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KEY PO INT S

l Using the largest set
of patients with newly
diagnosed myeloma,
we identified 63
mutated driver genes.

l We identified
oncogenic
dependencies,
particularly relating to
primary translocations,
indicating a nonrandom
accumulation of
genetic hits.

Understanding the profile of oncogene and tumor suppressor gene mutations with their
interactions and impact on the prognosis of multiple myeloma (MM) can improve the
definition of disease subsets and identify pathways important in disease pathobiology.
Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63
driver genes, some of which are novel, including IDH1, IDH2,HUWE1,KLHL6, and PTPN11.
Oncogene mutations are significantly more clonal than tumor suppressor mutations, in-
dicating they may exert a bigger selective pressure. Patients with more driver gene ab-
normalities are associated with worse outcomes, as are identified mechanisms of genomic
instability. Oncogenic dependencies were identified between mutations in driver genes,
common regions of copy number change, and primary translocation and hyperdiploidy
events. These dependencies included associations with t(4;14) and mutations in FGFR3,
DIS3, and PRKD2; t(11;14) with mutations in CCND1 and IRF4; t(14;16) with mutations in
MAF, BRAF, DIS3, and ATM; and hyperdiploidy with gain 11q, mutations in FAM46C, and
MYC rearrangements. These associations indicate that the genomic landscape of myeloma

is predetermined by the primary events upon which further dependencies are built, giving rise to a nonrandom ac-
cumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead
to better treatment regimens. (Blood. 2018;132(6):587-597)

Introduction
Multiple myeloma (MM) is characterized by the expansion of a
population of clonally related plasma cells that compete for access
to the bone marrow niche and that evolve into a complex spa-
tiotemporal ecosystem.1 The clonal cells suppress normal plasma
cell populations, leading to immunosuppression, impaired normal
hematopoiesis, lytic bone lesions, and, via a number of different
mechanisms, impaired renal function. The clinical outcome ofMM
is variable, and much of this variability is driven by acquired
genetic factors, which immortalize and drive the subsequent

progression of the disease. Current knowledge of drivers of
disease comes from cytogenetic analyses, which have shown that
the genome of MM is diverse and is characterized by structural
rearrangements and copy number abnormalities.2-5 On the basis
of these largely historical data, MM can be broadly split into cases
with primary immunoglobulin translocations and those that are
hyperdiploid with trisomies of the odd-number chromosomes.
The 5 most frequent translocations are t(11;14), t(4;14), t(14;16),
t(14;20), and t(6;14) at frequencies of 15%, 12%, 3%, 2%, and 1%
of samples, respectively. Additional copy number gains and losses
occur frequently, with the most frequent being del13q (59%),
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1q1 (40%), del14q (39%), del6q (33%), del1p (30%), and del17p
(8%).2 The genetic drivers of disease directly alter downstream
biology and clinical behavior and as such can be used to classify
disease subgroups and predict clinical outcome.

It is clear that there are many associations between genomic
markers in myeloma, with the earliest example probably being
where.90% of patients with t(4;14) also have deletion of 13q.6 As
more samples are sequenced in MM4,5,7-10 and across different
cancer types, there are increasing descriptions of cooccurrences,
or oncogenic dependencies, between genomic markers.11-13 We
have shown this previously with translocation groups and their
partner genes, such as t(11;14) and mutation of CCND1.5 Equally,
there are clear examples of mutual exclusivity of markers, mostly
where abnormalities occur in genes of similar function or within
the samepathway, such asKRAS andNRASmutations inmyeloma
and other cancers.14,15 However, to date, the number of onco-
genic dependencies known in myeloma has been limited by the
data sets available. Identifying these dependencies is important to
understand the biology of the tumors and their reliance on
pathways and may help in identifying good drug targets.16,17

Here, in a genome-wide unbiased fashion, as part of the ongoing
Myeloma Genome Project initiative to clinically exploit the genomic
classification ofMM,we usedgenomic data from the largest number
of patients with genomically characterized newly diagnosed MM
(NDMM) available to date to better define themutational landscape,
including chromosomal translocations, copy number abnormalities,
and indel and single nucleotide variants. We identified the drivers of
MM at a previously unattained resolution, determined the associ-
ations among them, and identified oncogenic dependencies be-
tween mutations, copy number changes, and translocation groups.

