion/deletion (indel) variants, copy-number variation (CNV),
and fusion genes that underlie disease transformation. Patients
with outlier responses have been studied to identify biomarkers
of drug response,33-35 which demonstrates the potential of such
cases to advance understanding of the genetic basis of treat-
ment outcome. We therefore included diagnosis samples of
patients at the extremes of TKI response: achievement of amajor
molecular response (MMR) vs BC transformation. Our study
revealed clinically relevant variants in addition to BCR-ABL1 at
CP diagnosis in patients with poor outcome and in all patients at
BC. The types of variants were diverse and included gene fusions
and CNVs. Many of the mutated genes have been identified in

CML and other hematologic diseases.15-22,29,36 However, some
of the recurrent variants, mutated genes, fusions, and splice
variants are novel in CML. We highlight the importance of in-
corporating multiple sequencing platforms to fully characterize
the various mutation classes.

Patients and methods
Patient samples and type of sequencing
Sixty-five patients were studied, and the type of sequencing
technique performed was dependent on the sample type
available: DNA and/or RNA (Figure 1). DNA was available for
WES for 38 of 65 patients. The somatic status of variants was
assessed with a matching nonleukemic control sample in 35 of
these 38 patients. Two sources of control were used: mesen-
chymal stromal cells or remission samples. RNA-Seq was pos-
sible for 59 of 65 patients.

At diagnosis, patients were selected from among.500 patients
for sequencing in CP on the basis of their subsequent response
to first-line TKIs and availability of appropriate samples. Nine-
teen patients had an optimal response, defined as durable MMR
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Figure 1. Patients tested and type of sequencing.
Of the total cohort of 65 patients, 38 had samples
tested by WES and 59 had samples tested by RNA-
Seq. (A) Forty-six CP patients treated with first-line
TKIs who were all sequenced at diagnosis. Twenty of
the 46 were also sequenced at BC. (B) Nineteen
patients selected for sequencing on the basis of
available samples at BC. Five of these patients also
had samples available for sequencing at diagnosis:
2 patients diagnosed in accelerated phase (AP), 2
patients who received no TKI therapy, and 1 patient
treated with a second-line TKI.
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(median time to MMR, 3 months; range, 3-55 months). MMR was
durable, with a median follow-up of 34 months (range, 18-174
months). Twenty-seven patients had a poor outcome, where 26
developed BC after a median of 6 months (range, 1-60 months),
and for 1 patient, 4 TKIs had failed by 18 months (best response,
complete hematologic response). These 27 patients were col-
lectively termed poor-outcome patients. At BC, samples of
39 patients were sequenced, including 20 of the first-line TKI–
treated patients who were also sequenced at diagnosis. The
study was approved by the Human Research Ethics Committee
of the Royal Adelaide Hospital, and patients provided written
informed consent.

Next-generation sequencing
For WES, we used the Roche SeqCap EZ Exome v3.0 kit for
100-bp paired-end sequencing. Somatic variants were called
using published algorithms (supplemental Methods, available
on the Blood Web site). CNV detection in normal and tumor
samples was performed using a method developed in house
(supplemental Methods). Structural variants and genomic fu-
sions were additionally assessed using Manta.37

RNA-Seq libraries were prepared using the Illumina TruSeq
Stranded Total RNA protocol for 100-bp or 150-bp paired-end
sequencing. The protocol proved capable of identifying sense
and antisense spliced fusion transcripts as well as genomic
breakpoints from intron-retaining precursor messenger RNA that
are usually absent in standard poly(A)-enriched RNA-Seq. Gene
fusions and other genomic rearrangements were analyzed using
in-house tools based on output provided by the STAR RNA-Seq
mapper38 (supplemental Methods), and single-nucleotide vari-
ants (SNVs) and indels in the RNA-Seq data were detected using
FreeBayes.39 Differential gene expression analysis is described in
the supplemental Methods. Sequencing was performed on
Illumina HiSeq2500 and NextSeq 500 instruments.

The sequence data have been deposited at the European
Genome-phenome Archive, which is hosted by the European
Bioinformatics Institute, under accession #EGAS00001003071.

Variant validation
Variants were selected for validation (.3500) using in-
dependent methods (supplemental Methods and Results), in-
cluding Sanger sequencing, reverse transcription polymerase
chain reaction, and single-nucleotide polymorphism array.
A comparison was performed between the somatic variant
calls when either mesenchymal stromal cells or remission
samples were used as the source of nonleukemic control, and
the minimum detectable somatic variant allele frequency was
established (supplemental Results).

