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KEY PO INT S

l CRISPR-Cas9 library
screening identifies
CBS7/9 boundary that
defines an aberrant
HOXA chromatin
domain and HOX gene
transcription in AML.

l Attenuation of CBS7/9
boundary impairs the
leukemic transcription
program and
attenuates leukemic
progressions in AML
mouse models.

HOX gene dysregulation is a common feature of acute myeloid leukemia (AML). The
molecular mechanisms underlying aberrant HOX gene expression and associated AML
pathogenesis remain unclear. The nuclear protein CCCTC-binding factor (CTCF), when
bound to insulator sequences, constrains temporal HOX gene-expression patterns within
confined chromatin domains for normal development. Here, we used targeted pooled
CRISPR-Cas9–knockout library screening to interrogate the function of CTCF boundaries
in the HOX gene loci. We discovered that the CTCF binding site located between HOXA7
and HOXA9 genes (CBS7/9) is critical for establishing and maintaining aberrant HOXA9-
HOXA13 gene expression in AML. Disruption of the CBS7/9 boundary resulted in
spreading of repressive H3K27me3 into the posterior active HOXA chromatin domain that
subsequently impaired enhancer/promoter chromatin accessibility and disrupted ectopic
long-range interactions among the posterior HOXA genes. Consistent with the role of
the CBS7/9 boundary in HOXA locus chromatin organization, attenuation of the CBS7/9
boundary function reduced posterior HOXA gene expression and altered myeloid-specific
transcriptome profiles important for pathogenesis of myeloid malignancies. Furthermore,

heterozygous deletion of the CBS7/9 chromatin boundary in the HOXA locus reduced human leukemic blast burden
and enhanced survival of transplanted AML cell xenograft and patient-derived xenograft mouse models. Thus, the
CTCF boundary constrains the normal gene-expression program, as well as plays a role in maintaining the oncogenic
transcription program for leukemic transformation. The CTCF boundaries may serve as novel therapeutic targets for
the treatment of myeloid malignancies. (Blood. 2018;132(8):837-848)

Introduction
Organization of the genome into separate topologically asso-
ciated domains (TADs) modulates interactions between genes
and regulatory elements. CCCTC-binding factor (CTCF) binds
to TAD boundaries and constrains interactions of DNA ele-
ments that are located in neighboring TADs.1,2 Disruption of
CTCF boundaries in the central region of the HOXA locus alters
functional chromatin domain and gene expression in mouse
embryonic stem (ES) cell differentiation. This suggests that
CTCF-mediated TADs are structural components, as well as
regulatory units that are required for proper enhancer action.3,4

Although CTCF-mediated TADs represent functional chromatin
domains, genome-wide CTCF binding data have revealed that

CTCF mostly interacts with the same DNA sites in different cell
types.2,5,6 However, CTCF often functions as a chromatin barrier
in one cell type but not in another.7 Whether and how these
boundary elements (CTCF binding sites) are directly linked to
their biological function remain largely unknown.

Abnormal HOX gene activation is a common feature of acute
myeloid leukemia (AML).8,9 In healthy cells, the HOX genes, es-
pecially HOXA and HOXB genes, regulate ordinary hematopoi-
etic stem and progenitor cell (HS/PC) function by controlling the
balance between proliferation and differentiation.10-12 HOXA5–
HOXA10 genes and anterior HOXB2–HOXB6 genes are highly
expressed in HS/PCs and are downregulated during terminal
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differentiation.10,13-15 Dysregulation of HOXA9 or HOXA10 genes
is a dominant mechanism of leukemic transformation by changing
the self-renewal and differentiation properties of HS/PCs, thus
leading to leukemic transformation.16,17 Additionally, overexpression
of HOXA9 is a poor prognostic marker in leukemia patients,18,19

whereas low expression of HOXA9 and HOXB4 is a favorable
predictor for AML patient outcome.9,20 Although HOXA9 and
HOXA10 genes are aberrantly activated in many AML patients,
the mechanism that establishes oncogenic expression patterns
of HOXA genes and associated regulatory networks remains
poorly understood.

