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KEY PO INT S

l Mice with
hypomorphic
mutations in the Rag1
C-terminal domain
are a model of
leaky combined
immunodeficiency
with autoantibodies.

l Hypomorphic
C-terminal domain
Rag1 mutations cause
repertoire skewing
at the earliest stages
of B- and T-cell
development.

Hypomorphic RAG1mutations allowing residual T- and B-cell development have been found
in patients presenting with delayed-onset combined immune deficiency with granulomas
and/or autoimmunity (CID-G/AI) and abnormalities of the peripheral T- and B-cell repertoire.
To examine how hypomorphic Rag1 mutations affect the earliest stages of lymphocyte
development, we used CRISPR/Cas9 to generate mouse models with mutations equivalent
to those found in patients with CID-G/AI. Immunological characterization showed partial
development of T and B lymphocytes, with persistence of naı̈ve cells and preserved serum
immunoglobulin but impaired antibody responses and presence of autoantibodies, thereby
recapitulating the phenotype seen in patients with CID-G/AI. By using high-throughput
sequencing, we identified marked skewing of Igh V and Trb V gene usage in early pro-
genitors, with a bias for productive Igh and Trb rearrangements after selection occurred and
increased apoptosis of B-cell progenitors. Rearrangement at the Igk locus was impaired, and
polyreactive immunoglobulinMantibodiesweredetected. This studyprovides novel insights
into how hypomorphic Rag1 mutations alter the primary repertoire of T and B cells, setting
the stage for immune dysregulation frequently seen in patients. (Blood. 2018;132(3):281-292)

Introduction
Adaptive immunity relies on the dynamic response of lympho-
cytes to generate specific antigen receptors to fight pathogens.
Recombination activation gene 1 (RAG1) and RAG2 are crucial for
effective combinatorial joining of variable (V), diversity (D), and
joining (J) genes that encode the antigen-binding regions of T-cell
receptor (TCR) and B-cell immunoglobulin molecules.1 More than
200 disease-causingmutations in theRAG1 andRAG2genes have
been identified that can cause a wide spectrum of clinical and
immunological phenotypes.2 In particular, functionally null RAG
mutations cause a complete arrest of T- and B-cell development,
resulting in T2 B2 severe combined immunodeficiency.3-5 Hypo-
morphic mutations allowing minimal residual function of RAG can
lead to Omenn syndrome, with presence of a variable number of
activated, oligoclonal T cells that infiltrate and damage target
tissues.6 By contrast, hypomorphic RAG mutations with higher
residual activity have been identified in patients with delayed-
onset combined immunodeficiency associated with granulomas
and/or autoimmunity (CID-G/AI).7

A significant proportion of patients with CID-G/AI carry missense
mutations in the coding flank–sensitive region of the carboxy-

terminal domain (CTD) of RAG1 (human amino acid 892-977;
mouse amino acid 889-974; supplemental Figure 1A, available on
the Blood Web site). These mutations have been postulated to favor
targeting of certain coding elements.8 Although abnormalities of the
peripheral T- and B-cell repertoire have been observed in patients
with CID-G/AI and Rag1-mutant mice,9,10 it is unknown whether
similar abnormalities are present in the preimmune repertoire of
progenitor lymphocytes or whether they are secondary to antigen-
mediated pressure in the periphery. We used gene editing to
generate 3 mouse models carrying homozygous Rag1 mutations
(F971L, R972Q, and R972W), corresponding to human mutations
(F974L, R975Q, and R975W)described in patients withCID-G/AI,7,11-13

to understand how these mutations affect repertoire composition,
cell selection, and survival during T- and B-cell development.

Methods
Mice
Rag1-mutant mice were generated by gene editing as previously
described.14,15 For the analysis of regulatory T cells (Treg) and
conventional T cells (Tconv), Rag1-mutant mice were crossed with
Foxp3.EGFPCre mice. Animal work was conducted in specific
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pathogen–free conditions, in accordance with the US Public
Health Service Policy on Humane Care and Use of Laboratory
Animals, with protocols approved by Boston Children’s Hospital
(protocols 13-08-2472R and 16-05-3176R) and by the National
Institute of Allergy and Infectious Diseases Animal Care and Use
Committee (protocol LCIM 16E).