Filtering strategy for potentially
pathogenic variants
Annotation of variants is described in the supplemental
Methods. Indels in protein-coding regions and nonsynonymous
and essential splice-site SNVs predicted to be deleterious using
in silico functional prediction models were retained and clas-
sified according to clinical relevance, as were fusions and CNVs
(supplemental Methods). Missense-coding variants designated
as deleterious were predicted to be damaging by at least
3 of the 4 functional prediction algorithms, which indicates
that they are likely to modify protein function. These variants
also met minimum evolutionary conservation scores (sup-
plemental Methods).

Classification systems for clinical relevance were adapted to enrich
for potentially pathogenic variants.40-42 Retained deleterious vari-
ants were classified as: 1) clinically relevant, 2) possibly relevant, or
3) unknown relevance (supplemental Methods). Briefly, clinically
relevant variants were associated with hematologic malignancy

Table 1. Patient characteristics and type of sequencing for first-line TKI–treated patients diagnosed in CP

All patients MMR Poor outcome

N of patients 46 19 27

Median age, y (range) 49 (14-82) 51 (29-67) 45 (14-82)

Male sex, N (%) 26 (57) 9 (47) 17 (63)

Sokal risk group, low/intermediate/high/unknown 19/11/7/9 12/4/2/1 7/7/5/8

Additional chromosomal abnormalities at diagnosis,
yes/no/unknown

4/34/8 0/18/1 4/16/7

First-line TKI, imatinib/nilotinib 43/3 18/1 25/2

Best response to TKI therapy, CHR/MCyR/CCyR/MMR/
unknown

8/9/5/20/4 0/0/0/19/0 8/9/5/1/4

N who developed BC 26 0 26

WES plus RNA-Seq, diagnosis/BC 28/10 14/0 14/10

WES alone, diagnosis/BC 2/2 0/0 2/2

RNA-Seq alone, diagnosis/BC 16/8 5/0 11/8

CCyR, complete cytogenetic response; CHR, complete hematologic response; MCyR, major cytogenetic response.
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and occurred ingenes listed in theCatalogue of SomaticMutations
in Cancer Cancer Gene Census.43 These genes have high-level
evidence as drivers of hematologic malignancy and are hereafter
termed cancer genes. Possibly relevant variants occurred in genes
recurrently mutated in our cohort. Novel somatic fusions and re-
current CNVs were also considered possibly relevant.

Statistics
Groups were compared using the Mann-Whitney rank sum test.
Fisher’s exact test and the x2 test were used to compare
frequencies.

Results
Relevant variants at diagnosis in CP
Patient characteristics for the 46 patients diagnosed in CP and
treated with first-line TKIs are listed in Table 1, including the best
response to first-line TKI therapy. The type of sequencing
performed for each patient is outlined in supplemental Table 1
and summarized in Figure 1.

At diagnosis, variants that met our criteria for clinically rele-
vant or possibly relevant were detected in 23 (50%) of 46
patients (Figure 2; supplemental Table 1). A majority occurred

Relevant variants at diagnosis in chronic phase for patients treated with first-line TKI
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Figure 2. Relevant variants at diagnosis in CP for patients treated with first-line TKIs. (A) Variants at diagnosis and overlap of variant type per patient at diagnosis. The
average Combined Annotation Dependent Depletion score of the SNVs and indels was 32 (range [r], 22-44), indicating they were predicted to be deleterious. All relevant SNVs
were predicted to be damaging by at least 3 of 4 in silico prediction tools. For the Venn diagrams, patients with.1 variant within a category (eg, 2 SNVs) were only counted once
for that category. SNVs and indels were detected by WES and/or RNA-Seq. Fusions represent fusion transcripts detected by RNA-Seq and genomic fusions where breakpoints
were detected by RNA-Seq or WES, including focal deletions. CNVs were detected from theWES data. All variants that met the criteria for classification for clinical relevance or
possible relevance were included. (B) Graphs show characteristics of variants that occurred in$3 patients. Themedianmonth and r of subsequent BC was calculated for patients
with any 1 of the variants. Ph, Philadelphia.
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Figure 3. Relevant variants at BC for 39 patients. (A) Variants at BC. Recurrent CNVs are shown except for immunoglobulin and T-cell receptor deletions. (B) Overlap of variant
type per patient at BC. (C) The percentage frequency of each mutated gene or locus is indicated above each column and calculated relative to the number of patients who
underwent a particular form of sequencing or treatment (eg, the frequency of ABL1mutations is calculated for the 33 patients who had received TKIs at the time of sequencing).
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in cancer genes and were detected in patients with a poor
outcome: 19 (70%) of 27 patients compared with 4 (21%) of 19
patients with subsequent MMR (P 5 .002). All coding variants are
listed in supplemental Tables 6 and 7. When available, RNA-Seq
data established whether somatic variants were detected in
the transcripts. The coding variants classified as relevant were
expressed, whereas some of the others were not. These were
likely to be passengers that do not play a role in treatment
response.

