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KEY PO INT S

l UCH-L1 stimulates
protein translation by
associating with and
enhancing assembly of
the translation
initiation complex.

l UCH-L1 and its
catalytic activity are
essential for MYC
induced lymphomas
in mice.

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular proliferation
and metabolism. Depending on its binding partners, mTOR is at the core of 2 complexes
that either promote protein biosynthesis (mTOR complex 1; mTORC1) or provide survival
and proliferation signals (mTORC2). Protein biosynthesis downstream of mTORC1 plays an
important role in MYC-driven oncogenesis with translation inhibitors garnering increasing
therapeutic attention. The germinal center B-cell oncogene UCHL1 encodes a deubiquiti-
nating enzyme that regulates the balance between mTOR complexes by disrupting
mTORC1 and promoting mTORC2 assembly. While supporting mTORC2-dependent
growth and survival signals may contribute to its role in cancer, the suppression of
mTORC1 activity is enigmatic, as its phosphorylation of its substrate 4EBP1 promotes
protein biosynthesis. To address this, we used proximity-based proteomics to identify
molecular complexes with which UCH-L1 associates in malignant B cells. We identified

a novel association of UCH-L1with the translation initiation complex eIF4F, the target of 4EBP1. UCH-L1 associateswith
and promotes the assembly of eIF4F and stimulates protein synthesis through a mechanism that requires its catalytic
activity. Because of the importance of mTOR in MYC-driven oncogenesis, we used novel mutant Uchl1 transgenic mice
and found that catalytic activity is required for its acceleration of lymphoma in the Em-myc model. Further, we
demonstrate that mice lacking UCH-L1 are resistant to MYC-induced lymphomas. We conclude that UCH-L1 bypasses
the need for mTORC1-dependent protein synthesis by directly promoting translation initiation, and that this mech-
anism may be essential for MYC in B-cell malignancy. (Blood. 2018;132(24):2564-2574)

Introduction
Inhibitors of the mechanistic target of rapamycin (mTOR) are
widely used as immunosuppressive and antineoplastic thera-
pies. A serine-threonine kinase, mTOR assembles into 2 com-
plexes with distinct biochemical effects.1 When combined with
the defining subunit raptor, the resulting mTOR complex 1
(mTORC1) phosphorylates downstream targets that in aggre-
gate promote nucleotide, lipid, and protein synthesis. The tar-
gets p70S6 kinase (S6K) and the eIF4E binding protein 1 (4EBP1)
both inhibit protein synthesis when in the unphosphorylated
state. When mTOR binds to rictor to form mTORC2, it phos-
phorylates substrates, including AKT, that promote cellular
survival and proliferation. The activity of both complexes is
essential in normal physiology, with loss of either complex-
defining subunit resulting in embryonic lethality in mice.2

MYC is one of the most deregulated oncogenes in humans and
regulates thousands of genes through its direct and indirect
activity as a transcription factor.3,4 Residing both upstream and

downstream of the initiation step of mRNA translation, the
oncogenic activity of MYC is closely related to its ability to in-
crease protein biosynthesis. MYC directly stimulates protein
synthesis in part by increasing the expression of translation
initiation factors including eIF4E, eIF4G, and eIF4A, which as-
semble to form the eIF4F translation initiation complex.5,6 The
importance of this mechanism is evidenced by the acceleration
of MYC-driven lymphomagenesis by the overexpression of
eIF4E,7 and by the impaired lymphomagenesis seen in Em-myc
mice when eIF4F components are suppressed by shRNA or small
molecule inhibitors.5,8 These strategies may provide important
therapeutic insights for diseases with high MYC activity.

