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Anaplastic large cell lymphomas (ALCLs) represent a group of
CD30-positive T-cell non-Hodgkin lymphomas with unifying
morphological characteristics but variable clinical and ge-
netic features. ALCLs are classified by their clinical pre-
sentation and the presence or absence of rearrangements of
the anaplastic lymphoma kinase (ALK) gene. In addition to
systemic ALK-positive ALCL, systemic ALK-negative ALCL,
and primary cutaneous ALCL, the 2016 revision of the World
Health Organization classification of lymphoid neoplasms
recognizes breast implant–associated ALCL (BIA-ALCL) as a
new provisional entity.1 BIA-ALCL arises in the capsule and/or
effusion surrounding silicone or saline-filled textured breast
implants an average of 9 years after placement.2,3 BIA-ALCL
shares many features with other types of ALCL, including con-
sistent expression of CD30; cases reported to date havebeenALK
negative.1,2,4 The prognosis of patients with BIA-ALCL is favorable
if the tumor is confined to the capsule and effusion and complete
resection is performed; invasion through the capsule with the
presence of an associated mass and lymph node involvement are
adverse prognostic features.2,5,6

Our group has identified 2 additional recurrent rearrange-
ments in ALCLs that to date have been mutually exclusive with
ALK rearrangements. Rearrangements involving the DUSP22-
IRF4 locus on 6p25.3 are associated with loss of expression
of DUSP22, a putative tumor-suppressor gene encoding
dual-specificity phosphatase 22.7 Rearrangements of the TP53
homolog TP63 on 3q28 lead to the formation of fusion genes,
most commonly with the partner TBL1XR1 on 3q26.8 ALCLs
lacking all 3 rearrangements (ie, ALK, DUSP22, and TP63) have
been referred to as “triple-negative” ALCLs.9 Laurent et al ex-
amined 9 BIA-ALCLs for DUSP22 rearrangements, and all cases
were negative.4 However, a comprehensive study of the genetic
subtype of BIA-ALCL cases has not been reported.

Under an institutional review board–approved protocol, we
evaluated the genetic subtype and other pathologic features in
the capsules from 36 patients with BIA-ALCL. Detailed methods
are given in supplemental Materials (available on the Blood
Web site). All patients were women, with a mean age of 56 years
(range, 33-76 years). Notably, all cases had a triple-negative
genetic subtype (Table 1; supplemental Figure 1). This result is

in contrast to the substantial genetic heterogeneity observed
in other types of ALCL (Figure 1A). Among systemic ALCLs,
;55% of cases carry ALK rearrangements and overexpress ALK
fusion proteins.10 In systemic ALK-negative ALCLs, ;30% have
DUSP22 rearrangements and 8% have TP63 rearrangements.9

DUSP22 rearrangements have been associated with excellent
outcomes, whereas patients with TP63 rearrangements have very

Table 1. Clinical, pathologic, and genetic features of
breast implant–associated ALCLs

Parameter
No. positive/
no. studied Percent positive

Capsular infiltration (T3*) 4/33 12

Mass/infiltration beyond
capsule (T4)

10/33 30

Lymph node involvement† 4/30 13

ALK (IHC‡) 0/36 0

DUSP22 rearrangement
(FISH)

0/36 0

TP63 rearrangement (FISH) 0/36 0

pSTAT3Y705 (IHC) 27/27 100

JAK1 mutation (NGS) 1/15 7§

JAK3 mutation (NGS) 0/15 0

STAT3 mutation (NGS) 3/15 20

STAT5A mutation (NGS) 0/15 0

STAT5B mutation (NGS) 0/15 0

FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation
sequencing.

*Based on the TNM staging system of Clemens et al.5 T staging data were not available in 3
patients. Clinical data on 17 cases were previously reported in Miranda et al.2

†Extramammary staging data were not available in 6 patients; no spread to other organs/
distant sites (M1) was identified in 30 evaluable patients.

‡Additional immunohistochemistry results are shown in supplemental Table 1.

§Mutational frequencies are for mutations known or predicted to be activating.
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poor outcomes.9,11 Although we did not find TP63 rearrangements
in the present study, it is possible a larger study might identify such
cases, given that only a minority of BIA-ALCLs are clinically ag-
gressive (Table 1; previously reported series2,4,12). Primary cutaneous
ALCLs are characteristically ALK negative, and DUSP22 and TP63
rearrangements occur at about the same frequency as in systemic
ALK-negative ALCL.8,13 The findings we report in BIA-ALCL tissue
specimens are consistent with the previously reported lack of
characteristic lymphoma-associated translocations in karyotypic
studies of BIA-ALCL–derived cell lines.14,15

The morphological features in all BIA-ALCLs were similar. All
cases were characterized by large cells with pleomorphic,
multilobated, or wreath-like nuclei and abundant cytoplasm,
often localized along the inner surface of the fibrous capsule
surrounding the implant (Figure 1B-C). This predominance of
large, pleomorphic cells is consistent with the triple-negative
genetic subtype observed in BIA-ALCLs, as large, pleomor-
phic cells are less common in ALCLs with DUSP22 or TP63
rearrangements based on our published and unpublished
observations.8,16 The frequencies of expression of T-cell
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Figure 1. Pathological and genetic findings in BIA-ALCL.
(A) Distribution of genetic subtypes in systemic, cutaneous,
and breast implant–associated ALCL. 2 /2 /2 , triple-
negative. (B) Low-power hematoxylin and eosin–stained
image of a capsulectomy specimen showing the fibrous
capsule (*), an inner layer of lymphoma cells (‡), and the
original location of the implant and surrounding effusion (¶).
Image was taken using an Olympus DP71 camera, Olympus
BX51 microscope, and Olympus cellSens image acquisition
software (original magnification 340). (C) High-power he-
matoxylin and eosin–stained image of the capsule shows a
cluster of large pleomorphic cells (original magnification
31000). (D) Immunohistochemistry for CD30 shows strong
and uniform staining in the neoplastic cells (original mag-
nification 31000). (E) Immunohistochemistry for ALK shows
absence of staining in the neoplastic cells (original magni-
fication 31000). (F) Immunohistochemistry for pSTAT3Y705