In this study, we used a pooled CRISPR-Cas9–knockout (KO)
screen to interrogate the CTCF binding motifs in all HOX loci.
We identified a critical CTCF chromatin boundary (CBS7/9) lo-
cated at the edge of a TAD encompassing the posterior HOXA
genes. The CBS7/9 boundarymaintains oncogenic expression of
posteriorHOXA genes. Reduced CBS7/9 boundary function leads
to expansion of repressive chromatin structure into the posterior
HOXA domain and blocks enhancer/promoter chromatin inter-
action networks, leading to decreases in posteriorHOXA-associated
oncogenic transcription and prolonged survival of transplanted AML
mouse models. Thus, the CTCF boundary not only constrains the
normal gene expression, but is hijacked to maintain an oncogenic
transcription program for leukemic transformation. Because of this,
we propose that CTCF boundaries may serve as novel therapeutic
targets for the treatment of myeloid malignancies.

Methods
Patient samples and AML cell lines
Primary AML patient cells were obtained via approval of the In-
stitutional Review Board of the University of Florida in accordance
with theDeclaration of Helsinki. MOLM13 andMV-4-11 cells were
purchased from American Type Culture Collection repositories.
All cell lines were verified by short tandem repeat analysis and
tested for mycoplasma contamination.

CTCF sgRNA library design, cloning, and
lentivirus production
The detailed protocol for CTCF single guide RNA (sgRNA) library
generation is described in supplemental Materials andmethods,
available on the Blood Web site. The library consists of 1070
sgRNAs containing 303 random-gene targets, 500 nonhuman
controls, 60 HOX loci-associated long intergenic noncoding
RNA (lincRNA) targets, and 207 CTCF element targets in HOX
loci. After generating high-titer viruses, MOLM13 cells were
infected with sgRNA-pooled lentivirus at a multiplicity of in-
fection of 0.3-0.4 and selected with puromycin for 2 days, and
single cells were seeded into 96-well plates.

RNA, quantitative reverse transcription–
polymerase chain reaction, RNA sequencing,
and data analysis
Total RNA from AML cells and primary patient samples was
extracted with TRIzol Reagent (Invitrogen). A total of 2mg of RNA
was subjected to reverse transcription with SuperScript II Re-
verse Transcriptase (Invitrogen) and analyzed by a Real-Time
PCR Detection System (Bio-Rad). Paired-end RNA sequencing
(RNA-seq) was performed by the University of Florida Interdis-
ciplinary Center for Biotechnology Research core facility,
according to standard protocols. All sequencing reads were

processed and aligned to the human genome assembly (hg19)
using TopHat (version 2.0) and Bowtie2.21-23 A detailed data
analysis protocol is provided in supplemental Materials and
methods. Sequence reads have been deposited in the National
Center for Biotechnology Information Gene Expression Omni-
bus (NCBI GEO) under accession number GSE113191.

ChIP, ChIP-seq, ATAC-seq, and 4C-seq
Chromatin immunoprecipitation (ChIP) and ChIP sequencing
(ChIP-seq) were performed as described previously.12,24 Assay for
transposase-accessible chromatin using sequencing (ATAC-seq) was
performed using a Nextera DNA Library Preparation Kit (Illumina),
as described previously.25 4C sequencing (4C-seq) was performed
as described previously.26 Additional methods and data analysis
are provided in supplemental Materials and methods. All se-
quence reads have been deposited in the NCBI GEO under
accession number GSE113191.

Xenotransplantation of human leukemic cells
Nonobese diabetic/LtSz severe combined immunodeficiency
IL2Rgcnull (NSG) mice (6-8 weeks old; The Jackson Laboratory)
were sublethally irradiated with 280 cGy total body irradiation
and injected with wild-type (WT) control or CBS7/91/2 MOLM13
cells at a dose of 1 3 106 cells per mouse by tail vein injection.
Primary AML cells (control or CBS7/91/2) were injected at 1.83 105

cells per mouse. Peripheral blood (PB) was collected by retro-
orbital bleeding. Bonemarrow (BM) cells were isolated by flushing
the bones. Spleens were mashed through a 70-mm mesh filter
to prepare single-cell suspensions. PB was prepared for flow
cytometry (fluorescence-activated cell sorting [FACS]) by ammonium
chloride treatment to remove red cells. Human CD45 chimerism
was analyzed by FACS (LSR II; BD Biosciences, San Jose, CA).
Animals were used in accordancewith a protocol approved by the
Institutional Animal Care and Use Committees of the University of
Miami and the University of Florida.