Through an unbiased screen, we found the expression of
ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) to be
deregulated in B-cell lymphoma.9 Encoding a small (25 kDa) de-
ubiquitinating enzyme, transgenic expression of Uchl1 is suffi-
cient to drive spontaneous B-cell lymphomagenesis in mice and
accelerate disease in the Em-myc model.10,11 We uncovered
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a previously unrecognized function of UCH-L1 in reorganizing
mTOR-AKT signaling both in cell lines and in mice.12 UCH-L1
disrupts the ubiquitination of the mTORC1 subunit raptor that is
required for its stable association with mTOR, leading to re-
duced levels of mTORC1.12,13 The direct result of UCH-L1 activity
is therefore reduced phosphorylation of mTORC1 substrates,
including S6K and 4EBP1.1,14 The mTOR liberated by dissoci-
ation from raptor binds to rictor, forming mTORC2, and leading
to increased phosphorylation of AKT.12 Although increased
survival and proliferative signaling through mTORC2 has an
obvious advantage in cancer, the inhibition of mTORC1 by
UCH-L1 has been enigmatic, given the importance of protein
biosynthesis in cancer in general, and MYC-driven lymphoma-
genesis in particular.

To better assess the functions of UCH-L1, we used proximity-
based proteomics. We identified a novel association of UCH-L1
with the eIF4F translation initiation complex and find that it
promotes eIF4F assembly and protein synthesis, despite
inhibiting mTORC1. By using mice that lack UCH-L1, or those
carrying catalytically active and inactive transgenes, we find
that UCH-L1 and its catalytic activity are required for efficient
MYC-driven lymphomagenesis in mice. These results identify
a novel mechanism by which UCH-L1 bypasses 4EBP1 to drive
protein biosynthesis and demonstrate an important functional
relationship between UCH-L1 and MYC in lymphomagenesis.

Methods
Mouse strains
Uchl1Tg10, Uchl12/2 (Uchl1Dgen),15 and Em-myc16 (obtained from
Jackson Laboratories, Bar Harbor, ME) mice were previously
described. All strains were maintained on the C57BL/6 back-
ground for more than 10 generations. The DMBA carcinogenesis
assay was performed as described.17,18 Uchl1TgC90A mice were
generated similarly to the Uchl1Tg (Hussain et al10 and in supple-
mental Methods, available on the Blood Web site). B-lymphocytes
were purified, using magnetic separation methods as described.11

Experimental procedures involving the use of these laboratory
mice were reviewed and approved by the Institutional Animal
Care and Use Committee of the Mayo Clinic.

BioID proximity proteomics
Human UCH-L1 was cloned into the TSIN lentivirus vector,10 with
BioID219 fused to its N-terminus, using standard techniques. For
proteomic analysis, the BioID2-UCHL1 construct was stably
transduced into KMS11 cells that express endogenous UCH-L1.
Large-scale biotinylation and mass spectrometric protein iden-
tification was performed as described.20 BioID pulldowns were
performed as described.20 Briefly, cells were pulse labeled for
16 hours with biotin (50 mM), and were then lysed in urea lysis
buffer (8 M urea, 50 mM Tris at pH 7.4, 1 mM dithiothreitol, and
13 protease inhibitor), and biotin-modified proteins were re-
trieved using streptavidin-coupled DynaBeads (MyOne Strep-
tavidin C1; Thermo Fisher Scientific). Additional details are
available in the supplemental Methods.

Pathway analysis
The list of 244 proteins enriched in the BioID2-UCH-L1 proximity
proteome was analyzed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) web tool

(https://david.ncifcrf.gov), using the default DAVID annotation
categories, with the classification stringency set to high. The
terms within each retrieved annotation cluster were summarized,
and a mean P-value was calculated. Analysis using the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING;
https://string-db.org/) was performed by limiting the active in-
teraction sources to “experiments” and setting the “minimum
required interaction score” to medium (0.4).