Flow cytometry, cell isolation, and histochemistry
Detailed methods for flow cytometry and cell isolation are pro-
vided in the supplemental Methods. Immunohistochemistry of
thymus and spleen was performed as previously described.16,17

Measurement of serum BAFF, immunoglobulin
levels, specific antibody levels, and autoantibodies
BAFF, immunoglobulin, and specific antibody serum levels were
measured by enzyme-linked immunosorbent assay as described
in the supplemental Methods. Serum immunoglobulin M (IgM)
autoantibodies and anticytokine antibodies were measured using
microarrays, as described in the supplemental Methods.

T- and B-cell repertoire analysis
High-throughput sequencing of TCR b (Trb) and immunoglobulin
heavy chain (Igh) rearrangements was performed as described
in the supplemental Methods. Analysis of Vk-Jk rearrangements
in pre-B cells was performed by polymerase chain reaction am-
plification as described.18

Statistical analysis
One-way analysis of variance with multiple comparisons was
used when comparing wild-type (WT) with Rag1-mutant mice or
comparing different Rag1-mutant mice. Two-way analysis of
variance was used to compare antibody responses in WT and
mutant mice. The Mann-Whitney U test was used when only 2
groups of mice were compared. Distribution of V and J gene
usage was compared using the Kolmogorov-Smirnov test. In-
dividual V and J gene usage was analyzed by the x2 test.

Results
Generation of mice with targeted mutations in
RAG1 CTD
We selected 3 mutations (F971L, R972Q, and R972W) corre-
sponding to human mutations (F974L, R975Q, and R975W) that
have been previously described in patients with CID-G/AI. All 3 fall
in the coding flank–sensitive region of RAG1 CTD8 (supplemental
Figure 1A). Crystallography predicted that the R972 residue lo-
cated near the catalytic amino acid E962 (supplemental Figure 1B)
may participate in the recognition sequence specificity of theDNA
coding flank that is directly adjacent to the recombination signal
sequence.19 On the basis of amino acid properties and in vitro
studies,10 we predicted that the R972Q and the F971L mutations
would have amoderate effect on RAG1protein stability. Toextend
our analyses, we included a mutation (R972W) that protein struc-
ture and in vitro activity predicted to be highly disruptive.7

Incomplete block of T- and B-cell development in
Rag1-mutant mice
All 3 Rag1-mutant mouse models showed abnormalities of thymic
architecture that were most prominent in R972W mice, with a
marked decrease of the thymic medulla but partial preservation of
the corticomedullary demarcation (Figure 1A). The total number of

thymocytes was reduced 50- to 100-fold in all 3models (Figure 1B).
Flow cytometric analysis revealed a near-complete block of thy-
mocyte development at CD42CD82 DN stage in R972W mice,
similar towhatwas observed inRag12/2 (knockout)mice,whereas a
significant fraction of CD41CD81 DP cells and CD41CD82 and
CD42CD81 single-positive cells were detected in R972Q and
F971L mice (Figure 1C; supplemental Figure 2A). In all mutant
mice, DN cells were largely blocked at CD251CD442 DN3 stage
(Figure 1D; supplemental Figure 2B). An increase in the relative
proportion of gdT cells was noted in the 2 leakiest models
(R972Q and F971L; Figure 1E; supplemental Figure 2C).

In the bone marrow, a significant increase in the proportion of
B220loIgM2CD431 cells (pro-B cells and pre-BI, here collectively
called pro-B) was seen in Rag1-mutant mice as compared with
WT mice (Figure 2A-B). By contrast, the proportion and absolute
number of B220loIgM2CD432 cells (small pre-B, including
pre-BII), B220loIgM1CD432 cells (immature), and B220hiIgM1