Among the 27 poor-outcome patients, 26 developed BC. The
median time to BC was earlier for those with relevant variants at
diagnosis compared with those without: 5 months (range, 1-47
months; n 5 18 patients) vs 15 months (range, 6-60 months;
n 5 8 patients; P 5 .018). The most frequently mutated gene at
diagnosis was ASXL1 in 9 patients. Six of these developed BC.
Patients with mutated ASXL1 at diagnosis had a significantly
longer time to BC than patients with other mutated genes at
diagnosis that did not include ASXL1: 21 months (range, 4-47
months) vs 4.5 months (range, 1-23 months; P 5 .037). Fur-
thermore, 2 patients with ASXL1 variants (allele frequencies,
22% and 40%) achieved anMMR at 3 months of first-line imatinib.
The variants were not detected at remission, suggesting theywere
present in a leukemic clone and were reduced or eradicated with
effective imatinib treatment.

Other recurrently mutated genes at CP diagnosis included
cancer genes RUNX1, TP53, and IKZF1. IKZF1 variants occurred
in 6 patients and comprised whole-gene (n 5 1) or exon dele-
tions (n 5 3) and novel fusions (n 5 2). Five of these 6 patients
developed lymphoid BC (LBC) after 3 to 23 months of imatinib.
A novel recurrently mutated gene was the histone methyl-
transferase SETD1B, in which somatic frameshift/nonsense
variants occurred in 3 patients with subsequent BC. This
gene, although categorized as a cancer gene in the Catalogue of
Somatic Mutations in Cancer, is currently not associated with
hematologic malignancy.

Thirty of the 46 patients sequenced at diagnosis hadWES analysis
performed andwere evaluable for somatic CNV analysis. We used
an algorithm developed in house, which demonstrated a high
concordance (97.6%) with a gold-standard technique: Affymetrix
CytoScanHDarray (supplemental Results; 123 somaticCNVswere
evaluable from the total cohort of patients). At diagnosis, CNVs
were detected in 7 (23%) of 30 patients (supplemental Table 8).
These included deletions associated with the Ph translocation in
4 of 7 patients. Six of the 7 patients with CNVs at diagnosis de-
veloped BC (n 5 5) or had no response to 4 TKIs (n 5 1).

Among 23 patients with poor outcome where the best response
to first-line TKIs was known, 8 (30%) had primary resistance,
defined as failure to achieve a major cytogenetic response. All of

these patients had relevant variants at diagnosis (supplemental
Table 1), compared with 6 of 9 with a major cytogenetic re-
sponse (67%) and 2 of 6 with a complete cytogenetic response/
MMR (33%; P 5 .027). The 1 patient who achieved but did not
sustain an MMR transformed rapidly at 25 months of imatinib
and acquired an MLL fusion.

The Sokal risk score was known for 37 of 46 CP patients. There
was an association between Sokal score and relevant variants at
diagnosis: high, 86% (6 of 7 patients); intermediate, 42% (5 of 12
patients); and low, 28% (5 of 18 patients; P5 .03). We also tested
for differentially expressed genes between good and poor re-
sponders at diagnosis to determine if an expression signature
could be identified for use as a classifier for outcome. However,
the expression analysis did not result in any genes differentially
expressed at the level of P, .05 (Benjamini-Hochberg adjusted;
supplemental Figure 18).

Relevant variants at BC
Thirty-nine patients had sequencing performed at BC, including
20 of the first-line TKI–treated patients who were sequenced at
CP diagnosis described in “Patient samples and type of se-
quencing” (Figure 1). All 39 patients had 1 to 6 variants in cancer
genes at BC (supplemental Table 1; Figure 3). Variants were
acquired in genes that were also somatically mutated in other
patients at CP diagnosis: IKZF1, RUNX1, ASXL1, BCORL1,
and IDH1.

