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Recent studies have revealed that the intestinal bacterial microbiome plays an important role in the regulation of
hematopoiesis. A correlation between adverse hematologic effects and imbalance of the intestinal microbiome, or
dysbiosis, is evident in several human conditions, such as inflammatory bowel disease, obesity, and, critically, in the
setting of antibiotic exposure. Here we review the effects of gut dysbiosis on the hematological compartment and our
current understanding of the mechanisms through which changes in the bacterial microbiome affect hematopoiesis.
(Blood. 2018;132(6):559-564)

Introduction
The microbiome influences many biological processes, from early
brain development to aging of innate immune cells.1-5 Several
recent studies have demonstrated that the bacterial microbiome
also plays an important role in normal hematopoiesis.6-9 Human
conditions associatedwith altered intestinal bacterial populations,
such as inflammatory bowel syndrome or prolonged antibiotic
use, are associated with adverse hematologic effects, including
anemia and neutropenia. Understanding the mechanisms by
which the microbiome influences normal blood production may
help with development of novel treatment modalities to prevent
these complications. Here, we discuss the interactions between
the microbiome and hematopoiesis, review what is currently
known about the mechanisms underlying these connections, and
propose a model of signaling between the gut microbiome and
bone marrow (BM).

The impact of microbiota depletion on
hematopoiesis in mice
The term microbiome describes the diverse array of microorgan-
isms, including bacteria, viruses, fungi, and archaea, that colonize
the human body, forming an ecological system critical to human
health.5 Much of what is currently known about the connection
between microbiota and hematopoiesis is derived from murine
studies. For example, microbiota are entirely lacking in germ-free
(GF) mice, and these mice have well-known abnormalities in BM
cell populations.6,7,9-11 GF mice have smaller hematopoietic stem
and progenitor cell (HSPC) populations, abnormal splenic myeloid
counts, and impaired T-cell function compared with their specific-
pathogen-free (SPF) counterparts.7,9,10 Similarly, oral antibiotics
deplete intestinal bacteria and have suppressive effects on
hematopoiesis. Adult SPF mice treated with antibiotics for 1 week
or more develop BM suppression, and these effects are largely
independent of treatment duration, absorption, and type of anti-
biotic used.2,7,8,11 Antibiotics have also been shown to disrupt en-
graftment of HSPCs after transplantation in mice, indicating that

the microbiome plays an important role in the posttransplant
setting.12 Importantly, biologically relevant concentrations of
antibiotics are not toxic to HSPCs under in vitro culture conditions,
arguing against a direct antibiotic effect on hematopoiesis.8 In-
stead, several recent studies, summarized in detail in Table 1,
indicate that antibiotics impair normal hematopoiesis by de-
pleting intestinal bacteria. Many of the features of hematopoietic
suppression related to microbiota depletion in mice, including
timing, are similar to those seen in humans, as we describe below.

Suppression of hematopoiesis associated
with dysbiosis in humans
Dysbiosis, or imbalance, of the gut microbiome has been linked to
suppression of hematopoiesis in humans. Note that the term dys-
biosis does not refer to the presence of specificmicrobial pathogens,
which can certainly exert hematologic effects as recently reviewed.13

An imbalance in commensal intestinal bacteria characterizes in-
flammatory bowel diseases (IBDs), including decreased bacterial
diversity, enhancedbacteriophage populations, and outgrowth of
pathobionts.14,15 Interestingly, IBD has been independently linked
to non-drug-induced aplastic anemia.16,17 A murine model of IBD
showed that intestinal inflammation exerts significant stress on
HSPCs.18 Nutritional disorders also share a link between dysre-
gulated microbial communities and altered hematological out-
comes. For instance, obesity has been associated with both
dysbiosis19-21 and hematopoietic abnormalities in humans22,23 and
mice.24,25 Malnutrition also is associated with altered intestinal mi-
crobial communities,26,27 as well as frequently severe hematological
disturbances.28,29 Although these complex conditions in humans
have many potential confounding factors, including an altered in-
flammatory milieu, cellular access to nutrients, and genetic factors,
they highlight the potential for microbial dysbiosis and hemato-
logical abnormalities to be linkedby association or perhaps causally.

A more direct link between microbial dysbiosis and hematopoi-
etic alterations can be observed in patients receiving antibiotics.
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Antibiotic treatment, which causes gut dysbiosis by eliminating
certain classes of bacteria, is widely associatedwith hematological
abnormalities. Cytopenias, including neutropenia, anemia, throm-
bocytopenia, and pancytopenia, have been reported for a wide
range of antibiotics.30-35 For example, a retrospective analysis
found that 5% to 15%of patients developed neutropenia (defined
as ,1000 neutrophils per cubic millimeter) after 10 or more days
of b-lactam antibiotic treatment.36 Of the patients that de-
veloped neutropenia, 94% recovered neutrophil counts after
stopping antibiotic treatment. This finding was corroborated in a
review of published clinical case reports that showed patients
developed neutropenia when treated with penicillin G.30 These
studies suggest that disrupting the gut microbiome through
antibiotic use may have a significant impact on hematopoiesis.