CD432 cells (mature recirculating B cells) were all decreased in
Rag1-mutant mice (Figure 2A-C). This block in B-cell develop-
ment was less severe in R972Q than in F971L and R972W mice.
During B-cell development, RAG expression occurs at the pro-B
stage for Igh rearrangement and at the pre-BII stage for light
chain (LC) rearrangement.20 To characterize these specific
transitions, we performed flow cytometric analysis to identify the
proportions of B220loc-kit1 pro/pre-BI and of B220loCD251 pre-
BII bone marrow cells. Among B2201 IgM2 B-cell precursors, a
significant increase in the proportion of pro/pre-BI cells was
demonstrated in all 3 hypomorphic Rag1-mutant mouse strains
(Figure 2D-E), indicating a major block at the assembly of LC.
Although the proportion of B220loCD251 pre-BII cells was sig-
nificantly reduced in all 3 Rag1 hypomorphic mutants compared
with WT mice, this difference was less severe in R972Q mice
(Figure 2E), indicating a more pronounced leakiness of defective
lymphocyte development in this model.

Rag1-mutant mice have a reduced number of
mature T and B lymphocytes in the periphery
In the spleen, the number of CD31, CD41, and CD81 cells was
diminished in all 3 Rag1-mutant models, and this defect was more
pronounced in F971L and R972W mice (Figure 3A-B). In T-cell
lymphopenic hosts, compensatory homeostatic proliferation can
result in an increased proportion of peripheral T cells with an
activated phenotype and virtual absence of peripheral naı̈ve
T cells.9,21,22 Although all 3 mutants showed depletion of naı̈ve
T cells, a significant fraction of CD62L1CD442 naı̈ve cells was
present in both F971L and R972Q mice (Figure 3C-D). As com-
pared with WT mice, the absolute number of B-cell splenocytes
was reduced in all Rag1-mutant models and especially in R972W
and F971L compared with R972Q mice (Figure 4A). The number
and size of B-cell follicles in the spleen correlated with the degree
of B-cell lymphopenia (Figure 4B). Analysis of the proportion and
absolute number of follicular (CD191CD932CD211CD231) and
MZ; (CD191CD932CD211CD232) B cells showed that B-cell
depletion was more prominent for follicular than MZ B cells and
more severe in F971L than in R972Q mice (Figure 4C).

Dysregulation of humoral immunity in
Rag1-mutant mice
In contrast to patients with Omenn syndrome, who are pro-
foundly hypogammaglobulinemic but show increased levels of
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serum IgE, variable levels of serum IgG and IgM and of
antigen-specific antibody responses have been reported in
patients with CID-G/AI.11,13,23 R972Q mice had normal levels
of IgG with increased serum IgM; increased serum IgE was
detected in R972Wmice (Figure 4D). Naı̈ve Rag1-mutant mice
had higher serum titers of TNP-binding IgM (Figure 4E). Upon
immunization with the T-independent antigen TNP-Ficoll,
equivalent amounts of anti-TNP IgM and IgG3 antibodies
were detected in WT, R972Q, and F971L mice, whereas a
defective response was observed in R972W mutants (Figure
4E-F). The antibody response to the T-dependent antigen
TNP-KLH was impaired in all 3 Rag1-mutant mice, although it
was greatest for R972Wmice (Figure 4G). Furthermore, R972Q
mice mounted an impaired antibody response to the Th17-
dependent pneumococcal whole-cell antigen (Figure 4H).
Altogether, these data indicate that antibody responses to
T-independent responses, potentially stemming from the
demonstrable MZ B-cell population, are preserved in R972Q
and F971L mice, but their T-dependent antibody responses
are compromised, despite their relative leakiness of T- and
B-cell development.