Cell culture, DUB activity assay,
immunofluorescence, polysome profiling, m7GTP
pulldowns, SUnSET protein synthesis monitoring
Cell lines used include HeLa (American Type Culture Collection,
Manassas, VA), KMS11 and KMS12 (multiple myeloma, kindly
provided by Takemi Otsuki), WSU-DLCL2, and SU-DHL6 (ger-
minal center diffuse large B-cell lymphoma; both from American
Type Culture Collection) were cultured under standard
conditions.10,12 The introduction of UCH-L1 and shRNA was
performed using the TSiN or pTRIPZ lentiviral systems, as
reported previously.10,12 The activity of UCH-L1 and derivatives
was determined using ubiquitin vinylmethylester, as previously
described.21 Immunofluorescence imaging was performed as
described.12 Polysome profiling was performed as described.22

Immobilized m7GTP (AC-155) was from Jena Bioscience (Jena,
Germany). m7GTP pulldowns were performed as described.23

Assays for protein synthesis using the SUnSET technique were
performed as described.24

Genomic analyses
RNA extracted from lymphoma samples from Uchl1TgWT mice
was analyzed on the Affymetrix Mouse 430 2.0 array by theMayo
Clinic microarray core, and analyzed together with GSE35219
and GSE26408 in conjunction with the Mayo Clinic Department
of Bioinformatics. Mate-pair sequencing was performed as de-
scribed and mapped to the reference genome: GRCm38.p3.25,26

The meta-analysis of UCHL1 and MYC transcript levels was
performed using the 2D distribution function (R2: Genomics
Analysis and Visualization Platform; http://r2.amc.nl) for all
available samples and data sets, using the u133p2 platform. The
parametric analysis of gene set enrichment analysis was per-
formed with the indicated gene sets, using R2.

Results
Proximity-based proteomics implicates UCH-L1 in
translation initiation
To better understand its molecular activities, we used proximity-
based proteomics to identify the protein complexes that include
UCH-L1. We used a second-generation BirA-based biotin ligase
system (BioID2)19 expressed by itself, or as an N-terminal fusion
with UCH-L1 in the multiple myeloma (plasma cell) line KMS-11.
We verified the integrity of the UCH-L1 fusion by assessing its
catalytic activity, its ability to promote AKT phosphorylation and
suppress mTORC1 activity, and its subcellular localization
(Figure 1A-D).

To identify proteins that are potential substrates and interaction
partners, we performed 2 replicate purifications from biotin-
pulsed KMS-11 cells expressing the BioID2 alone or the
BioID2-UCH-L1 fusion. Taking advantage of the high affinity of
streptavidin toward biotin, we performed these purifications on
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urea-denatured extracts to minimize the recovery of peripherally
associated proteins. The retrieved proteins were identified by
mass spectrometry, and the relative recovery of proteins be-
tween BioID2 and the BioID2-UCH-L1 fusion was used to identify
putative binding partners. A total of 244 proteins were enriched
at least 3-fold in the BioID2-UCH-L1 fusion compared with
BioID2 alone, with 130 proteins present uniquely in pulldowns
performed with the UCH-L1 fusion and not in those from cells
expressing BioID2 alone (Table 1; supplemental Table 1). We
analyzed the list of biotinylated proteins retrieved in cells
expressing BioID2-UCH-L1, using DAVID (https://david.ncifcrf.
gov). There were 6 functional clusters with significant enrichment
when accounting for multiple comparisons and false-discovery
rates (supplemental Table 2). Combining those with substantial
overlap, we find that clusters including cell-cell adhesion, RNA-
binding, translation initiation, and DEAD-box helicase are highly
enriched among the proteins associating with BioID2-UCH-L1
(Table 2). Similar results were obtained analyzing this list using
STRING (https://string-db.org/; supplemental Figure 1). Given
the previously demonstrated role of UCH-L1 in the mTOR
pathway and the importance of MYC in protein biosynthesis,
we were drawn to a cluster of proteins involved in mRNA
translation, particularly the process of translation initiation that
is a highly regulated step (Table 3). As the assembly of the
translation initiation eIF4F complex (consisting of eIF4E, eIF4G,
and eIF4G) is inhibited by the mTOR substrate 4EBP1, we
reasoned that this may shed more light on the mechanism of
UCH-L1 in this pathway.