Results
Pooled CRISPR-Cas9–KO library genetic screening
of CTCF boundaries
To gain new insights into the regulatory mechanisms associated
with aberrant HOXA expression in AML, we examined histone-
modification patterns across the HOXA locus in different sub-
types of AML cells and primary patient samples. Active histone
modifications, H3K4me3 (Figure 1A), H3K79me2 (Figure 1B),
and H3K9ac (Figure 1C), are very low in the anterior HOXA
domain and increased dramatically in the posterior HOXA do-
main, encompassing HOXA9 to HOXA13 genes in 3 subtypes of
AML patients, including MLL rearrangement (Patient LPP4),
NPM1C1/Flt3-ITD1 (Patient 974), and gain-of-copy MLL muta-
tion (Patient 1306). Repressive H3K27me3 (Figure 1D) shows
opposite patterns across the HOXA locus (Figure 1A-D). The
transition from repressive to active chromatin occurs be-
tween the HOXA7 and HOXA9 genes (Figure 1; supplemental
Figure 1A), where ChIP-seq revealed a strong CTCF binding
peak (Figure 1E; supplemental Figure 1A-B).1 The unique
chromatin patterns were further confirmed in MV4-11 cells with
MLL-AF4 rearrangement (supplemental Figure 1D-E), which
show consistent aberrant expression of posterior HOXA genes
(Figure 1F; supplemental Figures 1C and 3A). These data sug-
gest that the CTCF binding site located between HOXA7 and
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Figure 1. The CBS7/9 boundary demarcates active and repressive chromatin domain and maintains ectopic expression of posterior HOXA genes. ChIP analysis of
H3K4me3 (A), H3K79me2 (B), H3K9ac (C), and H3K27me3 (D) across the HOXA locus in 3 subtypes of primary AML. Patient 974 possesses NPM1C1 and FLT3-ITD mutations,
patient LPP4 contains MLL rearrangement, and patient 1306 has gain of MLL copy number. (E) ChIP-seq analysis of CTCF binding at the HOXA locus obtained from the NCBI
GEO public database (accession number GSM1335528). (F) Quantitative reverse transcription–polymerase chain reaction (qRT-PCR) analysis of HOXA gene expression in 3
subtypes of primary AML (974, LPP4, and 1306).
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HOXA9 (CBS7/9) plays an important role in aberrant activation of
posterior HOXA genes, which is required for AML pathogenesis.

To systematically examine the role of CTCF boundaries in
HOX locus chromatin organization and gene transcription, we
generated a pooled CRISPR-Cas9 lentivirus screening library
targeting all potential CTCF sites in 4 HOX gene loci. We

transduced MOLM13 cells carrying MLL-AF9 fusion at a low
multiplicity of infection (0.3-0.4 MOI) to ensure that most se-
lected cells contained a single sgRNA. After expansion, the
resistant clones were screened for impairment of HOXA9
expression by reverse-transcriptase (RT)–droplet digital poly-
merase chain reaction (PCR) (Figure 2A). Of 528 survival clones
screened, 10 clones exhibited a.50% reduction inHOXA9 levels
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Figure 2. Pooled CRISPR-Cas9–KO library screening identified a CBS7/9 boundary critical for posterior HOXA expression in AML cells. (A) Schematic diagram
representing the pooled CRISPR-Cas9–KO library screening of the entire 4HOX gene loci for CTCF boundary function inMLL-AF9–rearrangedMOLM13AML cells. (B) One-step
RT-droplet digital PCR screening of HOXA9 expression in single clones infected with lentivirus containing the sgRNA library. Shown is the screening of 528 sgRNA
library–infected clones for HOXA9 expression levels. (C) RT-droplet digital PCR analysis of HOXA9 levels in WT MOLM13 cells and the 21 clones containing single targeted
sgRNA.HOXA9 expression data were grouped into 5 groups in accordance with the categories of sgRNA sequences:HOXA7/9 CTCF site, nonhuman targets, other CTCF sites
in theHOX loci,HOX-associated lincRNAs, and other human targets. (D) The SURVEYOR nuclease assays of mutations occurred in the CBS7/9 site from the representative clones
that exhibited reduced (red line), unchanged (blue line), or increased (purple line) levels of HOXA9 expression. The HOXA9-decreased clones 5, 6, 28, and 121 exhibited
mutations in the CBS7/9 boundary. (E) ChIP analysis of CTCF binding across theHOXA locus in MOLM13 cells compared with theWT control and the CBS7/91/2 clone. Data are
mean6 SD from 3 or 4 independent experiments. (F) Western blot analysis of CTCF protein levels compared with the WT control and the CBS7/91/2 MOLM13 clone. *P, .05,
**P , .01, Student t test. ns, not significant.
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(Figure 2B). sgRNAs integrated in the clones with reduced, un-
changed, or increased HOXA9 levels were identified by PCR
amplification of the sgRNA sequences using flanking vector
primers, followed by Sanger sequencing (supplemental Table 1).
Of 30 clones sequenced, 21 clones contained a single sgRNA
(supplemental Table 1). They were grouped and analyzed for
HOXA9 expression levels by the categories of sgRNA identified. A
significant decrease inHOXA9 expression was found in the clones
carrying sgRNA targeting the CBS7/9 site orHOTTIP lincRNA, but
not in the nonhuman, random human genes, and other CTCF site
controls (Figure 2C). Genotyping and SURVEYOR assays of the
sgRNA-targeting CBS7/9 site revealed that the CBS7/9 mutation
was present in 4 of 6 selected clones with reduced HOXA9 ex-
pression. Clones 5, 6, 28, and 121 were targeted by CBS7/9-
specific sgRNA (Figure 2D; supplemental Figure 2A). However,
clone 15 contained sgRNA specific to HOTTIP, whereas clone 31
contained several sgRNAs targeting HOAIRM1 lincRNA, HOTAIR
lincRNA, and the HOXD9/10 CTCF site (Figure 2D; supplemental
Figure 2A; supplemental Table 1). Among 10 clones with de-
creased levels ofHOXA9 expression, 6 contained sgRNA targeting
CBS7/9, and 3 contained sgRNA targeting HOTTIP (supplemental
Table 1). It is known that HOTTIP lincRNA activates posterior
HOXA gene expression by recruiting the mixed-lineage leukemia
(MLL) complex.27