One of the characteristics of patients with hypomorphic muta-
tions in the RAG1 CTD domain is the frequent association with
autoimmune disease.24 We hypothesized that increased levels of
TNP-binding IgM antibodies in Rag1-mutant mice might reflect
the presence of low-affinity, polyreactive antibodies. High levels
of antiphosphorylcholine (PC) antibody were detected in the
serum of 8- to 12-week-old R972Q-mutant mice (Figure 5A).
Because B1 B cells are thought to be a principal source of anti-PC
antibodies,25 we characterized the peritoneal compartment and
observed a significant reduction of B1a cells in R972Q and F971L
mice, whereas the B1b compartment was not significantly
compromised (Figure 5B). These results suggest that elevated
levels of anti-PC antibodies in R972Q mice cannot be attributed
to expansion of B1a cells. When probing a proteomic microarray
that contained a panel of 95 common self-antigens, IgM auto-
antibodies were detected in the serum of all 3 mutant strains,
most abundantly in the leakiest mutant, R972Q (Figure 5C).
Because the proteomic microarray was normalized for total IgM
concentration, the increase seen in R972Q mice was not simply
a result of the higher IgM levels in these mice. Specificity of the
autoantibody repertoire was further interrogated for anticytokine
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Figure 1. Thymic T-cell development in Rag1-mutant mice. (A) Tissue sections of thymus stained with hematoxylin and eosin for medulla (lighter staining) and cortex
(darker staining). Original magnification 34. (B) Live cell counts from individual thymuses of WT, hypomorphic Rag1-mutant, and Rag1 knockout (KO) mice. Thymocyte devel-
opmental stages were analyzed by flow cytometry for double-negative (DN; CD42CD82) cells, double-positive (DP; CD41CD81) cells, and single-positive (CD41 or CD81) cells (C);
lineage-negative DN populations, DN1 (CD441CD252), DN2 (CD441CD251), DN3 (CD442CD251), and DN4 (CD442CD252) (D), and thymocytes expressing the ab or gd form of
the TCR (E). Representative flow cytometry panels with 6 thymuses per group (open circles). Error bars represent standard error of the mean. Statistical analysis was performed
with 1-way analysis of variance. *P # .05, **P # .01, ***P # .001, ****P # .0001.
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antibodies, which have been seen in patients with CID-G/AI24;
however, no distinctive anticytokine antibody signature was
observed in Rag1 hypomorphic mutant mice (supplemental
Figure 3). We then looked for mechanisms that could account for
autoantibody formation both centrally and in the periphery. RAG-
mediated receptor editing and revision are important checkpoints
of central B-cell tolerance to prevent autoimmunity.26,27 This
process results in further k, and eventually l, LC rearrangement.
The proportion of Igl expressing splenic B cells was significantly
decreased in all 3 mutant strains, indicating impairment of re-
ceptor editing (Figure 5D). Elevated BAFF levels, which may allow
rescue of self-reactive immature B cells,28,29 were found in all
3 models and correlated with the severity of B-cell lymphopenia
(Figure 5E). Finally, R972Q mice had an increased proportion of
splenic age-associated B cells, which express CD11c and T-bet
and have been reported to contribute to autoantibody pro-
duction30 (Figure 5F). Altogether, these data suggest that multiple
checkpoints of B-cell tolerance are affected in Rag1-mutant mice.

Abnormalities of B-cell repertoire are detected at
early stages of B-cell development
To investigate how Rag1 mutations affect composition of the
B-cell repertoire, we adopted a protocol using specific primers
for each of the 4 J genes to detect in an unbiased manner VDJ
and DJ rearrangements, as well as productive and nonpro-
ductive Igh recombination products.18,31 First, we analyzed
B2201IgM2CD431 bonemarrow B cells, a population containing

pro- and pre-BI cells, collectively termed pro-B cells18,31 and in
which both DJ and VDJ rearrangements have occurred. At this
stage, if neither allele undergoes productive VDJ rearrange-
ment, the cell undergoes apoptosis.20 Although equal numbers
of pro-B cells and DNA input were sequenced, too few Igh re-
arrangements were detected in R972W mice, preventing further
analysis. We recovered significantly fewer DJ and VDJ re-
arrangement products in Rag1 R972Q and F971L than in WT
mice. To take this into account, absolute numbers instead of
percentages were used to test for statistical differences (sup-
plemental Tables 2 and 3). DJ rearrangements accounted for a
higher percentage of total rearrangements in pro-B cells from
R972Q and F971L mice than in WT mice (Figure 6A), consistent
with decreased Rag1 activity and corresponding impaired se-
quential recombination.