shows strong nuclear staining in the neoplastic cells (original
magnification 31000). (G) Mutations in JAK1 and STAT3
in BIA-ALCL. Pkinase_Tyr, protein tyrosine kinase domain;
SH2, Src homology 2 domain; STAT_alpha, all-a domain;
STAT_bind, DNA binding domain; STAT_int, protein in-
teraction domain.
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antigens, cytotoxic markers, and T-cell receptor proteins in BIA-
ALCL (supplemental Table 1) were similar to those previously
reported in this disease4 as well as in systemic ALK-negative ALCL
with triple-negative genetics.9 All cases showed strong and uni-
form reactivity for CD30 (Figure 1D) and were negative for ALK
(Figure 1E). Similar to other forms of ALCL,17 a subset of cases
expressed p63 protein but lacked TP63 rearrangements. Im-
munohistochemistry for pSTAT3 was positive in all 27 cases
tested (100%), with staining in 30% to 100% of tumor cell nuclei
(Figure 1F). In situ hybridization for Epstein-Barr virus was negative
in all cases tested.

The findings in the present study demonstrate remarkable con-
sistency of BIA-ALCLs in genetic subtype, morphology, and
presence of activated STAT3 that contrasts with other types of
ALCL. While ALK fusion proteins consistently drive STAT3 acti-
vation in ALK-positive ALCL,18 only 38% to 47% of ALK-negative
ALCLs are positive for pSTAT3 by immunohistochemistry.19-21

STAT3 activation in ALK-negative ALCLs is mediated by somatic
JAK1 and/or STAT3mutations, a variety of non-ALK kinase gene
fusions, and possibly other events.20,22 Blombery et al studied
2 BIA-ALCLs and identified JAK1 G1079V in 1 case and STAT3
S614R in the other,23 while Di Napoli et al identified STAT3
S614R in 1 of 5 informative cases.24 To understand the spec-
trum of JAK-STAT gene mutations further, we evaluated 15 BIA-
ALCLs with adequate DNA for mutations of JAK1, JAK3, STAT3,
STAT5A, and STAT5B. All mutations identified were orthogonally
validated.

Four BIA-ALCLs (27%) had mutations known or predicted to be
activating in one of the JAK-STAT genes (Table 1; supplemental
Table 2; Figure 1G). One case had JAK1 G1097D, which has
been shown to constitutively activate STAT320 and involves the
same codon as the JAK1mutation reported by Blombery et al.23

Another case had STAT3 S614R, found by both Blombery et al23

and Di Napoli et al24 and also present in the TLBR1 BIA-ALCL
cell line.25 Two cases had the known gain-of-function muta-
tion STAT3 Y640F.20,26 One case had a previously unreported
STAT5B mutation, T479M, which was in the DNA-binding do-
main rather than the SH2 domain hotspot and was not predicted
to be activating. No missense mutations were identified in JAK3
or STAT5A. Collectively, our sequencing data and the uniform
expression of pSTAT3 extend earlier findings4 that suggest that
BIA-ALCL is characterized by oncogenic JAK-STAT3 activation.
Importantly, pharmacological inhibition of the JAK-STAT3 path-
way has efficacy in preclinical ALCL models, suggesting a po-
tential role for targeted therapies.15,18,20,25 Of note, only 1 patient
was found to have both an activating JAK-STAT gene mutation
and relatively advanced clinical disease (tumor stage T3 or T4
and/or nodal disease5). This lack of correlation might be due to
the limited statistical power of the current series, but it also may
suggest that molecular factors other than JAK-STAT3 pathway
activation are important determinants of clinical aggressiveness.
Since pSTAT3Y705 was expressed in all BIA-ALCLs regardless of
mutational status, it is likely that more comprehensive genetic
analysis will reveal alternative mechanisms of STAT3 activation, as
shown in other forms of ALK-negative ALCL.20,22

Taken together, these observations indicate that BIA-ALCLs not
only have unique clinical manifestations but also are consis-
tently of triple-negative genetic subtype and show activation of
the JAK-STAT3 signaling pathway. Similar to other ALCLs, this

activation is associated with mutations of JAK1 or STAT3 in some
cases. The absence of ALK, DUSP22, and TP63 rearrangements
suggest less heterogeneity than in other ALCL subtypes. Future
studies should evaluate whether additional rearrangements
are present, such as those involving VAV1, FRK, ROS1, and
TYK2.20,22,27 The relative molecular homogeneity of BIA-ALCL in
the setting of its unique clinical presentation provides support
for its inclusion as a distinct entity in the World Health Orga-
nization classification and suggests that these cases share a
unifying pathogenetic mechanism, likely related to the in-
flammatory milieu involving the particulate textured surface of
breast implants in which they arise.
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Cold agglutinin disease (CAD) is a chronic hemolytic disorder
caused by anti–red blood cell immunoglobulin M (IgM) autoan-
tibodies most often monoclonal with k light-chain restriction.1,2

The autoantibody reacts at temperatures lower than the body
temperature, causing autoagglutination and complement-
dependent red blood cell destruction. CAD is a rare disease,
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