The most frequently mutated gene was ABL1, where KD mu-
tations were detected in 19 (58%) of 33 TKI-treated patients.
These mutations were more frequently detected at LBC
(16 [84%] of 19 patients) compared with MBC (3 [21%] of 14 pa-
tients; supplemental Results). The average allele frequency of
the KDmutations was 31%detected byWES (range, 13%-65%) and
47% by RNA-Seq (range, 10%-88%). All of these mutations were
known imatinib-resistant mutations,44,45 and all were confirmed
to be present in the BCR-ABL1 transcript by Sanger sequencing.8

Only 2 of 19 patients had ABL1 KD mutations as the sole
mutated cancer gene. Pairwise interactions between mutated
genes were assessed and potential interactions identified
(supplemental Results; supplemental Table 10). The number of
mutants was low, but no patient with an MLL fusion had an ABL1
KD mutation. Conversely, ABL1 KD mutations were frequently
observed in patients with IKZF1 variants.

CNVs at BC
Twenty patients had WES analysis performed at BC and were
evaluable for somatic CNV analysis. CNVs were detected in
18 (90%) of 20 patients (supplemental Table 8; supplemental
Figures 4 and 5). Recurrent CNVs involved large regions of chro-
mosomes 8, 17, and 19 and the Ph chromosome [der(22)].
Patients with LBC had a high frequency of submicroscopic

Figure 3 (continued) Recurrent CNVs are graphed, except immunoglobulin and T-cell receptor deletions. IKZF1 and RUNX1 fusions and deletions are grouped with the other
variants in these genes. The non–Ph-associated fusions are shown if 1 of the fusion partners was a known cancer gene. (D) Pairwise cooccurrence of variant types and genes. All
genes that were mutated in $3 patients are included. The width of the ribbon correlates with the relative frequency of cooccurring mutated genes/variant type. Variants are
arranged in clockwise order of frequency. Fusions where 1 of the partners was a cancer gene are grouped (fusions), except forMLL fusions (MLL-X).MLL fusions were the most
frequent fusions and had few cooccurring variants, whereas ABL1 KDmutations and RUNX1 and IKZF1 variants had multiple cooccurring variants. The novel recurrently mutated
gene SETD1B is shown for all patients with variants in this gene to show cooccurrence, although the variant was below the level of detection in 1 patient at BC. (E) The same plot is
shown where the colors indicate cooccurring variants associated with myeloid BC (MBC) in red and LBC in blue, which reveals that cancer gene–associated fusions were rare in
LBC, as were ASXL1 variants. The Ph-associated fusions were more frequently linked with LBC.
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Figure 4. Somatic RUNX1 deletion and novel transcript. (A) CNV BedGraphs were generated by an in-house algorithm from the WES data for the germ line, diagnosis, and
MBC samples of patient 3. The germ line gray central horizontal line indicates 2 copies of each gene. Extended red bars below the central line indicate a deletion of RUNX1 exons
3 to 7 at diagnosis and MBC. The extended black bars above the central line at MBC indicate chromosome 21 gain. (B) The RUNX1 deletion was confirmed by the CytoScan HD
Array, where additional intronic markers revealed the full extent of the deletion. The genomic region is shown using the Affymetrix Chromosome Analysis Suite for the diagnosis
and MBC samples. Red boxes represent the deletion, and blue boxes at MBC confirm the gain. (C) The deletion generated a novel in-frame RUNX1 exon 2 to 8 transcript. The
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deletions of immunoglobulin and T-cell receptor loci, consistent
with clonal populations of lymphoid progenitors. A novel re-
current ;60-Kb deletion comprising exons 1 to 2 of HBS1L and
an intergenic sequence between HBS1L and MYB (termed
HBS1L-MYB locus deletion) was detected in 3 of 10 patients with
LBC (supplemental Figure 6). Genes with recurrent sub-
microscopic deletions included RUNX1 (Figure 4) and IKZF1
(supplemental Figure 9), and atypical splice junctions were
frequently detectable by RNA-Seq in patients with exon dele-
tions (Figure 4; supplemental Figures 8 and 9).