Methods
Patient characteristics
The Myeloma Genome Project is an ongoing initiative to as-
semble and analyze in a uniform and innovative fashion genetic
data sets that have been generated on samples obtained from
patients with MM who have been entered into clinical trials. The
current work is based on an analysis of a set of NDMM cases with
clinical and outcome data associated with whole-exome se-
quencing (N 5 1273). The data were derived from the Myeloma
XI trial,5 the Dana-Faber Cancer Institute/Intergroupe Franco-
phone du Myelome,8 and the Multiple Myeloma Research
Foundation CoMMpass study, which have been reported.18

Sequencing and identification of driver variants
Sequencing data were processed as described in the supple-
mental Methods (available on the Blood Web site) and have
been deposited in the European Genome Archive under ac-
cession #EGAS00001001147 and #EGAS00001000036 or at
dbGAP under accession #phs000748.v5.p4. Sequence analysis
methods are described in detail in the supplemental methods
and supplemental Figures 1 to 6.

Results
Identification of novel driver genes
Four methods were used to identify driver genes in 1273 NDMM
samples. The methods can be divided into those identifying

drivers by a frequency-basedapproach (MutSigCV19 anddNdSCV20)
and those using a functional based approach (20/20 rule21 and
SomInaClust22). All methods were performed on both the whole
data set and on individual cytogenetic subgroups (supplemental
Tables 1-10). Using the frequency approach, MutSigCV identified
21 significantly mutated genes and dNdSCV identified 46 genes.
For the functional approaches, the 20/20 rule identified 47mutated
genes and SomInaClust identified 21 genes. In total, 63 genes
were identified by the 4 methods (Figure 1A-B; supplemental
Tables 1-4 and 8-9; supplemental Figures 17-24).

Novel previously unidentified oncogenes included PTPN11 (ac-
tivator of MEK/ERK signaling), PRKD2 (protein kinase D), SF3B1
(spliceosome factor), and IDH1 and IDH2 (DNA methylation).
Other new tumor suppressor genes included UBR5, a ubiquitin
ligase mutated in mantle cell lymphoma, and HUWE1, also a
ubiquitin ligase.23 There were a high number of recurrentmissense
mutations inDIS3 and TP53 (69.4% and 45.7%, respectively). Of all
63 genes, only TP53, TRAF3, and TGDS had any impact on out-
come in a univariate analysis.24

The cancer clonal fraction of the 63 driver genes was in general
higher in oncogenes than tumor suppressor genes (P , .001;
Figure 1C-D), consistent with oncogene activation either being
an earlier event in progression to MM or asserting a greater
selection pressure than tumor suppressor gene inactivation. This
seems to be a novel finding, but it is likely to be reproduced in
other cancers if this hypothesis is correct. TP53 was the notable
exception, with a high cancer clonal fraction, and although it has
a number of recurrently mutated codons, it is considered a tumor
suppressor gene.

We show the importance of mutational activation of MEK/ERK sig-
naling (KRAS, NRAS, BRAF, PTPN11, RASA2, NF1, PRKD2, and
FGFR3; 50.0%). Other pathways identified included NF-kB signaling
activation (TRAF2, TRAF3,CYLD,NFKB2, andNFKBIA; 14.0%), G1/S
cell cycle transition (CCND1, RB1, CDKN2C, and CDKN1B; 5.0%),
and epigenetic regulators (HIST1H1E, KMT2C, CREBBP, ARID1A,
KMT2B, ATRX, EP300, SETD2, TET2, KDM5C, ARID2, DNMT3A,
KDM6A, NCOR1, IDH1, and IDH2; 24.4%; supplemental Figure 8;
supplemental Table 9). A univariate analysis by pathway did not
identify any impact on survival (supplemental Figure 7).

Increased number of driver mutations is associated
with poor outcome
We determined the number of driver mutations per sample and
saw that 15.9% of patients had no mutation in any of the 63 driver
genes (Figure 2), 84.1% contained $1 mutation, 55.0% contained
$2 mutations, 27.6% contained $3 mutations, and 11.9% con-
tained $4 mutations. Because there were a sizable number of
patients with no mutated driver genes, we integrated other drivers,
including copy number and translocations (supplemental Table 7).
Incorporating all potential drivers, themedian number of drivers per
samplewas 5,with a rangeof 0 to 24 (Figure 2B).Wegrouped these
patients according to the total number of drivers and saw that as the
number of drivers increased, there was an association with worse
progression-free and overall survival (P , .001; Figure 2C-D).