In the periphery, 40% of mature B cells are expected to harbor
VDJ rearrangements on both alleles (only 1 productive), and
60% are anticipated to carry a productive VDJ rearrangement on
1 allele and aDJ rearrangement on the other allele.20 Consistent
with this, DJ rearrangements accounted for 31% of total re-
arrangements in splenic B cells from WT mice. However, DJ
rearrangements represented ,5% of rearrangements in splenic
B cells from R972Q mice (Figure 6A). The low proportion of DJ
rearrangements in mutant splenic B cells and the lower absolute
number of Igh DJ and VDJ rearrangements in pro-B cells from
mutant mice suggest that 1 allele remains in germ line config-
uration. This implies that productive VDJ rearrangement must
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Figure 2. Bone marrow B-cell development in Rag1-mutant mice. (A) Gating strategy for pro-B cells (B220loIgM2CD431), pre-B cells (B220loIgM2CD432), immature B cells
(B220loIgM1CD432), and mature recirculating (B220hiIgM1CD432) cells, shown as percentages of total B2201 cells (B) and absolute numbers (n 5 6) (C) for WT, hypomorphic
mutant, and KOmice. Gating strategy for pro-pre-BI stage (B220loc-kit1) and pre-BII stage (B220loCD251) (D) and percentage of these cells among B2201IgM2 B-cell precursors
(n 5 3) (E). Error bars represent standard error of the mean. (B-C,E) One-way analysis of variance: *P # .05, **P # .01, ***P # .001, ****P # .0001.
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occur on the other allele for the cell to survive. To test this hy-
pothesis, we evaluated the proportion of productive and non-
productive Igh VDJ rearrangements at different stages of B-cell
development. Unique sequences from pro-B cells revealed a
similar frequency of nonproductive Igh rearrangements in Rag1-
mutant and in WT mice (Figure 6B). By contrast, the proportion of
nonproductive rearrangements in pre-B cells was significantly
lower in R972Q and F971L mice (6.5% and 6.8%, respectively)
than in WT mice (27%), a pattern that was maintained in splenic
B cells (Figure 6B). To further examine the efficiency of hypo-
morphic RAG-mediated recombination in vivo, we assayed for Igk
gene rearrangements in pre-B cells using a semiquantitative po-
lymerase chain reaction strategy20 and observed a fivefold re-
duction of Vk-Jk products in R972Q when compared with WT
mice (Figure 6C).

Reduced capacity of hypomorphic Rag1 mutations to develop
productive V(D)J rearrangements on at least 1 allele for both the
Igh and Igk loci and ineffective pairing of the 2 could result in
increased cell death. To test this hypothesis, we stained bone
marrow B220loIgM2CD431 (pro-B cells), B220loIgM2CD432 cells
(pre-B cells that have rearranged the LC and include pre-BII cells),
immature B cells (B220loIgM1CD432), and mature recirculating

B cells (B220hiIgM1CD432) from WT and R972Q mice. A sig-
nificantly higher proportion of apoptotic cells was detected in
pre-B and immature B cells from Rag1-mutant mice, with an
increased trend seen for pro-B cells (Figure 6D).

Subsequently, we analyzed individual V and D gene usage at
distinct stages of B lymphocyte development. Analysis ofD gene
usage in DJ rearrangements from sorted pro-B cells did not
reveal any differences between WT and R972Q or F971L mice
(Figure 6E). V gene usage is tightly regulated during early B-cell
development and requires the interplay of transcription factors
to alter accessibility of the Igh locus.32,33 The overall distribution
of IghV gene usage among total unique VDJ sequences was
significantly different between pro-B cells of WT and Rag1-
mutant mice (P 5 1.99e-12 for R972Q; P 5 4.27e-22 for F971L;
Figure 6F-G; supplemental Table 3). In particular, Rag1-mutant
pro-B cells revealed fewer rearrangements to the normally highly
used proximal VH2 and VH5 families, including the very proximal
VH5-2.18,31 The 10most proximal V genes were involved in 14.3%
of total unique VDJ rearrangements inWT pro-B cells, compared
with 4.6% in R972Q pro-B cells and 4.5% in F971L pro-B cells
(Figure 6F-G; supplemental Table 4). Conversely, there was a trend
for more frequent usage of distal IghV genes in Rag1-mutant
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Figure 3. Distribution and phenotype of splenic T-cell subsets in Rag1-mutant mice. (A) Representative example of CD41 and CD81 T cells (top) and of CD42CD82 cells
expressing the gd form of the TCR (bottom) among splenic CD31 cells. Percentages (amongCD31 cells) (B) and absolute count of CD41 andCD81 cells (C). (C) Gating strategy for
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One-way analysis of variance: *P # .05, **P # .01, ***P # .001, ****P # .0001.
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pro-B cells (Figure 6F). These findings indicate that the V gene
repertoire is significantly skewed at the pro–B-cell stage, in-
dependent of classical selection after LC rearrangement. Similar
trends in proximal and distal Igh V gene usage between WT
and mutant mice were observed in pre-B cells (supplemental
Figure 4A-B), splenic B cells (Figure 6H), and peritoneal B1 cell
(supplemental Figure 5), although less prominent than at the
pro–B-cell level. Overall distribution of V genes was significantly
different for all B-cell populations between WT and mutants. The
difference was more significant for pro-B cells than for the more
mature B-cell populations and more significant for F971L than
R972Qmice (supplemental Table 3). No differences were observed
inCDR3 length or P orNnucleotidemodifications betweenWTand
R972Q pro-B and mature B cells (supplemental Figure 4C).