UCH-L1 promotes assembly of the eIF4F translation
initiation complex
We previously showed that UCH-L1 destabilizes mTORC1 and
reduces 4EBP1 phosphorylation, events that should reduce cap-
dependent translation (Hussain et al12; Figures 1C and 3D-E;
supplemental Figure 4). As protein biosynthesis is essential to
support the proliferation of cancer cells, this effect seems par-
adoxical with the oncogenic functions of UCH-L1. We therefore
used the SUnSET technique to determine the rate of new protein
translation in cells with or without UCH-L1 by measuring the
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Figure 1. Proximity based proteomics identifies the
association of UCH-L1 with translation initiation
factors. (A) Schematic of the BioID2 constructs. Myc5
Myc epitope tag. (B) The expression of the BioID2-
UCHL1 fusions in KMS-11 cells was determined by
immunoblot, as shown. Compared with the endoge-
nous UCH-L1 (molecular weight, ;25 kDa). Catalytic
activity of the endogenous and BioID2 fusion was
assessed by reactivity with the activity-based probe
ubiquitin vinylmetrhyl esther (UbVME). Activity is indi-
cated by a shift in mass of approximately 8 to 10 kDa
resulting from the covalent adduct formed with active
enzymes and UbVME. (C) The functional integrity of the
BioID fusion proteins was assessed by its ability to
promote phosphorylation of AKT and to suppress that
of S6 kinase. Expression of UCHL1-HA was used for
comparison. The relevant region of the blots was
cropped to show the expression of BioID2-UCH-L1, or
UCHL1-HA. (D) UCH-L1 (green) immunostaining of HeLa
cells expressing UCHL1-HA or BioID2-UCHL1. Localiza-
tion was also examined through the Myc-tag on
BioID2 (red).Where indicated, biotin was added to cells
expressing BioID-UCHL1 and labeled proteins were
visualized with avidin (red). Scale bar = 10 mm.

Table 1. Classification of the proteins retrieved by
proximity biotinylation

Identified proteins n

Unique to UCHL1-BioID2 130

UCHL1-BioID2/BioID2 . 3 114

UCHL1-BioID2/BioID2 0.3-3 404

UCHL1-BioID2/BioID2 , 0.3 73

Unique to BioID2 83

Total proteins identified* 804

*Found in both replicates from at least 1 construct
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incorporation of the aminonucleoside antibiotic puromycin into
growing polypeptides.24 We consistently observed increased
synthesis of newproteins in cells expressingUCH-L1 comparedwith
control (Figure 2A). This suggests that despite reduced mTORC1
phosphorylation of 4EBP1, global translation rates are not sup-
pressed, and are in fact enhanced in the presence of UCH-L1.

After confirming the co-precipitation of UCH-L1 and one of the
eIF4F subunits, eIF4A (Figure 2B), we analyzed the association
of UCH-L1 with the translation machinery through polysome
analysis. We observed that UCH-L1 cofractionated with com-
ponents of the eIF4F preinitiation complex, but not with poly-
somes (Figure 2C). We did not observe a significant change in
the polysome profiles in cells with or without UCH-L1 (supple-
mental Figure 2). As we identified eIF4G and eIF4A (2 of the 3
eIF4F subunits) in our proximity proteomic data, we hypothe-
sized that association of UCH-L1 with this complex may affect its
assembly. The UCH-L1-induced repression of 4EBP1 phos-
phorylation would be expected to impair eIF4F assembly and
protein biosynthesis. We therefore examined eIF4F assembly
through pulldowns with beads coupled with m7GTP that make
up the 59 cap on mRNA. As eIF4E directly binds to m7GTP, we
normalized the recovered complexes to the level of this protein
and examined amounts of eIF4G and eIF4A bound. Compared
with control, expression of UCH-L1 increased the pulldown of
eIF4G and eIF4A bound to eIF4E in 4 different cell lines
(Figure 2D; supplemental Figure 3A-C). UCH-L1 was also re-
trieved with m7GTP beads, with less retrieved from cells
expressing the catalytic mutant enzyme (C90A). We found no
effect of UCH-L1 on the total level of eIF4F subunits in cell lines
and mouse tissues, indicating that it is not affecting the deg-
radation rate of these proteins (supplemental Figure 4A-D). As
assembly and activity of eIF4F is also influenced by the activity
of MNK1 on eIF4E27,28 and S6 kinase, AKT, and MEK on
eIF4B,29 we examined the effect of UCH-L1 on these mod-
ifications, but found no such effect (supplemental Figure 4A-C).
These data indicate that although UCH-L1 inhibits the phos-
phorylation of the eIF4F inhibitor 4EBP1, it results in increased
levels of the translation initiation complex and increased
protein translation.