Gene fusions and expression analysis at BC
Thirty-three patients had RNA-Seq performed at BC and were
assessed for gene fusions. Fourteen patients (42%) had 18 known
or novel fusions that were not associated with the Ph translocation
(see “Novel class of variant associated with the Ph translocation”).
MLL (KMT2A) fusions were the most frequent (n 5 5), and 2 of
these were cytogenetically cryptic. The other known fusions were
CBFB-MYH11 and PAX5-ZCCHC7. Novel fusions in 6 patients
involved cancer genes implicated in hematologic malignancy:
RUNX1, IKZF1, MECOM, and MSI2 (supplemental Table 11).

In total, 14 (78%) of 18 fusions at BC were known leukemia-
associated fusions (n 5 7) or were fusions in which a fusion
partner was a known leukemia-associated gene (n 5 7).
A number of the novel fusions were cytogenetically cryptic,
including an intrachromosomal RUNX1-MX1 out-of-frame fu-
sion. A submicroscopic 6.6-Mb inversion brought the RUNX1
gene into the same transcriptional orientation as MX1 (sup-
plemental Figure 10). A similar inversion generated a novel intra-
chromosomal MBNL1-MECOM fusion. A complex series of
events generated a cryptic MSI2-PRMT2 fusion, including a
3-way exchange of sequence from chromosomes 17, 19, and 21
(supplemental Figure 11). In total, 151 of the fusions that met
our criteria for relevance were evaluated using reverse transcrip-
tion polymerase chain reaction, and 150 (99%) were validated
(supplemental Results).

Gene expression analysis among patients with specific mu-
tated genes was confounded by multiple mutations in dif-
ferent cancer genes in most patients. These multiple variants
included SNVs, indels, and fusions, plus CNVs in some pa-
tients. However, expression analysis between disease phases
revealed differentially expressed genes (supplemental Re-
sults). Samples of TKI-treated patients at MBC (n 5 11) or LBC
(n 5 18) were compared with the diagnosis samples of
43 patients who were subsequently treated with first-line
TKIs. Supplemental Figure 18A shows a heat map for hierarchi-
cal clustering of 1156 differentially expressed genes with an
adjusted P value ,.001. Two clusters were dominated by the
BC samples, whereas there was no discernable clustering of
the diagnosis samples according to treatment outcome. One
BC cluster only included patients with LBC (n 5 15), and the
predominant genes mutated were ABL1 and IKZF1 in 93%

and 53% of patients, respectively (supplemental Figure 18B).
Most patients in the other BC cluster had MBC (10 [63%] of
16 patients), and the predominant variants were fusions (not
Ph-associated) in 56% of patients. All 5 patients with MLL
fusions at BC clustered in this group, including 2 patients
with LBC.

Novel class of variant associated with the
Ph translocation
Twelve of 59 patients with RNA-Seq performed had gene re-
arrangement and novel fusions on the chromosome arms in-
volved in the Ph translocation (supplemental Table 11; Figure 5).
These are termed Ph-associated rearrangements. They were
detected in 11 patients at diagnosis and in 1 patient tested only
at BC. The somatic status of the rearrangements was confirmed
in 5 of 5 patients with available nonleukemic control. No newly
emerging Ph-associated rearrangements were detected at BC,
suggesting they occurred with the initiating translocation.

The Ph-associated rearrangements were more frequently de-
tected at diagnosis in patients with poor outcome: 9 (33%) of
27 first-line TKI–treated CP patients who developed BC (n 5 8)
or for whom 4 TKIs failed (n5 1) vs 2 (11%) of 19 with sustained
MMR (P 5 .07). The events generated 15 novel fusion tran-
scripts, plus 10 genomic fusions where no corresponding fusion
transcript was detected. The fusions frequently involved in-
versions that brought genes into the same transcriptional ori-
entation. In addition, 4 patients had intragenic inversions of
ABL1 or BCR. Figure 5D shows a 93-Kb intragenic inversion
of ABL1 intron 1. In total, sequence inversions were detected in
10 (83%) of 12 patients.

Interestingly, fusion partner genes were located both upstream
and downstream of BCR and ABL1 (Figure 5), and some fusions
were associated with deletions on chromosomes 9 and 22.
These were detected in 4 of 7 patients with CNV analysis per-
formed. An insertion of NUP214 exon 23 occurred in 1 patient
between BCR exon 19 and ABL1 exon 2, which generated an in-
frame BCR-NUP214-ABL1 transcript (supplemental Results).
NUP214 is normally located downstream ofABL1. The additional
exon could potentially alter the conformation of a generated
protein and modify sensitivity to imatinib. The observed gene
fusions in some patients and their transcriptional orientation
provide evidence of a complex series of events, including
chromosome fragmentation, sequence inversion, and imper-
fect reassembly generating random fusion (supplemental
Figures 14-16).