Finally, despite altered usage of IghV genes, we observed that
B-cell splenocytes from R972Qmice had a diversified repertoire,
as indicated by the D50 index, a measure for clonotypic ex-
pansion corresponding to the percentage of unique CDR3 se-
quences that account for 50% of the total number of sequences
observed10 (supplemental Figure 4D).

T-cell repertoire of Rag1 hypomorphic mutant mice
is skewed at early stages of V(D)J recombination
Next-generation sequencing of the Trb repertoire revealed many
similarities to what was observed at the Igh locus during B-cell
development. In particular, the proportion of nonproductive Trb
rearrangements was similar in DN4 cells of WT and mutant mice,
but an increased proportion of productive rearrangements was
detected in DP and peripheral T cells from R972Q- and F971L-
mutant compared with WT mice (Figure 7A). Furthermore, im-
portant differences in Trb V and J gene usage were detected
in thymocytes from Rag1-mutant and WT mice (supplemental
Figure 6A-B), including DN4 thymocytes (P 5 3.340e-08;
Figure 7B; supplemental Tables 3 and 5), indicating that they
had occurred before selection. The same pattern was docu-
mented in DP thymocytes (Figure 7C-D; supplemental Table 6),
splenic CD41 Tconv (Figure 7E-F; supplemental Tables 5 and 6),
and Treg (Figure 7G-H; supplemental Tables 5 and 6). In the
periphery, a mildly reduced diversity of the T-cell repertoire was
observed in both Tconv and Treg from R972Q and F971L mice as
shown by modestly lower Shannon entropy index (supplemental
Figure 6C); however, the capacity of Treg to suppress proliferation
of T effector cells in response to polyclonal mitogenic stimulation
was preserved (supplemental Figure 7).

Discussion
We have generated mouse models with missense mutations in
the RAG1 CTD corresponding to those identified in patients with
CID-G/AI and shown that 2 models (R972Q and F971L mice)
mimic the human phenotype, with partial preservation of T- and
B-cell development and immunoglobulin levels but abnormalities
of T- and B-cell repertoire and autoantibody production. Alter-
ations of T- and B-cell development did not affect all lymphocyte
subsets equally. Generation of TCRgd1 T cells was relatively
preserved, perhaps because of the distinct developmental origin,
which requires fewer RAG-dependent checkpoints.34 In the
spleen, partial preservation of MZ B-cell development was
observed in R972Q and F971L mice, whereas follicular B cells
were severely depleted. The B-cell compartment seems most

vulnerable to impaired RAG1 activity, with proportionately
more depletion in F971L compared with R972Q mice. Similar
findings in RAG1-deficient patients have been observed, where
B-cell defects appear in greater magnitude than those in T cells.2

Additional studies of the constraints of RAG1 activity at the Igh
versus the TCR locus may uncover mechanisms for this difference
in severity of lymphoid development.