UCH-L1 catalytic activity is required for its
oncogenic activity in vivo
Recent reports have indicated a key link between the oncogenic
activity of MYC and the eIF4F complex including enhancing
lymphomagenesis5,7,30,31 and affecting chemoresistance.7,32 We
therefore hypothesized that UCH-L1 may play a role in MYC-
driven lymphomagenesis. We previously found that transgenic
UCH-L1 accelerated the development of lymphomas in Em-myc

mice.10 Whether UCH-L1 catalytic activity is required for this
acceleration, and whether endogenous UCH-L1 contributes to
Myc-driven lymphomagenesis is not known.

To address the role of its catalytic activity in vivo, we generated
novel transgenic mice carrying catalytically inactive UCH-L1
(Figure 3A;Uchl1TgC90A) using an identical approach to that used to
generate previously reported single-integration Uchl1TgWT mice.10

After activation of theUchl1TgC90A transgene, relative expression of
the WT and C90A transgenes was similar in various tissues ana-
lyzed, notably the skin, spleen, and purified splenic B cells (Figure
3B-C). As we previously showed that UCH-L1 regulates mTOR
complex assembly,12 we examined the phosphorylation of mTOR
substrates in splenocytes and purified B-cells from Uchl1TgWT and
Uchl1TgC90A mice. As expected, we found that expression of the
WT but not the C90A transgene increased the phosphorylation of
AKT (mTORC2 substrate) and suppressed the phosphorylation of
4EBP1 and S6K (mTORC1 substrates) in cell lines and primary
tissues (Figure 3D-E; supplemental Figure 5A-C). Surprisingly, the
phosphorylation of 2 other mTORC2 substrates (PKC and SGK1)
was not similarly affected (Figure 3E; supplemental Figure 5). This
suggests that although UCH-L1 increases the overall level of
mTORC2, the effect of this kinase is selectively directed to AKT
over other substrates. The mechanisms that underlie this are
unknown. These data support the use of these mice to dissect the
role of UCH-L1 catalytic activity in vivo.

To assess the general oncogenic potential of wild-type and
catalytic mutant UCH-L1, we assessed the tendency of wild-type

Table 3. Proteins involved in mRNA translation identified
in the UCH-L1 proximity proteome

Gene symbol Ratio BioID2-UCHL1/BioID2

EIF3G Infinite

EIF4A1 Infinite

EIF4G3 Infinite

EIF5A Infinite

PABPC1 Infinite

PABPC4 Infinite

EIF4G2 102.7

DHX29 42.7

EIF2S3 41.6

ABCE1 39.0

EIF4B 25.5

EIF4G1 6.4

EIF3B 3.7

EIF2A 3.3

EIF3H 3.1

Proteins retrieved from each of 2 independent experiments.