Measurements of DNA instability are associated
with poor outcome subgroups
Given that the number of driver events may be related to ge-
nomic instability, we looked for mechanisms that may be
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responsible for it. We identified 2 surrogate markers of DNA
instability associated with outcome, including an APOBEC
mutational signature, which results in C.T/G.A transitions in a

TCn context, present in 18.3% of cases and associated with the
t(14;16) and t(14;20) subgroups (supplemental Figure 11) and
the extent of loss of heterozygosity (LOH;.4.6%; supplemental
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Figure 1. The mutational driver landscape of newly diagnosedmultiple myeloma. (A) Driver gene frequencies in the total data set (N5 1273) identified by either frequency-
based (yellow) or functional-based (blue) methods or both (red). (B) Cancer clonal fraction (CCF) of driver genes colored by oncogene (ONC; red) or tumor suppressor gene (TSG;
blue) score. Genes in gray did not score for either ONC or TSG. Genes are ordered by mean CCF (thick line). (C) ONC (red) and TSG (blue) scores determined by the 20/20 rule
(dark) or SomInaclust (light). (D) Mean CCFs of ONCs and TSGs.
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Table 10), which is potentially a surrogate marker for homologous
recombination deficiency. The extent of LOH was positively
correlated with the APOBEC signature (P 5 .039), loss of TP53
(P , .001), and presence of mutation in at least 1 of 15 genes
involved in homologous recombination deficiency (P , .001;
supplemental Figures 12-13).

Copy number abnormalities are associated with
mutational dependencies
The comprehensive availability of mutational, structural, and
copy number data prompted us to reevaluate the classification
of myeloma. Copy number data were generated from the whole-
exome data in an unbiased genome-wide fashion to identify
minimally altered regions (n 5 39), which theoretically contain
either transcriptional units or single tumor suppressor or onco-
genes. Genes of interest located at the peaks of change within
these regions were identified (Figure 3A). Markers of the chro-
mosomal gain of trisomic chromosomes were selected to identify
these variables. The frequencies of copy number changes in these
regions and derived biallelic events are shown in supplemental
Tables 5 and 6.

The 39 regions of recurrent copy number alteration (CNA), in-
cluding the markers for each of the trisomic chromosomes, were
used in a K-means clustering approach to group the samples,
which were then annotated with additional genetic information
(Figure 3B). Clustering identified 9 copy number groups, of
which 2 were hyperdiploid: cluster 1 with gains in chromosomes
3, 5, 9, 15, 19, and 21, and cluster 2 gains in the same chro-
mosomes plus chromosome 11 and mutation of FAM46C. The
remaining 7 groups were nonhyperdiploid, consisting of cluster
3, which is characterized by del1p; cluster 4 by del12p and 13q;
cluster 5 by del13q and 14q and mutations in MAX, TRAF3,
and NFKBIA; cluster 6 by del16q; cluster 7 by t(14;16), del11q,
1q gain, and mutation ofDIS3; cluster 8 by t(11;14); and cluster
9 by t(11;14) with gain 11q (Figure 3C).

Oncogenic dependencies between mutations and CNAs were
identified that distinguished each of the molecular subtypes of
MM. These dependencies were exemplified by the presence of
particular mutated genes in myeloma subgroups, as well as
association with copy number changes andmutations (Figures 1,
3, and 4A). Mechanistically, we identified a critical relationship
between acquired chromosomal CNAs and mutations on those
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11q and expression ofCCND1, but inversely associated with gain of 1q. CN cluster 3 (5.6%) was associated with t(14;16), deletions of 1p, 8p, 13q, 14q, and 16q, and gain of 1q. CN
cluster 4 (5.2%) was associated with t(4;14), del13q, and del14q. CN cluster 5 (6.7%) was associated with t(4;14), del4p, del13q, and del14q as well mutations ofNFKBIA,MAX, and
TRAF3. CN cluster 6 (5.9%) was associated with deletions of 8p, 14q, and 16q, gain of 1q, and mutation of CYLD. CN cluster 7 (7.9%) was associated with t(4;14) and t(14;16), the
APOBEC signature, deletions of 11q and 13q, gain of 1q, and mutation of DIS3. CN cluster 8 (17.3%) was associated with t(11;14) and mutations of CCND1 and PRKD2, but not
with any deletions or gains. CN cluster 9 (4.8%) was associated with t(11;14) and gain of 11q as well as mutation of BRAF. The data plotted in this figure are listed in supplemental
Table 11. (C) The associations of genetic markers with CN clusters illustrating significant associations and their directionality by the size of the circle; red, positive association;
blue, negative association. (D) Progression-free survival Kaplan-Meier plots indicating differences in outcome between CN cluster 7 compared with clusters 1, 2, and 5.
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chromosomes. In addition to the well-known association be-
tween del17p and mutation of TP53, resulting in biallelic in-
activation of TP53, we describe an interaction of del13q with
mutations in DIS3, del16q with mutations in CYLD and WWOX,
and del14q with mutations in TRAF3 and MAX.