Furthermore, ChIP analysis of 3 clones containing sgRNA tar-
geting the CBS7/9 site (clones 5, 6, and 28) revealed a significant
reduction in CTCF binding at the CBS7/9 site and other CTCF
sites in the posterior domain (supplemental Figure 2B). Thus,
CRISPR-Cas9 library screening revealed that the CBS7/9 site
may act as a chromatin barrier to establish the posterior HOXA
chromatin neighborhood and aberrant expression of HOXA
genes in AML.

CBS7/9 is critical for maintaining the posterior
HOXA chromatin neighborhood in AML
CTCF acts as a chromatin barrier to prevent the spreading of
heterochromatin into euchromatin domains.7 To explore the role
of the CBS7/9 site in posterior HOXA activation, we deleted
the CBS7/9 boundary in MOLM13 and MV4-11 cells with 2
sgRNAs flanking 47 bp of the core CTCF motif of the CBS7/9 site
(supplemental Figure 2C). MOLM13 and MV4-11 are MLL-
rearranged AML cells that exhibit elevated levels of posterior
HOXA genes (supplemental Figures 1C and 3A). ChIP analysis of
CTCF recruitment revealed that heterozygous CBS7/9 KO
(CBS7/91/2) reduced CTCF binding in the CBS7/9 site, as well as
in other CTCF sites in the posterior domain (Figure 2E). As a
control, CBS7/91/2 does not alter global CTCF protein levels
(Figure 2F). Although CBS7/91/2 also affects CTCF binding
to the CBS5/6 site, CTCF binding in the CBS5/6 site is very weak
in MOLM13 cells compared with other CTCF sites in the locus
(Figure 2E). There was little to no effect on CTCF binding at the
other anterior CTCF sites (Figure 2E). As a consequence, CBS7/
91/2 significantly reduced the expression levels of posterior
HOXA9-HOXA13 genes (Figure 3A; supplemental Figure 3A),
whereas homozygous deletion of CBS7/9 resulted in a lethal
phenotype in these 2 AML cells. In contrast, CBS5/61/2 affected
CTCF binding to the CBS5/6 site but notHOXA gene expression
in MOLM13 cells (supplemental Figures 2D and 3F-G).

