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Following the successful example of imatinib in chronic myeloid
leukemia, personalized oncology is often considered as the choice of
optimal targeted therapies fitted to the mutational landscape of the
cancer. However, this paradigm is far from being generalized, and
randomized clinical trials of other drugs have failed to demonstrate
major clinical improvement (if any) with this approach.1-3 However,
the generation of big data in medicine raises new hope for per-
sonalized therapy by integrating numerous clinical and biological
data to refine outcome prediction. A very promising demon-
stration of this “knowledge bank approach” recently came from
the study reported by Gerstung et al that was based on the
analysis of .1500 acute myeloid leukemia (AML) patients from 3
randomized clinical trials.4 In this article, the authors demonstrated
the efficacy of their model to improve overall survival prediction
compared with current classifications. More interestingly, the
knowledge bank approach is able to predict the different causes
of mortality in AML patients (ie, nonremission death, relapse
death, nonrelapse death), as well as how allogeneic stem cell
transplantation (ASCT) might impact these probabilities for each
patient. As stated by the authors, the use of this scoring system

might profoundly change patient care, especially with regard
to ASCT. However, although the accuracy of this prognostic
system has been confirmed for overall survival in an in-
dependent cohort from The Cancer Genome Atlas, the ability of
the algorithm to predict the different causes of mortality has yet to
be validated. Moreover, among the different caveats that might
challenge the relevance of this scoring system in real life, the
heterogeneity of high-throughput sequencing data generation
and analysis is a major concern. For example, the filtering strategy
used by Gerstung et al is only applicable in the context of a
centralized laboratory analyzing large cohorts of patients and
not for routine analysis.

To evaluate the potential of the knowledge bank approach in routine
clinical practice, we have studied a retrospective cohort of AML
patients who were treated with high-dose chemotherapy in a tertiary
care center. These patients were fully characterized at the time of
diagnosis at the clinical, biological, cytogenetic, andmolecular levels.

Between 2005 and 2017, we identified 155 patients (71 women
and 84 men; median age, 56.5 years; range, 20-74 years) who
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received an induction therapy regimen for AML containing
cytarabine and anthracycline. ASCT was performed in 70 patients,
during the first complete remission (n554) or after relapse (n516).
The overall survival curve of the cohort estimated by the Kaplan-
Meier method was in the usual range of what is observed in AML
patients treated with intensive therapy (supplemental Figure 1,
available on the Blood Web site). The median follow-up of living
patients (n 5 89 at the time of the study) was 27.9 months. The
Gerstung et al algorithm includes 10 clinical, 26 cytogenetic, and
58 molecular parameters. Given the retrospective nature of the
study, there were missing data (supplemental Figure 2; supple-
mental Table 2), which could have diminished the performance of
the algorithm. Among the 1550 potential clinical annotations for
the entire cohort (10 parameters in 155 patients), 6 were missing.
Ninepatients lacked full cytogenetic informationbecauseof karyotyping
failure. Among the 8990 potential molecular annotations (58
parameters in 155 patients), 1821 (20.3%) were missing. Most
of these (1240 [68.1%]) corresponded to genes not included in
any version of the panel used in our laboratory (ATRX, CBLB,
CUX1, GNAS, KDM5A, MLL5, MLL3, SF3A1, and U2AF2); the
others were missing in a fraction of the patients depending on
the version of the panel used. Importantly, no data were lacking
for the 6 genes having the greatest impact on prognosis
(TP53, CEBPA, NPM1, FLT3, DNMT3A, and MLL). Details of the
sequencing technique used and the bioinformatic pipelines, as
well as the methodology used to calculate the different proba-
bilities of survival for each patient according to the knowledge
bank approach, are provided in supplemental Methods.

We first assessed the potential of the knowledge bank approach
to predict overall survival at 3 years by comparing algorithm prediction
withobservedoutcome. For this analysis,wedidnotuse the information
about ASCT in predicting survival with the Gerstung et al algorithm,
whichwouldhaveartificially favored theknowledgebankapproach.The
performance of the knowledge bank approach to identify the patients
who died during the first 3 years (area under the receiver operating
characteristic [ROC] curve [AUC], AUCknowledge databank 5 0.804; 95%
confidence interval [CI], 0.715-0.893) was greater than the European

LeukemiaNet (ELN) 20105 (AUCELN 2010 5 0.632; 95% CI, 0.517-0.747;
P5 .004) and ELN 20176 (AUCELN 2017 5 0.638; 95% CI, 0.527-0.748;
P 5 .005) classifications, which represent the current standard for
establishing AML prognosis (Figure 1).

We then tested the strength of the knowledge bank approach
to predict more subtle outcomes, such as nonremission death,
relapse death, and nonrelapse death. The outcome of the
96 patients not censored at 3 years is presented in supplemental
Table 1. ASCT was used to calculate the risk for relapse death
and nonrelapse death among the patients having achieved
complete remission. The knowledge bank approach effectively
predicted nonremission death (AUCknowledge databank 5 0.844;
95% CI, 0.746-0.941) and relapse death (AUCknowledge databank 5

0.694; 95% CI, 0.567-0.820), but did not predict nonrelapse
death (AUCknowledge databank 5 0.581; 95% CI, 0.433-0.730)
(Figure 2).

Taken together, this study confirms the strength of the knowledge
bank approach to improve the prognostic evaluation of patients
with AML. Interestingly, this approach outperforms the 3-year overall
survival prediction achieved by state-of-the-art classifications and is
able to predict the probability of nonremission death and relapse
death. However, the present cohort was too small to assess the
capacity of this approach to evaluate the benefits of ASCT, which is
the ultimate objective of AML classifications, because only 6 patients
younger than 60 years of age and having achieved first complete
remission had a 10%predicted increase in overall survival with ASCT
according to the knowledgebank approach. It is also of note that the
excellent results with the knowledge bank approachwere confirmed
herein, despite many caveats, such as the lack of 20% of molecular
data. The robustness of the algorithm to missing data was indeed
predicted by Gerstung et al, because most of the prognostic in-
formation at the molecular level is supported by a small set of
genes and because the algorithm is capable of imputing missing
data. This observation suggests that simplification of the algorithm
might be possible without losing much information. However,
given the improvement in sequencing technologies and the
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Figure 1. ROC curves showing the performance of the knowledge bank ap-
proach and the ELN 2010 and ELN 2017 classifications to identify patients who
will die in the first 3 years after AML diagnosis.
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Figure 2. ROC curves showing the performance of the knowledge bank ap-
proach to predict nonremission death, relapse death, and nonrelapse death.
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diminution of the sequencing cost, it is quite feasible to sequence
all of the genes required to calculate the algorithm in a real-life
setting, to capture as much prognostic information as possible.
Moreover, the knowledge bank approach seems robust, despite
many differences between the pipelines used to generate and
analyze the high-throughput sequencing data, which was a
potential major limitation to the generalization of this algorithm.
A prospective validation of the knowledge bank approach is
now warranted.
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