We identified that cluster 7 had an association with a worse
outcome compared with clusters 1, 2, and 5 (Figure 3D). Cluster
7 was associated with gain or amplification of 1q, which is a key
poor prognostic factor.24 Cluster 7 was also associated with
the t(4;14) and t(14;16) cytogenetic groups but still performed
worse than cluster 5, which was associated with t(4;14) and
delFGFR3.

Translocation subgroups are associated with
oncogenic dependencies
Significant associations between the primary translocation
groups and mutations were seen, including FGFR3, PRKD2, and
ACTG1 being only significantly mutated in t(4;14)s. CCND1,
IRF4, LTB, and HUWE1 were only significantly mutated in
t(11;14)s.MAF was only significantly mutated in t(14;16)s, and
MAFB only in t(14;20)s. CDKN1B, FUBP1, NFKB2, PRDM1,
PTPN11, RASA2, RFTN1, and SP140 were only significantly mu-
tated in the hyperdiploid samples. The mutation of certain genes
within particular myeloma subgroups indicates that oncogenic
dependencies exist, where certain pathways are more im-
portant to particular subgroups than others.

Additionally, using Fisher’s exact test, we show that t(4;14) samples
had more mutations in FGFR3, PRKD2, and DIS3; t(11;14) had
more mutations in CCND1 and IRF4; t(14;16) had more mu-
tations inATM,BRAF,MAF, TRAF2, EP300, andDIS3; t(14;20) had
more mutations in MAFB; and the hyperdiploid group with gain
11 (cluster 2) had more mutations in FAM46C (Figure 4A-B).

In addition to these dependencies, we also saw codon-specific
mutations within genes that were reliant on the context of the
myeloma subgroup, some of which we previously observed in a
targeted panel data set.25 Key examples of these interactions
include the variable distribution frequency and codon usage
of KRAS, NRAS, and BRAF between subtypes (Figure 4C). There
was a clear bias toward Q61 mutations in NRAS across all sub-
groups but a more equal distribution of mutations across codons
12, 13, and 61 in KRAS. There was a unique predominance of
BRAFD594N variants in the t(14;16) subgroup compared with
BRAFV600E in the other groups (Figure 3C), potentially indicating a
different mechanism of action.

Expression of driver gene variants
To ensure that the proposed driver oncogenes are being
expressed, we examined matched RNA sequencing (RNA-seq)
variants from the Multiple Myeloma Research Foundation data
set. We found a near linear correlation with exome-called variant
allele frequency (VAF) and RNA-seq–called VAF, for both on-
cogenes and tumor suppressor genes (Figure 5A-D), indicating
that DNA-level mutations in the coding sequence do not affect

transcription, even for nonsense or frameshift mutations. There
were some outliers in the analysis, where the RNA-seq VAF was
increased over the exome VAF, indicating a disproportionate
expression of the mutant allele. This was mostly due to trans-
location partner oncogenes (FGFR3, CCND1, MAF, and MAFB;
Figure 5A) under the influence of the immunoglobulin super-
enhancer. It was possible to identify biallelic inactivation of TP53
using VAF for exome or RNA-seq, where either was .0.5
(Figure 5B). The oncogenesNRAS, KRAS, and BRAF also showed
proportionate expression of alleles, but NRAS often had a
high VAF because of frequent deletion of the locus, which is
on 1p, indicating retention of the mutant allele. NF-kB genes
were frequently inactivated because of nonsense or frameshift
mutations, but this did not seem to alter expression at the RNA
level.