We determined whether CBS7/91/2 affects TAD boundary and
histone-modification patterns in the HOXA locus by ChIP-seq.
Consistent with the loss of boundary function, deletion of 1
CBS7/9 allele expanded and elevated H3K27me3 levels from
the anterior domain across the CBS7/9 boundary into posterior
HOXA9-HOXA13genes (Figure 3B),whereasH3K4me3 levelswere
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Figure 3. CBS7/9 boundary plays a critical role in maintaining the posteriorHOXA chromatin neighborhood. (A) qRT-PCR analysis of HOXA gene expression in MOLM13
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significantly decreased in the same region in MLL-AF9–rearranged
MOLM13 cells (Figure 3B). In contrast, CBS7/91/2 did not affect
the anterior HOXA domain or HOXD locus (Figure 3B-C). ChIP
assays confirmed the ChIP-seq data in MLL-AF4–rearranged
MV4-11 cells (supplemental Figure 3B-E), indicating an invasion
of facultative heterochromatin from the anterior domain into the
active posterior domain that leads to transcriptional silencing of
HOXA9-HOXA13 genes.

It was recently reported that subtypes of AML with MLL-AF re-
arrangements required DOT1L as a cofactor to aberrantly activate
posterior HOXA genes by methylations of H3K79.28-30 We investi-
gatedwhether partial loss of theCBS7/9 boundary affectsH3K79me2
levels at the HOXA locus. Consistent with ectopic posterior HOXA
gene expression in the MLL-rearranged AMLs, H3K79me2 levels
were highly enriched in the posterior HOXA domain (Figure 3B;
supplemental Figure 3D). CBS7/91/2 led to a significant decrease
in H3K79me2 levels in this specific subtype of AML cells (Figure 3B;
supplemental Figure 3D). Thus, the CBS7/9 boundary defines an
oncogenic posterior HOXA chromatin domain for ectopic ex-
pression of HOXA9-HOXA13 genes in MLL-rearranged AML.

CBS7/91/2 perturbs enhancer/promoter chromatin
accessibility and interaction networks
To test how the CBS7/9 boundary maintains ectopic posterior
HOXAgene expression, weperformedATAC-seq, comparingWT
andCBS7/91/2AML cells. InMOLM13 cells, chromatin is primarily
inaccessible in the HOXB, HOXC, and HOXD loci (supplemental
Figure 4A-C). Partial deletion of the CBS7/9 site has little to no
effect on chromatin accessibility in these loci (supplemental
Figure 4A-C). In contrast, the HOXA locus is highly accessible in

MOLM13 cells (Figure 4A). An attenuated CBS7/9 boundary
resulted in a significant decrease in chromatin accessibility in the
posterior HOXA domain but not in the anterior gene cluster
(Figure 4A), suggesting that an altered CBS7/9 boundary perturbs
chromatin structure and enhancer/promoter accessibility, leading
to inhibition of posterior HOXA9-HOXA13 genes.

Although CBS7/91/2 does not significantly alter promoter acces-
sibility globally, several genes involved in myeloid differentiation
andproliferationwere affected (Figure 4B-C). Among them, RUNX1
is a transcription factor that is critical for hematopoiesis and is
mutated in 5% to 13% of AML cases.31,32 Distal (P1) and proximal
(P2) promoters control transcription of RUNX1 isoforms that play
nonredundant roles in hematopoiesis.33-35 The chromatin accessi-
bility of P1 and P2promoters wasmarkedly decreased inCBS7/91/2

AML clones (Figure 4B). Furthermore, the promoter region and the
39 untranslated region of the ZEB1 gene, which encodes an
epithelial-mesenchymal transition (EMT) transcription factor involved
in regulating MLL-rearranged AML blast migration and invasion,36

also lost chromatin accessibility in CBS7/91/2 cells (Figure 4C).

Given that CTCF-mediated chromatin organization plays an im-
portant role in regulating enhancer/promoter interaction net-
works within the confined TADs, we performed 4C-seq using the
HOXA9 gene as a bait, comparing altered long-range chromatin
interactions of WT and CBS7/91/2 MOLM13 cells. The 4C-seq
data revealed that HOXA9 interacts with genes within the pos-
terior TAD and also associates with genes within the anterior TAD
(Figure 4D). The 4C-seq data were confirmed and quantitated
by chromosome conformation capture (3C) quantitative PCR
(supplemental Figure 4D-E). CBS7/91/2 decreases HOXA9 in-
teraction networks, especially inHOXA9 proximal neighborhoods
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and the posterior domain (Figure 4D; supplemental Figure 4D).
Consistent with the role of HOTTIP lincRNA in posterior HOXA
gene activation,27 HOXA9 interacted with HOTTIP in WT control
cells, and the interaction was significantly reduced upon CBS7/91/2