Table 2. DAVID Functional cluster analysis of proteins
retrieved with BioID2-UCH-L1

Functional cluster P

Cell-cell adhesion 6.16 3 10229

RNA binding 3.70 3 10221

Translation initiation 1.58 3 1027

DEAD box helicase 1.34 3 1025
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and Uchl1 transgenic mice to develop tumors in response
to the carcinogen 7,12-dimethylbenz[a]anthracene (DMBA).
Newborn pups (day of life, 1-3) were exposed to a single
topical dose of DMBA, and the tumor incidence was scored
at 5 months of life. Compared with nontransgenic littermates,
there was a significant increase in the incidence of skin tumors
in Uchl1TgWT mice, but not in Uchl1TgC90A mice (Figure 4A-B). In
mice that developed tumors, there was no difference in tumor
size or the number of tumors per mouse across genotypes
(data not shown). There was no difference in the incidence of
lung tumors across the 3 cohorts (data not shown). We con-
clude that UCH-L1 catalytic activity is required for its ability
to enhance DMBA induced skin tumors. To determine the
role of its catalytic activity in lymphomagenesis, we crossed
Uchl1TgWT and Uchl1TgC90A mice with the Em-myc model of
lymphoma. As we observed previously, transgenic expression
of wild-type UCH-L1 significantly accelerated the develop-
ment of lymphoma in the Em-myc strain (Figure 4C). There was
no change, however, in the lymphoma-free survival of double-
mutant Em-myc/Uchl1TgC90A mice. These data, together with
the results of the DMBA carcinogenesis assay, indicate that
catalytic activity is essential for the oncogenic effects of UCH-
L1 in mice.

UCH-L1 is required for efficient Myc-driven
lymphoma development
Although we have shown that UCH-L1 accelerates the de-
velopment of B-cell lymphoma driven by Myc, we do not

knowwhether its catalytic activity is required for the development
of lymphomas. To address this, mice carrying a deletion in the
Uchl1 gene (Uchl1Dgen) were crossed with the Em-myc strain. As
with the 2-other independent Uchl1 null strains,33,34 Uchl1Dgen

mice develop a neurodegenerative state that ultimately is lethal.15

We therefore used relatively large cohorts to ensure adequate
survival estimation, using the Kaplan-Meier method. Compared
with heterozygous null mice on the Em-myc background, those
with homozygous loss of Uchl1 had a significantly reduced inci-
dence of lymphoma (Figure 4D). Notably, the rate of lymphoma
onset was similar between the cohorts in animals less than ap-
proximately 20 weeks, after which no lymphomas were observed
in Em-myc/Uchl1Dgen/Dgen mice, with 52 mice surviving from be-
tween 20 and 106 weeks. These data lead us to conclude that
UCH-L1 not only accelerates Myc induced lymphomas but is
required for the full oncogenic potential of Myc in this model.

UCHL1 levels are strongly correlated with MYC
target genes
The accelerated development of Myc-driven lymphoma led us
to hypothesize that UCH-L1 may affect the stability or function
of MYC. However, we were unable to detect a direct interaction
between UCH-L1 and MYC by co-immunoprecipitation in
lymphoma cells (supplemental Figure 6A). Further, depletion
or overexpression of UCH-L1 did not affect MYC (supplemental
Figure 6B). To better understand their relationship, we
performed a meta-analysis of UCHL1 and MYC mRNA levels
across 324 gene expression studies involving more than 35 000
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Figure 2. UCHL1 cosediments with and enhances
the assembly of eIF4F. (A) HeLa cells were transduced
as shown and, where indicated, pulsed with puromycin,
with or without preincubation with cycloheximide. After
a 50-minute chase period, lysates were immunoblotted
as shown. Each panel represents an independent ex-
periment. (B) Cells expressing the BioID constructs
shown were subjected to immunoprecipitation with
anti-Myc tag as shown. Lysates, and the resulting
precipitates, were probed as shown. The results are
representative of at least 2 independent experiments.
(C) HeLa cells transduced with either control empty
vector lentivirus or wild-type UCH-L1 were subjected to
sucrose gradient centrifugation to analyze polysome
components, as shown (top), and eluted protein frac-
tions (bottom) were immunoblotted for the indicated
proteins. UCH-L1 immunoreactivity corresponds to that
of subpolysome complexes containing the eIF4F sub-
units eIF4E and eIF4A. The results are representative of
2 independent experiments. (D) Pulldowns were per-
formed with m7GTP beads and probed as indicated.
The loading of precipitates was equalized for the level
of eIF4E as it directly binds m7GTP. The intensity of
retrieved bands was quantitated by normalizing with
eIF4E for each condition, using imageJ. Similar results
were seen in 3 other cell lines (supplemental Figure 3).
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individual samples, using the R2 genomics analysis and vi-
sualization platform (http://r2.amc.nl). Although we had hy-
pothesized a positive relationship, we instead found higher
MYC values associated with lower UCHL1 (Figure 5A). We
next looked at 5 primary mature B-cell lymphomas data sets