Timeline of mutation acquisition in cancer genes
Various patterns of mutation acquisition with disease stage were
evident. First, 5 patients diagnosed in accelerated phase/BC had
1 to 2 cancer gene variants at diagnosis: CBFB-MYH11, RUNX1,
GATA2, BCOR, BCORL1, and an MSI2 fusion.

Figure 4 (continued) splice junction tracks visualized in the Integrative Genomics Viewer are shown for a representative sample analyzed by RNA-Seq with normal RUNX1
splicing and the diagnosis and MBC samples of patient 3 with atypical RUNX1 exon 2 to 8 splicing. Arcs represent splice junctions that connect exons. Junctions from the minus
strand are colored blue and extend below the center line. The arrowheads indicate the location of the genomic deletion breakpoints. RefSeq transcripts are shown at the bottom.
(D) Sashimi plots of the diagnosis and MBC samples generated from the RUNX1 RNA-Seq splice junction track, which allows visualization of the novel splice generated by the
deletion. Only the junctions that overlap RUNX1 RefSeq transcript ID NM_001754 exon 2 are shown. (E) The predicted novel isoform excludes the Runt DNA binding domain. (F)
The stranded RNA-Seq protocol enabled sequencing of intron-retaining precursor RNA and genomic breakpoint detection. The intronic breakpoints were identified by RNA-
Seq of the corresponding RNA samples at chr21:36392146 in intron 2 and chr21:36201259 in intron 7 (hg19). The genomic deletion junction was polymerase chain reaction
amplified and Sanger sequenced, which confirmed a 190 888 base deletion.
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Second, 18 CP patients had 1 to 4 cancer gene variants at di-
agnosis, including recurrently mutated genes TP53, RUNX1,
IKZF1, and ASXL1. Fifteen of these 18 developed BC (n 5 14;

median, 6 months; range, 3-47 months) or had no response to
4 TKIs (n 5 1). Eleven of 12 patients who were tested during
therapy gained 1 to 5 additional variants in cancer genes
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Figure 5. Ph translocation–associated fusions and rearrangement. Chromosomes 9q (A) and 22q (B) are shown along with the location of genes involved in the fusions. Pink
arrows indicate transcription from theplus strandandblue arrows from theminus strand.Greenbars indicate the relative locationof deletionsdetected in 4patients: patients 4, 8, 11, and26.
These align with the fusion partners in some cases. Sequence inversions brought some genes into the same transcriptional orientation. Fusion partners were located upstream and
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Listed are fusion transcripts and the genomic fusions where no corresponding fusion transcript was identified. Superscripts indicate the patient number. Two fusions involved intragenic
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that brought MYH9 into the same transcriptional orientation as BCR and generated an MYH9-BCR fusion transcript.
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(Figure 6). The other 3 of 18 patients achieved and maintained
MMR: 2 had somatic ASXL1 variants, and 1 had a novel somatic
IKZF1-TCF4 fusion at diagnosis.

The third pattern involved 14 patients tested at CP diagnosis
who did not have variants in cancer genes but developed
BC (median, 14 months; range, 1-64 months). Eleven of these
14 were tested at BC, and all gained 1 to 4 cancer gene variants.
Four patients had samples available to track the time point of
variant acquisition by Sanger sequencing (Figure 6).

Of 16 patients with ABL1 KD mutations at BC who were se-
quenced at prior time points, 10 (62%) had cancer gene variants
that predated the ABL1mutations. Clonal competition between
variants was evident over time, where the allele frequency de-
creased after diagnosis for some variants and increased for
others (Figure 6).

One patient had DNMT3A and TET2 variants detected in a
remission sample (Figure 6N), and the pattern of clonal selection
is consistent with their presence in a BCR-ABL12 clone, which is
detailed in the supplemental Results.

Discussion
Our study has demonstrated that somatic variants in cancer
genes in addition to the BCR-ABL1 fusion are present at di-
agnosis in a significant subset of patients, particularly in those
patients who, despite TKI therapy, experience early BC trans-
formation. The variants included gene fusions, splice anomalies,
and CNVs, and this diversity of mutation type would not have
been detected by DNA sequencing alone. This underscores the
importance of multiple modes of variant detection to reveal
relevant genomic events in addition to the BCR-ABL1 fusion.