This study has uncovered novel effects of hypomorphic Rag1
mutations on the composition of the preimmune repertoire, cell
survival, and selection at early stages of T and B lymphocytes. In
particular, we observed a strong bias for productive V(D)J re-
arrangements in peripheral B and T cells from Rag1-mutant mice,
previously recognized only in peripheral B cells of patients with
more severe hypomorphic RAG mutations.35,36 Before LC re-
arrangement, bothDJ and VDJ rearrangements are detectable
in pro-B cells, but only productive VDJ rearrangements sub-
sequently pair with the l5/V pre–B-cell surrogate LC complex
enabling selection.37 We saw no significant bias for productive
versus nonproductive rearrangements at the pro–B-cell stage;
however, a significantly higher proportion of productive VDJ
rearrangements were detected in pre-B cells from Rag1-mutant
than WT mice. Our data are consistent with a model where in
Rag1-mutant mice, fewer alleles accomplish DJ rearrangement,
and only those cells with inframe VDJ rearrangements sub-
sequently progress further along B-cell development, with a high
proportion of cells maintaining the second allele in germ line
configuration. A similar selective pressure was observed in T-cell
development, with no significant bias for productive Trb VDJ
rearrangements at the DN4 stage of T-cell development, before
selection and pairing with TCRa,34 but an increased proportion of
productive rearrangements in DP thymocytes (where pairing with
TCRa enables positive selection) and in the periphery. These
findings indicate that despite the relatively leaky block in lym-
phoid development observed in R972Q and F971L mice, a sig-
nificant impairment of gene rearrangement at the Igh, Igk, and
Trb loci limits antigen receptor diversity from a very early stage in
development.

Signaling at the pre-BI and pre-BII stages represents an important
checkpoint during B-cell development. Failure to correctly signal
via the newly generated antigen receptor results in cell death,
usually at the immature B-cell stage of development, where LC
rearrangement can potentially rescue mispaired or autoimmune-
prone B cells.1,27 Correspondingly, Rag1-mutant mice manifested
increased apoptosis that was more prominent in immature B cells,
with a reduced proportion of Igl1 B cells in the spleen. However,
enhanced apoptosis was also observed earlier in development
(pre-B cells), potentially because of failed surrogate LC
pairing or failed LC rearrangement. These findings suggest
that RAG activity unexpectedly dictates survival very early in
lymphocyte development, possibly by constraining the time-
frame that is responsive to a productive recombination.

Pro-B cells from Rag1-mutant mice displayed a significantly de-
creased usage of proximal IghV genes. This is in marked contrast
to what has been previously described in normal develop-
ment, where proximal V genes are preferentially rearranged.31,38

Targeting of the Igh locus is regulated by several transcription
factors that regulate pro– to pre–B-cell transition and recom-
bination of the distal IghV genes and by cohesin and CTCF
factors that affect V gene usage by controlling proximal to distal
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interactions.18,33,39-42 Impaired RAG activity may alter the timing
dynamics and magnify the regulation of recombination by CTCF
versus the transcription factors.40,43

Using next-generation sequencing, we demonstrated that the
skewing of Trb repertoire previously reported in the periphery of
R972Q mice9 is already present at the DN4 stage. Remarkably,

similar abnormalities of Trb V and J gene usage were observed
in F971L and R972Qmice. One of the proposed functions of the
CTD of RAG1 is to ensure recognition of specific antigen re-
ceptor genes, with in vitro data suggesting that this region in-
teracts with the terminal 2 base pair coding ends of V, D, and J
genes.8,44,45 However, no difference in D gene usage in DJ re-
arrangements was observed in pro-B cells of mutant mice, and
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Figure 6. Abnormalities of Igh repertoire in Rag1-mutant mice. (A) Bar graph of Igh VDJ (green) and DJ (yellow) rearrangements as a percentage of total rearrangements
recovered in pro-B cells and IgM1 splenocytes. (B) Bar graph of productive (blue) vs nonproductive (red) reads of total unique Igh VDJ rearrangements in pro-B cells, pre-B cells, and
IgM1 splenic B cells. (C) Fivefold dilution of input DNAwas polymerase chain reaction amplified for Vk-Jk LC rearrangements in pre-B cells with loading control (Dlg5). (D) Apoptotic
B cells through development wereanalyzedby flowcytometry using PI and annexin. (E) FrequencyofDgeneutilizationof IghDJ rearrangements inpro-B cells. (F) FrequencyofVgene
utilization in unique Igh VDJ rearrangements in pro-B cells. Top shows WT mice; bottom shows R972Q mice. (G) Frequency of V gene utilization in unique Igh VDJ rearrangements
in pro-B cells. Top showsWTmice (data as in panel F); bottom shows F971L mice. (H) Utilization of V genes in unique Igh VDJ rearrangements in splenic IgM1 B cells. Top shows WT
mice; bottom shows R972Q mice. Mann-Whitney U test (D) and x2 test (comparing individual V gene usage) (F-G): *P # .05, ****P # .0001. imm, immature; mat, mature.