containing at least 100 samples each. In 3 of the 5, there was no
correlation, and a significant though weak positive correlation
was observed in the other 2 (Table 4). To identify gene ex-
pression patterns within the cohorts of lymphomas with high
UCHL1, we examined the expression of Hallmark gene sets,
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using parametric analysis of gene set enrichment. Surprisingly,
this revealed a highly significant skewing of MYC target genes
in all 5 data sets, with higher levels of “MYC target v1” con-
sistently seen in UCHL1 high samples (Table 4; Figure 5B-C).
This pattern was seen regardless of the presence or absence of
a correlation between UCHL1 and MYC. Further, when cases
with MYC rearrangements or those with high MYC were ex-
cluded, MYC target v1 genes continued to be enriched in the
UCHL1 HI cases. These data led us to wonder whether UCH-L1
may, in fact, be a downstream effector of MYC, but not itself
a MYC target.

Uchl1Tg lymphomas share gene expression profiles
with MYC-driven lymphomas
To better understand the nature of the lymphomas arising in this
model, we performed RNAmicroarray gene expression profiling

on 5 unique spontaneous lymphomas from Uchl1TgWT mice. We
compared the profiles from these tumors with those obtained
from purified normal mouse B-cell populations and lymphomas
developing in other lymphoma models, including MYC-
P110*,35 Im-HABCL6,36 and Lig4/p53 double-knockout mice.37

Using a set of 3000 probes that efficiently discriminate normal
B-cell subsets and lymphomas, we found that the lymphomas
from genetically engineered models clustered together in
a distinct pattern compared with normal B-cell populations
(Figure 6A-B). Normal germinal center (GC) B cells did not
cluster with any of the lymphoma samples from any model. We
observed a striking similarity between the gene expression
profiles of Uchl1TgWT tumors and those from MYC-P110* mice
that have concurrent enforced expression of C-Myc and
a constitutively active form of the PI3K subunit P110.35 Clus-
tering reflected the visual similarity as the lymphomas from
Uchl1TgWT and MYC-P110* mice grouped separately from
those from Im-HABCL6 and Lig42/2 mice (Figure 6B-C). We
performed mate-pair DNA sequencing of these same samples
and found that in all but 1 sample, the Myc locus was intact
(supplemental Figure 7, and data not shown). One sample
contained a complex rearrangement of the C-Myc locus that
juxtaposed the immunoglobulin heavy-chain with Myc. We
used quantitative reverse transcription polymerase chain re-
action to examine the level of Myc, and found that the samples
had between 3- and 37-fold increased Myc compared with GC
B cells purified from immunized wild-type mice (Figure 6D). The
highest expression was seen in the sample carrying the Myc
rearrangement (supplemental Figure 7). These data suggest
that deregulated expression of UCH-L1 produces lymphomas
with gene expression similar to those with genetically driven
excessive MYC and PI3K signaling independent of Myc
genomic alterations.