Importantly, hematologic abnormalities due to antibiotics are
not limited to a single class of antibiotics.30,32-40 Indeed, neu-
tropenia was one of the most common adverse drug-related
effects of outpatient parenteral antimicrobial therapy (OPAT) in
pediatric patients regardless of the antibiotic agent used.41-44

Confirming this finding, Fernandes et al45 found that leukopenia
developed in 6% of pediatric patients on OPAT for a median of
30 days. Of note, the antibiotic trimethoprim-sulfamethoxazole
(TMP-SMZ) is widely known to cause neutropenia, but the rate of
TMP-SMZ–mediated neutropenia is far lower than that reported
for other antibiotics, such as b-lactams. Indeed, the incidence
of blood disorders associated with TMP-SMZ (5.6 cases per
100 000 patients) is ;1000 times lower than that of prolonged
antibiotics as described in the OPAT studies mentioned above.46-48

Trimethoprim has been shown to exert an antifolate activity
on granulocyte progenitors, an effect that can be reversed by
folinic acid administration.49 However, cytopenias related to
other antibiotics have not been related to folate deficiency, and
their vastly different incidence suggests that the mechanisms of
action differ as well.

Similar to the results of recent murine studies, antibiotic treatment
can affect the outcome of allogenic hematopoietic stem cell
transplant in humans.50-54 Despite the common use of antibiotics
following BM transplant, these studies indicate that the reduction
in diversity and abundance of intestinal microbiota resulting from
antibiotic administration impairs engraftment and increases the
risk of leukemic relapse, graft versus host disease, and death
following transplant.12,53,55

In summary, syndromes of dysbiosis are linked to hematologic
defects, and 5% to 15% of patients on long-term antibiotic
treatment are vulnerable to adverse hematologic complications.
Antibiotic courses lasting .2 weeks, when hematologic effects
become more common, can be appropriate for many conditions,
including osteomyelitis, endocarditis, septic arthritis, and men-
ingitis.43 However, antibiotic-associated neutropenia leaves pa-
tients vulnerable to opportunistic and potentially fatal infections,
and weekly monitoring for evidence of antibiotic-associated cyto-
penias is both costly and painful. Stopping or changing antibiotics
due to adverse effects adds additional costs and hinders effective
treatment, especially for HSCT patients. Thus, understanding the
mechanistic basis linking antibiotic use, gut dysbiosis, and hema-
tologic abnormalities is an important clinical priority.

Mechanisms of long-term antibiotic-
induced suppression of hematopoiesis
Although long-term antibiotic treatment can clearly affect he-
matopoiesis, the mechanisms of suppression remain conten-
tious. Several early studies suggested that b-lactam antibiotics
directly suppress the differentiation of progenitor cells36,56;
however, those findings were based on in vitro studies that only
showed inhibition at half maximal inhibitory concentration of

Table 1. Mechanisms of microbiota and host communication to regulate hematopoiesis

Reference
Mouse
model Antibiotics Treatment duration, wk Microbiota mechanism Host mechanism

7 GF/ABX Vancomycin 4-5 MAMPs Not discussed
Ampicillin
Neomycin

Streptomycin

6 GF/ABX Vancomycin 4 Heat-killed microbial product Signaling through MyD88/TICAM1

Ampicillin

Neomycin

Metronidazole

8 ABX Vancomycin 2 Not discussed Signaling through STAT1

Ampicillin

Neomycin

Metronidazole

9 GF N/A NOD1 ligand Production of HSPC proliferation-
stimulating cytokines by MSCs

N/A

ABX, antibiotics; MAMPs, microbe-associated molecular patterns; MSCs, mesenchymal stromal cells; N/A, not applicable.
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100 to 600 mg/mL. These concentrations are much higher than
those typically achieved in humans (,50mg/mL),57 thus calling into
question the clinical and biological relevance of these findings. To
assess mechanisms of suppression at antibiotic concentrations in
the range of those expected in vivo, we coculturedmurine BMwith
the b-lactam antibiotic ceftriaxone (25 mg/mL) or with vancomycin,
neomycin, ampicillin, and metronidazole (12.5 mg/mL for vanco-
mycin; 25 mg/mL for the rest) in methylcellulose and showed there
was no effect on colony formation.8 These studies indicate that
antibiotics at concentrations in the range of those expected in vivo
do not antagonize progenitor activity directly.