Discussion
The advantage of integrating data sets is the power associated
with this large study, which allowed us to identify a number of
novel driver genes in MM. Here, we identified 63 mutational
drivers in myeloma using 4 different methods in both the
complete data set and translocation subgroups. New drivers in
myeloma were identified, including the ubiquitin ligase UBR5,
which plays a central role in the modulation of apoptosis,26 and
HUWE1, which can affect the level ofMYC expression viaMIZ1.23

MYC activity was also potentially affected by mutations in MAX
and via mutations in IRF4 and EGR1.27-29 A number of epige-
netically active genes, which are potential therapeutic targets,
were also identified as being significantly mutated, including
IDH1 and IDH2,30 which had low-frequency gain-of-function
mutations.31,32 The mutations seen in PRKD2 focused atten-
tion on protein kinase D inhibition as a potential novel thera-
peutic approach, especially in t(4;14) cases. Of the identified
genes, 27% (17 of 63) were potentially actionable (supplemental
Table 9). Few associations between mutations and survival were
seen, with the most prominent being TP53. However, this may
have been due to the short follow-up in this data set. Continued
analysis of this and other data sets with longer follow-up may
reveal additional associations between mutations and survival.
Larger data sets will allow for deeper exploration of the genomic
landscape of myeloma as a whole and be particularly important
for probing cytogenetic groups that are less frequently seen.
With so many known drivers, targeted sequencing approaches
become possible that are faster and more cost effective than
either whole-genome or whole-exome sequencing.

The predominant pathway affected by mutation was the
MEK/ERK pathway, with 9 oncogenes affected (supplemental
Figure 17). Two tumor suppressor genes were also involved
in activating this pathway, RASA2 and NF1, which encode
RasGAPs, the function of which is recycling activated Ras back
to its inactive state.33 Another novel mechanism for activation
of this pathway involved mutation of PTPN11, which encodes
SHP2, known to be mutated in Rasopathy Noonan’s syndrome
and in pediatric leukemia.34,35

Figure 4 (continued) Significance is indicated by hatched lines.MAXmutations are significantly underrepresented in the CN-2 group. (C) The distribution of codon usage within
KRAS,NRAS, and BRAFbymolecular subgroup. Proportion of codon usage is indicated by the distance from the center.KRASmutations are split between codonsG12, G13, and
Q61, whereas NRAS is predominantly mutated at codon Q61 (P , 2.2 3 10216). BRAF mutations mostly affect codon V600, except in the t(14;16) group, where codon D594 is
mutated (P 5 .003).
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In myeloma, the distribution of Ras mutations was 56% for KRAS
and 44% for NRAS, with no HRAS mutations. This distribution is
different to other cancers, where KRAS makes up 96% of Ras
mutations in lung adenocarcinoma and 86% in colorectal ade-
nocarcinoma, but only 27% in acute myeloid leukemia and 3% in
melanoma. We see here that in myeloma, the codon usage for
NRAS was biased toward Q61 mutations (81%), which is more
similar to usage in melanoma (85%) than that seen in lymphoid
tumors (21%). KRAS codon usage in myeloma was more evenly
split between codons G12 (34.4%), G13 (12.8%), and Q61
(34.7%) compared with colorectal adenocarcinoma (83%; G12)
and pancreatic ductal adenocarcinoma (97%; G12). In addition,
myeloma had a high percentage of non-12/13/61 codons mu-
tated in KRAS (18%), with the most common being Q22, Y64,
K117, and A146. The different mutated codons between Ras
genes may be indicative of subtle functional differences or
preferences in mutational bias (eg, with mutational signatures).

Consistent with this hypothesis, a strikingly different mutational
pattern of BRAF was seen in the t(14;16) group compared with the
t(4;14) group, with 92% of mutations affecting codon D594

compared with 78% affecting codon V600, respectively (Figure 3C).
This may have been related to the APOBEC mutational signature,
which is dominant in t(14;16) and results inC.T/G.A transitions in a
TCn context, because the BRAFD594N mutation conforms to this
signature [T(C.T)A], whereas the BRAFV600E mutation does not
[C(A.T)C]. BRAFD594 mutations have been reported in melanoma,
and unlike the BRAFV600E mutants, which result in direct phos-
phorylation of MEK,36 they result in a kinase-dead BRAF, which
indirectly activates theMEKpathway throughbindingCRAF in aRas-
independent manner.37 Functional work is required to determine if
BRAFmutants behave the same inmyeloma. IdentifyingwhichBRAF
mutation a patient has is clinically important, because BRAF inhib-
itors are selective for BRAFV600E,38 and it has been suggested that
BRAF inhibitors should not be used in patients with Ras activation
(KRAS, NRAS, and BRAFD594 mutants).39