Discussion
Despite being one of the first discovered de-ubiquitination
enzymes, the molecular functions of UCH-L1 have been
enigmatic. Here we use an unbiased proteomics approach to
identify novel pathways in which UCH-L1 may play a role, and
have found an unexpected function in directing the assembly of
the eIF4F translation initiation complex. These findings address
an important question regarding the oncogenic activity of
UCH-L1. We previously showed that UCH-L1 disrupts the as-
sembly of mTORC1 in vitro and in vivo,12 the activity of which is
strongly associated with malignancy because of its roles in
macromolecule biosynthesis. How then can UCH-L1 both in-
hibit mTORC1 and promote cancer? Our finding that UCH-L1
associates with and promotes the assembly of eIF4F provides
a mechanism by which it bypasses mTORC1 and the negative
effects of its suppression on protein biosynthesis. Interestingly,
although we show here that protein synthesis is increased in
response to UCH-L1 expression, we previously found that UCH-
L1 expression leads to a reduction in cell size similar to the
effect seen with rapamycin.12 This indicates that although UCH-
L1may bypass the role of mTORC1 on protein synthesis, it does
not affect the global effect of mTORC1 reductions on me-
tabolism. This is not unexpected, given that the phosphory-
lation of 4EBP1 and S6K have independent effects on cell size
and that the latter has other downstream effects that affect cell
growth such as lipid and nucleotide biosynthesis.38,39
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The activity through the PI3K-mTOR-AKT pathways plays an
important role in the biology of B-cell lymphomagenesis. In
MYC/P110* mice, the co-activation of MYC and PI3K signaling in
murine germinal center B cells leads to the development of
B-cell lymphomas, with a striking resemblance to human Burkitt
lymphoma.35 The similar gene expression pattern we observe in
the lymphomas from Uchl1TgWT and MYC/P110* mice may
partially reflect the enhanced mTOR-AKT signaling seen in
both models. We provide further evidence, derived from gene
expression profiles in human lymphomas, that high levels of
UCH-L1 may also promote a MYC-like signature despite the
lack of association with MYC expression. The mechanisms that
may underlie this effect are unknown. UCH-L1 was recently
shown to associate with chromatin in prostate cancer cells
and HEK293T cells.40 Chromatin immunoprecipitation and

sequencing found that most of the regions occupied by UCH-
L1 relate to either telomeric or intergenic regions, although it
was also found to reside in the proximity of a small number of
genes that clustered in the r signaling pathway. The UCH-L1
proximity proteome identified several proteins with roles in
transcription that may also play a role in these events.

There is a growing body of evidence linking the oncogenic
activity of MYC with the regulation of protein biosynthesis.
Overexpression of the eIF4E cap binding protein is sufficient to
strongly accelerate lymphomagenesis in the Em-myc model.7 A
feed-forward loop also exists in which MYC increases the ex-
pression of eIF4F subunits, and the translation of MYC itself is
further enhanced by increasing levels of the translation initia-
tion complex.6 Reinforcing the importance of protein synthesis in
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MYC levels. Each point represents the mean 6 standard
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data set. (B-C) Gene set enrichment analysis was per-
formed using the parametric analysis of gene set enrich-
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Table 4. Correlation between UCHL1, MYC, and MYC-target genes in B-cell lymphoma

Data set Correlation (r) MYC:UCHL1
Z score MYC-targets V1

(UCHL1HI/LO)
Z score MYC-targets V1
(UCHL1HI/LO; MYC NL)

GSE4475 0.338* 16.13 11.471†

GSE87371 0.003 12.32 11.03

GSE10846 0.273* 10.34 10.91

GSE31312 0.067 9.06 4.13

GSE57611 20.043 12.85 13.53

Analyzed with the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl). Z scores calculated for MSigDB Hallmark Geneset using PAGE. UCHL1 HI defined as 80th-100th
percentile UCHL1 expression. MYC normal (NL) defined as 0-80th percentile.

*Significance for correlation P , .05.

†MYC rearrangements were excluded.
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MYC’s oncogenic activity, depletion of eIF4E using shRNA, or
pharmacological suppression of eIF4F activity using the drug
silvestrol, suppresses Em-myc lymphomagenesis.5,6 Our data

linking UCH-L1 with enhanced assembly of eIF4F and its re-
quirement for MYC-driven lymphoma in this model are further
consistent with this important connection.
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