Among the genes mutated at diagnosis were RUNX1, ASXL1,
and TP53, which confer a poor prognosis for patients with
acute myeloid leukemia.46 Their role in prognosis and
treatment outcome for patients with CML is yet to be estab-
lished. RUNX1 is a frequent and aggressive driver of hemato-
logic malignancies15,46-48 and has been described in multiple
CML studies, but it is not always associated with poor outcome.16-22

In our cohort, mutated RUNX1 was rarely detected as the sole
mutated cancer gene. We speculate that in optimal responders to
TKIs, certain leukemic clones with mutated genes at diagnosis may
be eradicated by TKIs. This may be dependent on a number of
factors, including cooccurring mutations, the variant allele fre-
quency, and the varying degree of innate TKI resistance conferred
by particular variants. In our cohort, patients with an ASXL1 variant
at diagnosis had a longer median time to BC than other patients.
Furthermore, 2 of 9 patients with an ASXL1 variant at diagnosis
achieved anMMR.Oneof these variants occurred in exon11. A vast
majority of ASXL1 variants are exon 12 frameshift/nonsense and
may be gain-of-function mutations,49 whereas the functional sig-
nificance of variants in other regions are unknown. The significance
of mutated genes at diagnosis and their association with outcome
warrant further investigation.

An unexpected finding was complex rearrangements and novel
fusions associated with the Ph translocation. Chromosome 9 and
22 sequences were possibly fragmented during the Ph trans-
location in some patients. Some fragments were deleted and

others inverted. Remaining fragments were reassembled im-
perfectly and generated random fusions, while maintaining the
leukemia-initiating BCR-ABL1 fusion. Limitations in previous
technology may have precluded their discovery. These occurred
more frequently in patients with a poor outcome vs optimal
responders andmay constitute an important additional genomic
risk factor. Derivative 9 deletions, which mainly spanned the
translocation breakpoint, were associated with poorer outcome
in the pre-TKI era.50-52 However, some of our deletions were
noncontiguous and at locations not detectable by older
techniques.50-54 Interestingly, a novel NUP214-XKR3 9;22 fusion
has been reported in 2 independent studies in the BCR-ABL11

cell line K562 that would require a similar series of events for
formation, including sequence inversion.55,56 The role of the Ph-
associated fusions in treatment outcome is unknown. We have
revealed another layer of molecular heterogeneity, leading us to
speculate that there may be a subcategory of patients in whom
Ph-associated gene fusions/inversions modify outcome with
TKI therapy.

Our study revealed a high rate of other gene fusions (42% of
patients at BC), and most were either fusions known to be as-
sociated with hematologic malignancy or fusions in which 1 of
the fusion partners was a known cancer gene.46,57-60 However, it
will be important to functionally characterize the novel fusions to
establish whether they are transforming and whether they confer
TKI resistance or reduced sensitivity, which is planned in future
studies.

Many of the mutated genes may be targets for emerging
therapy. IDH1/2 inhibitors are in clinical trial for the treatment of
acute myeloid leukemia.61,62ASXL1mutants were hypersensitive
to recently developed bromodomain inhibitors.49 We detected
an XPO1 E571K mutation in an isolated patient at LBC. This
variant may play a role in B-cell hematologic malignancies,63 and
XPO1 is implicated in ABL1-independent resistance.64,65 XPO1
inhibitors have demonstrated antileukemic activity.65,66 MLL
rearrangements may be targeted by inhibitors.67,68 These were
the most frequent fusions at BC, and some were cytogenetically
cryptic, which emphasizes the advantage of using additional
genomic tools to identify potentially targetable mutations.

The mutational spectrum in cancer genes was diverse, and
subcohorts of patients with specific mutations were small in
number. For this reason, we generally could not find specific
gene expression signatures correlated with mutations in a sta-
tistically meaningful fashion. General differences were observed
between the transcriptomes of diagnosis and BC samples, and in
the latter, differences were seen between MBC and LBC sam-
ples. These differences in expression were accompanied by
differences in mutational patterns.