Mutations of DIS3, FAM46C, and SF3B1 were common, impli-
cating RNA processing as a deregulated pathway.40-42 Interest-
ingly, the mutational profiles of both DIS3 and SF3B1 suggest
gain-of-function variants consistent with them being oncogenes.
Another key pathway deregulated was NF-kB, where TRAF2,
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TRAF3,CYLD,NFKB2, andNFKBIAweremutated. Themutations
inNFKBIA identify it as a novel negative regulator of the noncanonical
NF-kB pathway.43,44 Despite the size of the study, we were unable
to show any prognostic significance for pathway deregulation
based on acquired mutations (supplemental Figure 7).

Genomic instability is key in myeloma, and we identified
3 markers of it through the APOBEC signature, homologous
recombination deficiency, and increased LOH. There is a complex
relationship between each of these markers and with alterations in
TP53. Other markers of genomic instability, such as chromplexy
and chromothripsis, may also be informative, but whole-genome
sequencing studies to identify the rearrangementswill be required.45,46

We also previously showed in a separate data set that homologous
recombination deficiency–associated LOH is more frequent in
those with high-risk disease and is associated with worse out-
comes.47 In ovarian cancer, thesemechanisms of genomic instability
are used as key targets of PARP inhibitors, where sensitivity to PARP
inhibition is induced either by chemically inhibiting the DNA
damage response pathway or by inducing increased BRCAness
with the proteasome inhibitor bortezomib.48,49

Significant associations between mutations, translocations, and
CNA clusters were seen, consistent with the molecular sub-
groups of NDMM being biologically distinct (Figure 3C). The
data are consistent with the etiologic events setting a genetic
background against which subsequent events are superimposed
dependent upon the processes they deregulate that collaborate
to increase the survival of the cells of that background. There are
several examples of abnormalities that are dependent on the
primary translocation backgrounds, such as t(4;14) and muta-
tions in FGFR3, DIS3, and PRKD2; t(11;14) and mutations in
CCND1 and IRF4; hyperdiploidy and FAM46C mutations; and
t(14;16) and the APOBEC mutational signature and mutations in
MAF, BRAF, ATM, and DIS3. It is clear why some of these as-
sociations exist (eg, the translocation groups and the partner
oncogenes [FGFR3, CCND1, and MAF]),50 but the other asso-
ciations are less obvious and potentially more interesting. It
remains unclear why mutations in FAM46C are associated with
hyperdiploid myeloma, but deregulation of FAM46C in this
group is important, because it is not only mutated but also
inactivated through secondary MYC rearrangements.51,52 De-
termining the function of these abnormalities within their genetic
backgrounds will be key to understanding the pathobiology of
myeloma, along with integrating other data types such as RNA
expression and DNA methylation.

Having examined copy numbers in .1000 patients, we were able
to segment them according to common features. There were
2 clear hyperdiploid groups, which differed in the gain of chro-
mosome 11. Apart from the obvious difference in CCND1 ex-
pression between the groups, becauseCCND1 is on chromosome
11, there were associations with other markers that were cluster
specific. Those with gain of chromosome 11 were associated with
FAM46C mutations and MYC rearrangements, but not with muta-
tions in DIS3 or MAX, whereas the group without gain of chro-
mosome 11 was associated with gain of 1q and high CCND2
expression. The latter was associatedwith poor prognosis, and using
this division in a data set with longer follow-up will be of interest.

The oncogenic dependencies identified here indicate that the
evolutionary processes occurring in a myeloma cell are more

complex than previously thought. It seems that genetic pro-
gression and accumulation of events are dependent on the ini-
tiating event. The genomic landscape of the cell is predetermined
by the primary event, upon which additional dependencies are
built, giving rise to a nonrandom accumulation of key genetic hits.
Understanding how these abnormalities interact within cellular
pathways and processes will lead to the identification of new
therapeutic options that can be used to exploit these evolutionary
dependencies. Additional studies examining how these de-
pendencies interact at the single-cell level, and in response to
different treatment regimens, will be important in understanding
the evolutionary processes in myeloma, particularly at relapse.
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