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Acute lymphoblastic leukemia (ALL) is the most common pe-
diatric malignancy, and T-cell ALL (T-ALL) accounts for ap-
proximately 15% of cases of childhood ALL.1,2 Early T-cell
precursor ALL (ETP-ALL) is a recently recognized subtype of
T-ALL.3,4 Hallmarks of T-ALL include genetic alterations of T-cell
transcription factors and components involved in the Notch
signaling pathway and the JAK-STAT pathway as well as epi-
genetic regulators.5,6 SUZ12, EED, and EZH2 are the core
components of polycomb repressive complex 2 (PRC2), which
catalyzes the trimethylation of H3 at lysine 27 (H3K27me3). PRC2
is a critical regulator of normal hematopoiesis, and mutations in
PRC2 have been identified in many hematologic malignancies.7

Loss-of-function mutations of EZH2 and SUZ12 are found in 25%
of T-ALL cases, whereas 42% of ETP-ALL cases harbor deletions
or sequence mutations of SUZ12, EED, and EZH2.4 In mouse
models, EZH2 deficiency was reported to induce T-ALL and
activate the JAK-STAT signaling pathway.8-10 In addition, EZH2
deletion induced activation of STAT3 in a murine ETP-ALL model,
and ruxolitinib, an inhibitor of the JAK-STAT signaling pathway,
could be used to treat ETP-ALL.11

In our study, targeted sequencing was used to detect mutations
of the PRC2 core components (EZH2, SUZ12, and EED) in 60
primary T-ALL samples from the Pediatrics Department of the
Blood Diseases Hospital (Chinese Academy of Medical Scien-
ces), and 14 mutations in EZH2 (8 of 60), SUZ12 (4 of 60), and
EED (2 of 60) were discovered in 12 patients (Figure 1A). Neither
copy number variations of EZH2, SUZ12, and EED (detected
by droplet digital polymerase chain reaction [PCR]) nor FLT3
pathway component mutations or variations were observed
in these 12 patients (data not shown). Retrospective analysis
revealed that T-ALL patients with PRC2 mutations were inclined
to have higher numbers of bone marrow blasts than those
without PRC2 mutations (median, 88.5% vs 81.72%; P 5 .026).
Consistent with a previous study,4 these mutations were
detected in 42% (5 of 12) of patients with ETP-ALL in contrast
to only 15% (7 of 48) of patients who did not have ETP-ALL
(supplemental Table 1, available on the Blood Web site).

RNA sequence profiling of the leukemia cells from the 12
patients with PRC2 mutations revealed significant upregulation
of FLT3 (Figure 1A), and this upregulation was corroborated to

present specifically in PRC2-mutated (PRC2Mut) patients by anal-
ysis with quantitative reverse transcription PCR (qRT-PCR) analysis,
irrespective of ETP or non-ETP-ALL in this group (Figure 1B-D).
The expression of FLT3 in EZH2-mutant (EZH2Mut) patients
was slightly higher than that in SUZ12 or EED patients but
not significantly higher (supplemental Figure 1). Xenografts
were established in NOD/SCID mice to initiate patient-derived
leukemia cells, which were isolated from 2 EZH2Mut patients (P1
and P2) and 2 non-PRC2Mut (EZH2 wild-type [EZH2WT]; P1 and P2)
T-ALL patients. The expressions of EZH2 were confirmed to be
similar within these 4 patients (supplemental Figure 2). None-
theless, FLT3 was significantly highly expressed in EZH2Mut