Conversely, some studies suggested that hematopoietic sup-
pression in patients on long-term antibiotic treatment is caused
by indirect, immune-mediated mechanisms.58-60 An antibody-
mediated mechanism for vancomycin-associated thrombo-
cytopenia has been established.61 Similarly, detection of
antineutrophil and antipenicillin immunoglobulin G antibodies
in the sera of neutropenic patients led to the speculation that
neutropenia could be a result of antipenicillin antibodies coating
penicilloylated neutrophils or opsonization of immune complex
coated neutrophils.59,60 Despite these reports, subsequent
studies have shown that such effects do not worsen with re-
peated courses of penicillin, arguing against an antibody-
mediated phenomenon.62

More recently, several groups independently identified changes
in the microbiome as a key regulator of normal hematopoiesis
(see Table 1).6-9 Suppression of granulocyte and monocyte
numbers in GF mice or in antibiotic-treated mice was shown to
be rescued by oral provision of MAMPs from the gut microbiota
or by recolonization with normal microbiota.6,7 Consistent with
these findings, a heat-resistant component of Escherichia coli in
serum was found to restore BM myeloid cell populations in GF
mice. Furthermore, Iwamura et al9 reported that nucleotide-
binding oligomerization domain-containing protein 1 ligand
(NOD1L), which is a heat-stable component of the peptido-
glycan structure of E coli,63,64 increased systemic levels of HSPC
proliferation-stimulating cytokines such as stem cell factor and
thrombopoietin to levels found in SPF mice. These growth
cytokines are produced in large part by MSCs in the BM niche.
In summary, the field is converging on a paradigm in which
products of the intestinal microbiota such as NOD1L can enter
the bloodstream and travel to the BM, where they promote
the production of growth cytokines that support normal
hematopoiesis.

Although progress has been made in determining the signals
produced by intestinal microbes to trigger normal hematopoi-
esis, the host cells and receptors by which those signals are
detected have not yet been identified. Treatment of MyD882/2
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Figure 1. Proposed model of host signaling cascade in response to microbial signals to promote hematopoiesis. MAMPs activate the TLR pathway, and meso-
diaminopimelic acid (DAP) activates the NOD1 pathway in stromal cells. The TLR andNOD1 pathways can cross talk at tumor necrosis factor receptor-associated factor 3 (TRAF3)
and induce type I interferon (IFN) production. These type I IFNs can then activate the type I IFN pathway via signal transducer and activator of transcription 1 (STAT1) in HSPCs
and activate a gene profile that is necessary to promote hematopoiesis.
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TICAM12/2 GF mice with heat-inactivated serum from SPF mice
did not expand the BM myeloid compartment,6 suggesting that
MyD88 and TICAM1 are required for appropriate gut-marrow
signaling. Our recent study showed thatMyd88 single knockout
mice had no apparent defect in antibiotic-mediated BM sup-
pression, indicating that MyD88 and TICAM1 may have re-
dundant roles.8 Meanwhile, Stat12/2 mice had BM HSPC and
granulocyte counts as low as antibiotic-treated wild-type mice,
and treating Stat12/2 mice with antibiotics did not further sup-
press cell counts, suggesting that STAT1 signaling stimulated by
the microbiota is required for normal hematopoiesis.8 Indeed,
these data fit into a growing narrative that basal inflammatory
signaling is required to maintain normal hematopoiesis.8,65

Recently, Iwamura et al9 determined that NOD12/2 MSCs, in
contrast to wild type, are unable to produce HSPC proliferation-
stimulating cytokines, indicating that NOD1 signaling through
MSCs is an important regulator of hematopoiesis.9 Therefore, it
is likely that MyD88/TICAM1, NOD1, and STAT1 are all involved
in regulating steady-state hematopoiesis; in fact, it is possible
that they all feed into the same pathway. TheMyD88-dependent
Toll-like receptor (TLR) pathway and NOD1 pathway share
similar downstream signaling molecules such as TRAF3, which
signals to IRF3 to induce interferon production, and interferons
signal via STAT1. Further studies are necessary to confirm the
interplay of these proposed signaling pathways (Figure 1) in
microbiota-mediated hematopoiesis.

Conclusions
In summary, gut dysbiosis is associated with hematological
abnormalities in both humans and mice. Murine studies now
show that antibiotic-induced microbiota depletion and BM
suppression are due to the absence of heat-stable microbial
products that can circulate in the bloodstream and promote
hematopoiesis through basal inflammatory signaling. These
mechanisms are potentially significant in many patients, in-
cluding those requiring long-term antibiotic therapy and those
recovering from HSCT.

Although studies have begun to uncover the mechanisms of
antibiotic-induced hematological adverse effects, many details
remain unknown and new questions arise. The range ofmicrobial
products that signal to the host to promote normal hemato-
poiesis and the microbial species from which they derive still
need to be elucidated.66-68 Balmer et al6 found that the TLR

pathway components MyD88 and TICAM1 are required for
steady-state granulopoiesis, but stopped short of determining
which microbial product was responsible for activating the TLR
signaling. Some microbial metabolites such as short-chain fatty
acids have been shown to contribute to the production of he-
matopoietic precursors in SPF mice,69 but other microbial me-
tabolites, such as from indole or flavonoid metabolism,70,71 have
not been studied. In addition, the tissues necessary to transmit
signals from gut microbes to hematopoietic progenitors remain
unknown. Future research will broaden our understanding of
the role microbiota play in regulating hematopoiesis and may
identify therapeutic interventions to support healthy hemato-
poiesis in patients with gut dysbiosis.
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