Our study is among the most comprehensive genomic analyses
of patients with CML. It included matched diagnosis/BC sam-
ples in many patients, coupled with nonleukemic controls, to
determine the somatic status of variants. BC is a rare event for
TKI-treated patients, and whether these findings extend to a
broader population of patients will require assessment of a large
cohort of unselected and consecutively treated patients. Future
genomic analyses may reveal prognostic risk groups, and
combining genomic data with clinical parameters could improve
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prognostication and disease classification, as it has in other
hematologic malignancies.46,69

Although we cannot generalize our findings to current clinical
practice, there are already hints that we can generate clinically
useful data. There was marked heterogeneity of mutated genes
in individual patients, with up to 5 mutated cancer genes at BC.
Furthermore, by tracking variants in prior samples, clonal compe-
tition amongmutants was evident. Additional studieswill add to our
understanding of treatment response and clarify the clinical use-
fulness of genomic analysis. These analyses are becoming in-
creasingly affordable and in the future may be routine at cancer
diagnosis. It is important to prepare for this era by gaining a deeper
understanding of the somatic genome and its association with
outcome in CML. Furthermore, collection of a matched non-
leukemic sample at diagnosis, such as hair follicles or nail clip-
pings,70 will aid the future interpretation of data.

Although generic imatinib has become the standard of care
for patients with CML in many countries because of its cost
effectiveness and safety profile, it is likely that selected pa-
tients would benefit from a therapeutic approach incorpo-
rating more potent kinase inhibition or combinational therapy
targeting additional pathways. If very high-risk cases could be
identified with confidence, upfront allogeneic transplantation
may even be considered. A detailed understanding of the
prognostic implications of specific genetic variants will be
critical to the achievement of a risk-adapted approach to CML
therapy.
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59. De Braekeleer E, Férec C, De Braekeleer M.
RUNX1 translocations in malignant hemo-
pathies. Anticancer Res. 2009;29(4):
1031-1037.

60. De Braekeleer E, Douet-Guilbert N, Rowe D,
et al. ABL1 fusion genes in hematological
malignancies: a review. Eur J Haematol. 2011;
86(5):361-371.

61. Okoye-Okafor UC, Bartholdy B, Cartier J, et al.
New IDH1 mutant inhibitors for treatment
of acute myeloid leukemia. Nat Chem Biol.
2015;11(11):878-886.

62. Stein EM, DiNardo CD, Pollyea DA, et al.
Enasidenib in mutant IDH2 relapsed or

refractory acute myeloid leukemia. Blood.
2017;130(6):722-731.

63. Camus V, Miloudi H, Taly A, Sola B, Jardin F.
XPO1 in B cell hematological malignancies:
from recurrent somatic mutations to targeted
therapy. J Hematol Oncol. 2017;10(1):47.

64. Khorashad JS, Eiring AM, Mason CC, et al.
shRNA library screening identifies nucleocy-
toplasmic transport as a mediator of BCR-
ABL1 kinase-independent resistance. Blood.
2015;125(11):1772-1781.

65. Walker CJ, Oaks JJ, Santhanam R, et al.
Preclinical and clinical efficacy of XPO1/CRM1
inhibition by the karyopherin inhibitor KPT-
330 in Ph1 leukemias. Blood. 2013;122(17):
3034-3044.

66. Hing ZA, Fung HY, Ranganathan P, et al. Next-
generation XPO1 inhibitor shows improved
efficacy and in vivo tolerability in hemato-
logical malignancies. Leukemia. 2016;30(12):
2364-2372.

67. Daigle SR, Olhava EJ, Therkelsen CA, et al.
Potent inhibition of DOT1L as treatment of
MLL-fusion leukemia. Blood. 2013;122(6):
1017-1025.

68. Khaw SL, Suryani S, Evans K, et al. Venetoclax
responses of pediatric ALL xenografts reveal
sensitivity of MLL-rearranged leukemia.
Blood. 2016;128(10):1382-1395.

69. Nazha A, Narkhede M, Radivoyevitch T, et al.
Incorporation of molecular data into the Re-
vised International Prognostic Scoring System
in treated patients with myelodysplastic syn-
dromes. Leukemia. 2016;30(11):2214-2220.

70. Hogervorst JGF, Godschalk RWL, van den
Brandt PA, et al. DNA from nails for genetic
analyses in large-scale epidemiologic studies.
Cancer Epidemiol Biomarkers Prev. 2014;
23(12):2703-2712.

CANCER-ASSOCIATED MUTATIONS AT DIAGNOSIS OF CML blood® 30 AUGUST 2018 | VOLUME 132, NUMBER 9 961

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/132/9/948/1467355/blood832253.pdf by guest on 18 M

ay 2024