(Figure 4D; supplemental Figure 4D), suggesting that HOTTIP
may cooperate with the CBS7/9 boundary to regulate posterior
HOXA genes. In contrast,HOXA9 did not interact with the HOXB
locus (Figure 4D, lower panel). Interestingly, an altered CBS7/9
boundary affected the interaction between HOXA9 and the
ZEB1 upstream region (Figure 4E). Although the significance
of the HOXA9 and ZEB1 interchromatin interaction remains
unclear, the data suggest that HOXA9 and ZEB1 may be

coregulated, because HOXA9 and EMT-related genes, including
ZEB1, have been linked to a poor prognosis for AML.19,36

Nevertheless, our results demonstrate that the CBS7/9 boundary
confines posterior topological domains to control enhancer/
promoter chromatin accessibility and long-range chromatin in-
teraction networks of the HOXA locus in AML cells.

Partial impairment of the CBS7/9 boundary
prolongs survival of AML mouse models

HOXA9 and other posterior HOXA genes act as leukemic on-
cogenes that enhance self-renewal of leukemic stem cells in
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AML.37 To investigate the biological function of the CBS7/9
boundary in AML, we assessed the effects of CBS7/91/2 on
leukemic cell growth and viability in AML cells carrying MLL re-
arrangements. Compared with WT AML cells, CBS7/91/2 led to a
significant inhibition of cell proliferation in the different clones of
MOLM13 andMV4-11 cells (Figure 5A; supplemental Figure 5A,C).
Furthermore, cell cycle analysis revealed that CBS7/91/2 in MLL-
AF9– and MLL-AF4–rearranged AML cells blocked cells in the G1

phase and significantly reduced the G2/M phases (Figure 5B;
supplemental Figure 5B,D), suggesting that CBS7/91/2 inhibits
AML cell proliferation by regulating cell cycle progression.

To test whether CBS7/91/2 affects AML leukemogenesis in vivo,
we used an AML transplantation mouse model in which WT or
CBS7/91/2 MOLM13 cells were transplanted into irradiated NSG
mice. All mice transplanted withWTMOLM13 cells died 13-18 days
after transplantation, whereas the mice receiving CBS7/91/2 cells
had a significantly prolonged survival time (24-30 days), presumably
related to attenuated progression of myeloid leukemia (Figure 5C).
Indeed, FACS analysis of human leukemic cells in different he-
matological tissues from recipients at day 16 after transplantation
revealed that human CD451 leukemic cell chimerism was signifi-
cantly reduced in mice receiving CBS7/91/2 MOLM13 cells com-
pared with WT-MOLM13 cells, from an average of 83.3% to 60.9%
in BM, 67.0% to 25.1% in spleen, and 57.9% to 25.2% in
PB (Figure 5D-E). Consistently, immunohistochemical staining
of femur and spleen sections with anti-hCD45 antibody (brown,

2003) demonstrated thatmice transplantedwithCBS7/91/2MOLM13
cells had dramatically decreased infiltration of human CD451

AML blasts in BM and spleen compared with mice receiving
WT MOLM13 cells (Figure 5F).

Further, the CBS7/9 site was also targeted in primary BM cells
from an AML patient with MLL rearrangement (Patient LPP4) by
direct transfection of CRISPR RNAs (crRNAs) targeting the CBS7/9
site and Cas9 nuclease using a Neon Transfection System. CBS7/
91/2 was confirmed by PCR-based genotyping and sequencing
(supplemental Figure 6A-B). Again, CBS7/91/2 in a primary AML
patient sample impaired HOXA9-HOXA13 gene expression but
not anterior genes (supplemental Figure 6C). We then trans-
planted 1.83 105WT or CBS7/91/2primary AML patient cells into
NSG mice. Interestingly, mice receiving control AML patient cells
died within 34 days after transplantation, whereas mice trans-
planted with CBS7/91/2 patient cells remained healthy for up to
60 days. FACS revealed that CBS7/91/2 dramatically decreased
the human CD451 cell chimerism in BM and PB of recipients
(supplemental Figure 6D). Furthermore, hematoxylin and eosin
staining (upper panels) and immunohistochemical staining
with anti-hCD45 (lower panels; brown) of BM sections showed
that CBS7/91/2 decreased the infiltration of human CD451AML
cells in patient-derived xenograft mouse BM (supplemental
Figure 6E). Thus, our AML patient-derived xenograft data in-
dicated that attenuation of the CBS7/9-mediated chromatin
boundary decreases tumor burden and attenuates leukemic
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progression in vivo, perhaps by disrupting the oncogenic pos-
terior topological HOXA domain and gene expression required
for pathogenesis of AML.