MOUSE MODELS OF HUMAN HYPOMORPHIC Rag1 MUTATIONS blood® 19 JULY 2018 | VOLUME 132, NUMBER 3 289

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/132/3/281/1372344/blood820985.pdf by guest on 08 June 2024



no differences in the composition of the 2 base pair coding ends
were detected when comparing IghV and TrbV genes that were
differentially used in mutant mice versus WTmice (supplemental
Tables 7 and 8).

Finally, Rag1-mutant mice displayed signs of immune dysreg-
ulation, with the presence of broad-spectrum autoantibodies,
recapitulating similar features observed in patients with CID-
G/AI.24 This phenotype was especially evident in the leakiest model

(R972Q mouse), where anti-PC antibodies were detected at higher
titer. An important difference between patients with CID-G/AI and
the mouse models described here is that the former have a char-
acteristic anticytokine antibody signature (predominantly directed
against type 1 interferon),24 especially in patients with a history of
severe viral infections, whereas such an anticytokine signature was
not observed inRag1-mutantmice. Future studiesmayhelp address
whether infectious triggers elicit anticytokine antibodies in Rag1-
mutant mice.
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Figure 7. Abnormalities of Trb repertoire in Rag1-mutant mice. (A) Percentage of productive and nonproductive reads of total unique Trb joins from WT and R972Q
DN4 thymocytes (CD42CD82CD442CD252); WT, R972Q, and F971L CD41CD81 DP thymocytes; WT, R972Q, and F971L Tconv (CD41EGFP2) cells; and WT, R972Q, and F971L Treg
(CD41EGFP1) cells. (B) Utilization of V (left) and J (right) genes in Trb rearrangements in DN4 thymocytes (CD42CD82CD442CD252). Top shows WTmice; bottom shows R972Qmice.
(C)Trb unique sequences in CD41CD81DP thymocytes. Top showsWTmice; bottomshowsR972Qmice. (D) Trb unique sequences inCD41CD81DP thymocytes. Top showsWTmice;
bottomshows F971Lmice. (E)Trb unique sequences in splenic Tconv (CD41EGFP2) cells fromWT (top) andR972Q (bottom)mice. (F)Trbunique sequences in splenic Tconv (CD41EGFP2)
cells fromWT (top) and F971L (bottom)mice. (G) Utilization ofV (left) and J (right) genes in Trb unique sequences in splenic Treg (CD41EGFP1) cells fromWT (top) and R972Q (bottom)mice.
(H) UtilizationofV (left) and J (right) genes in Trb unique sequences in splenic Treg (CD41EGFP1) cells fromWT (top) and F971L (bottom)mice.x2 test: *P# .05, ***P# .001, ****P# .0001.
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Various mechanisms may contribute to immune dysregulation
both in patients and in mice with hypomorphic RAGmutations.
In particular, we have confirmed previous findings of altered
receptor editing.17,46 Abnormalities in the composition of the
preimmune repertoire may affect subsequent survival and
selection of T and B cells. In the periphery, relative expansion of
age-associated B cells and increased serum BAFF levels may also
lead to breakage of B-cell tolerance. Furthermore, although Treg
function was apparently preserved, as measured by suppression of
proliferation of T effector cells in response to polyclonal stimulation
via CD3/CD28/CD2, abnormalities of Treg repertoire in Rag1-
mutant mice and patients47 may limit their capacity to ef-
fectively suppress immune responses against defined sets of
self-antigens.
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