Dysregulation of the CBS7/9 boundary perturbs
oncogenic transcription programs
Next, we sought to delineate mechanisms by which CBS7/91/2

attenuates leukemogenesis. We compared genome-wide
transcriptome changes between WT control and CBS7/91/2

MOLM13 cells by performing RNA-seq analysis. A total of 865
genes exhibited more than twofold decreases in mRNA levels,
whereas 623 genes had increased expression upon CBS7/91/2

(Figure 6A; supplemental Figure 7A). Gene ontology analysis
revealed that pathways involved in myeloid/leukocyte activa-
tion and differentiation, as well as cellular differentiation and
survival, are specifically affected (Figure 6B). Among downregulated
genes, HOTTIP and posterior HOXA genes were significantly

reduced (Figure 6A; supplemental Figure 7A-B). A subset of
genes involved in myeloid malignancies was further verified by
qRT-PCR (Figure 6C). In addition, genes involved in regulating the
pluripotency of stem cells, the cell cycle, interleukin-2 signaling,
and JAK-STAT signaling, which play a critical role in myeloid
leukemia, are specifically impaired in CBS7/91/2 MOLM13 cells
(Figure 6D). Perturbation of the cell cycle pathway is consistent
with the observation that attenuation of the CBS7/9 boundary
blocks cell cycle progression (Figure 5B; supplemental Figure 5B,D).
When we subjected RNA-seq data to Gene Set Enrichment
Analysis (GSEA) using the molecular signature database, the top-
ranking genes are those involved in the MAPK signaling pathway
and myeloid/leukocyte differentiation andmigration (Figure 6E-F;
supplemental Figure 7C). The MAPK signaling pathway is re-
quired for leukemic cell survival and uncontrolled proliferation and
is downregulated in CBS7/91/2 cells (Figure 6E). It is particularly
interesting that the downregulated genes enriched in CBS7/91/2
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MOLM13 cells are involved in the CTCF functional pathway,
which plays an essential role in genome organization and
establishment of the chromatin boundary (supplemental
Figure 7C, left). Intriguingly, upregulated genes enriched in
CBS7/91/2 cells are those involved in myeloid/leukocyte differ-
entiation andmigration (Figure 6F; supplemental Figure 7C, right),
suggesting that attenuation of the CBS7/9 boundary inhibits
myeloid cell proliferation and promotes differentiation, perhaps
through downregulating posterior HOXA genes.

Upon attenuation of the CBS7/9 boundary, 42% of down-
regulated genes exhibited loss of promoter chromatin acces-
sibility (Figure 6G, left; supplemental Figure 7D), whereas
48% of upregulated genes showed gain of promoter chromatin
accessibility (Figure 6G, right). When we compared decreased
genes uponCBS7/91/2with the publicly availableHOXA9–knock-
down (KD) downregulated gene list, we noted that a subset of
genes downregulated by CBS7/91/2 is involved in the HOXA9
regulatory pathway (Figure 7A). About 16% of HOXA9-activated
genes were downregulated by CBS7/9 attenuation (Figure 7B).
Thus, attenuation of the chromatin boundary disrupts the active
chromatin domain and perturbs oncogenic gene expression in
AML, in part by disrupting the HOXA9 oncogenic pathway.

Discussion
In this study, we designed a targeted CRISPR-Cas9 library to
screen for the function of CTCF chromatin boundaries in HOX
gene regulation, with the goal of identifying a critical chromatin
boundary for establishing and maintaining aberrant posterior
HOXA gene expression. Our work provides novel insight into
relationships among CTCF boundary, chromatin domain or-
ganization, and oncogenic transcription regulation in myeloid
leukemogenesis.

The genome-scale CRISPR-Cas9–KO screen provides an effec-
tive loss-of-function validation of annotated genes attributed to
their biological phenotypes when targeting coding regions.38,39

One challenge for functional genomics is to efficiently and
functionally validate all annotated genetic noncoding regulatory
elements in normal and disease states. CTCF binds to bound-
aries of topological domains and restricts the influence of
neighboring genome regions by regulating enhancer action
within a defined genome neighborhood.1 However, genome-
wide CTCF binding data revealed that, although CTCF can bind
to the same locus in different cell types, it often functions as a
boundary in 1 cell type but not in another.7 How boundary ele-
ments are directly linked to its biological function remains largely
unknown. Our data demonstrated that the CBS7/9 boundary
located at the edge of the TAD encompassing the posterior
HOXA genes establishes and maintains aberrant chromatin
signatures and expression of the posterior HOXA genes to
facilitate myeloid leukemogenesis (Figure 7).

The role of CTCF in genome organization and gene regulation
has been well-established.2,5,40 In mammalian genomes, CTCF
was widely implicated in demarcating the individual TAD
boundaries in a way that is consistent with its ability to block
enhancer/promoter interactions across its binding sites.1 Alter-
ation of the CTCF-associated boundaries impairs limb and
embryonic development by dysregulating gene interactions in
TADs.3,6 In differentiated mouse ES cells, deletions of CBS5/6

and CBS7/9 boundaries led to expansion of active H3K4me3
into the adjacent repressive HOXA10 gene.4 In contrast to
mouse ES cell differentiation, in which medial CTCF boundaries
insulate facultative heterochromatin from invasion of impinging
euchromatin for distinct anterior and posterior HOXA ex-
pression pattern,4 the CBS7/9 boundary prevents invasion of
H3K27me3 facultative heterochromatin into the posterior eu-
chromatin domain and maintains aberrant posterior HOXA gene
expression inMLL-rearranged AML. Disruption of this oncogenic
boundary resulted in major changes in chromatin structure,
leading to silencing of HOXA9-HOXA13 genes that eventually
blocks progression of AML (Figure 7). Thus, our data sug-
gested that CTCF-mediated chromatin reorganization may also
play a role in aberrant oncogene activation and leukemogenesis.
Alternatively, as a chromatin boundary for normal HOXA gene
regulation during development, the CBS7/9 boundary is
hijacked by the oncogenic pathway to establish aberrantHOXA
gene expression that is similar to the role of CTCF in the c-Myc
locus.41

HOXA and HOXB genes are critical for maintaining the balance
between self-renewal and differentiation of hematopoietic stem
cells.10-12,42 Although overexpression of the posterior HOXA genes
in AML has been attributed to specific chromosomal rearrange-
ments involved in MLL and linked to leukemic transformation,17,43

the CBS7/9 boundary also plays a critical role in maintaining an
AML-specific posterior chromatin domain that drives ectopic ex-
pression of HOXA9-HOXA13 genes. Interestingly, the CBS7/9
boundary modulates HOTTIP lincRNA (Figure 6), which recruits
the MLL1 complex to maintain active H3K4me3 chromatin and
activate posterior HOXA genes.27 Thus, 1 hypothesis is that the
CBS7/9 boundary and HOTTIP cooperate to organize the chro-
matin domain and to coordinate posteriorHOXA gene activation in
AML. 4C-seq revealed that CBS7/9 attenuation blocks long-range
interactions between HOXA9 and HOTTIP (Figure 4D), supporting
the idea that HOTTIP may be involved in posterior HOXA gene
regulation in AML.

Within posterior HOXA genes, HOXA9 is overexpressed in
.50% of AML cases, and its ectopic expression is linked to poor
outcome and prognosis.19 In MLL-AF9– or HOXA9-driven leu-
kemia, HOXA9 acts to control myeloid leukemia stem cell self-
renewal through recruiting epigenetic regulators.44 Activation of
the HOXA13 gene also promotes tumorigenesis and metastasis
in several solid tumors.45,46 The EMT genes were recently shown
to control AML blast migration and invasion, linking to ag-
gressiveness and poor prognostic outcomes for MLL-AF9–
mediated AML.36 Thus, it is conceivable that a reduction in EMT
genes and HOXA genes by CBS7/9 disruption prevents human
AML invasion and progression, which prolongs the survival time
of transplanted AML mouse models. However, it remains to be
determined how the CBS7/9 boundary regulates chromatin
structure and gene transcription of these non-HOXA genes.

Our data demonstrate that a normal CTCF boundary is hijacked
to control oncogenic chromatin domain and transcription pro-
files for leukemic transformation and progression. Together,
they constrain normal gene expression program, as well as
coordinate oncogenic programs for leukemic transformation
and invasion. The CTCF boundaries in the oncogene loci, such
as the CBS7/9 boundary, may serve as novel therapeutic targets
for treatment of myeloid malignancies.
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