patients (Figure 1E; supplemental Figure 3). Next, to explore
the mechanism of aberrant expression of FLT3 in patients with
PRC2Mut T-ALL, we knocked out EZH2 in the Jurkat cell line via
CRISPR/Cas9. Three heterozygous and 3 homozygous EZH2
knockout clones were chosen for analysis (supplemental Fig-
ure 4). Western blot verified that deletions of EZH2 abro-
gated the H3K27me3 modification, accentuated expression and
phosphorylation of FLT3, and elevated the activity of STAT5,
AKT, and ERK signaling pathway in EZH2 knockout Jurkat cells
(Figure 1F-H; supplemental Figure 5). Chromatin immunopre-
cipitation quantitative PCR analysis of the homozygously deleted
cell lines showed that EZH2 deletions led to strongly attenuated
H3K27me3 and prominently enriched POLII binding at the
transcription start site of the FLT3 gene, consistent with the gene
expression levels (Figure 1I-J). To further elucidate the regula-
tion of FLT3 by EZH2 in T-ALL cells, we knocked down EZH2 in
Jurkat, CEM, and Molt4 cells, and by so doing we also observed
the upregulation of FLT3, phosphorylation of FLT3, and acti-
vated downstream STAT5, AKT, and ERK signaling pathways
(supplemental Figure 6). We overexpressed EZH2 in a well-
reported EZH2 low-expression cell line (Loucy12) and demon-
strated that EZH2 overexpression in Loucy cells attenuated the
expression of FLT3 as well as the downstream signaling path-
way (supplemental Figure 7). In addition, we found that over-
expression of FLT3 in Jurkat cells activated the downstream
signaling pathway, which coincided with EZH2 deletions in
Jurkat cells (supplemental Figure 8). These results further verified
the regulation of FLT3 and downstream signaling pathways
by EZH2 in T-ALL cells. Of note, we observed that elevated
phosphorylation of STAT5, AKT, and ERK in EZH2 knockout
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Figure 1. Decreased H3K27me3 enrichment caused by PRC2 disruption strikingly enhances the activation of FLT3 and therefore the downstream pathway.
(A) Hierarchical clustering profile of the top 60 differentially expressed genes (P , .001) by whole-transcriptome sequencing. Columns indicate genes, and rows represent
PRC2Mut patients. The normalized expression level for each gene (z-score) is indicated by a color (red for overexpression and blue for underexpression). PRC2 genetic makeup
and T-ALL subtype of each patient are also shown. (B-D) FLT3 messenger RNA level verified in T-ALL, ETP-ALL, and non-ETP-ALL patients. (E) FLT3 expression of leukemic cells
from 4 T-ALL patients: TJCT003 (EZH2Mut-P1), TJCT006 (EZH2Mut-P2), TJCT021 (EZH2WT-P2 [PRC2 WT]), and TJCT037 (EZH2WT-P1 [PRC2 WT]) detected by flow cytometry. (F-G)
FLT3 expression and phosphorylation in EZH2-knockout (EZH2-KO) (D/D and WT/D) and EZH2WT Jurkat cell clones. (H) EZH2 expression, H3K27me3 modification, and FLT3
downstream signaling pathway analyzed by western blotting in EZH2-KO (D/D andWT/D) and EZH2WT Jurkat cell clones. (I-J) H3K27me3 (I) mark and (J) POLII enrichment at
the transcriptional start site of FLT3 measured by chromatin immunoprecipitation quantitative PCR in EZH2 KO cells (JE043 and JE010 clones). Normal rabbit immu-
noglobulin G (IgG) was used as the control. (K) FLT3 expression levels and downstream pathway activities assessed in EZH2WT (Jurkat-Cas9), heterozygous KO (JE043), and
homozygous KO (JE010) Jurkat cells after being treated with vehicle (dimethyl sulfoxide [DMSO]), sorafenib (10 nM), and quizartinib (10 nM) for 24 hours. All the WT and
EZH2 KO Jurkat cells were cultured with normal medium (RPMI-1640 and 10% fetal bovine serum [FBS]) and supplied with FLT3 ligand (5 ng/mL). All experiments were
performed in triplicate. Data are presented as the mean 6 standard deviation (SD). Error bars: SD of 3 independent experiments. ***P , .001. ns, not significant.
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Figure 2. Administration of FLT3 inhibitors effectively induces apoptosis of EZH2Mut leukemic cells in vitro and prolongs the lifespan of a xenograft mouse model with
anti-leukemia activity in vivo. (A-D) Kaplan-Meier plots of survival in NOD-SCIDmice inoculatedwith (A-B) EZH2Mut or (C-D) EZH2WT T-ALL patient-derived leukemic cells via the
tail vein. When the leukemic proportion extended up to 5% in peripheral blood, mice were intraperitoneally injected with vehicle (DMSO), sorafenib (60 mg/kg), or quizartinib
(30 mg/kg) for 5 consecutive days. Each treatment group contained 5 animals. Day 0 was the day when cells were implanted. (E) Flow cytometric analyses of phosphorylated
pSTAT5, pAKT, and pERK performed for isolated tumor cells from patient-derived xenograft mice (EZH2Mut and EZH2WT) after being treated with vehicle (DMSO), sorafenib, or
quizartinib for 5 days. (F-G) Cell growth and viability of tumor cells (harvested from drug-free xenograft mice) assessed in vitro by MTT assays after being treated with designated
concentrations of (F) sorafenib or (G) quizartinib for 24 hours in parallel studies. (H-J) Cell death analyzed in the bulk blast population using an annexin V (AV)/propidium iodide
(PI) staining assay in vitro after being exposed to sorafenib or quizartinib for 24 hours. Additional analyses of the late-stage apoptotic cell percentage were carried out by
concentration titrated (I) sorafenib and (J) quizartinib. All the cells harvested for in vitro studies were incubated in RPMI-1640 with 10% FBS and 5 ng/mL FLT3 ligand overnight
(16 hours) for synchronization before treatment started. Data are presented as the mean 6 SD. Error bars: SD of 3 independent experiments. *P , .05; ****P , .00001.
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cells was reversed by treatment with FLT3 inhibitors (sorafenib
and quizartinib) (Figure 1K; supplemental Figure 9). Regarding
the heterozygous clone, 10 nM quizartinib shifted the hyper-
activated phosphorylation back toward a nearly normal level,
which raised the notion that the heterozygous mutants hinted of
being a potential target for FLT3 inhibitors, although future
clinical observation remains open. We next exposed cell lines of
T-lineage (Jurkat), B-lineage (Ramos), and myeloid malignancies
(K562, HL-60, THP-1) to EZH2 inhibitors (EPZ005687 and
GSK343) and observed that only T-lineage cell lines responded
to EZH2 inhibitors with increased expression of FLT3 and acti-
vation of the downstream pathway (supplemental Figure 10). An
in vitro T-lineage differentiation assay was used to investigate
the roles that FLT3 and PRC2 played in T-cell development. In
this assay, immature T-cell differentiation was induced from
murine lineage–Sca11c-Kit1 (LSK) bone marrow cells cocultured
with OP9-DL1 cells (supplemental Figure 11). The results showed
that EZH2 inhibition led to the arrest of marked T-lineage dif-
ferentiation and upregulation of the FLT3 downstream pathway.

The 4 established patient-derived xenograft (PDX) mouse
models (Figure 1C) were used to determine whether aberration
in the FLT3 downstream pathway was a potential target for
patients with PRC2Mut T-ALL. Whole-exome sequencing proved
no FLT3 or FLT3 signaling–related cooperative mutations in
these 4 patients, where the xenografts originated (supplemental
Table 2). Surprisingly, pharmacologically achievable concen-
trations of sorafenib and quizartinib strikingly prolonged the
survival of EZH2Mut, but not EZH2WT, T-ALL recipient mice
(Figure 2A-D). By cytometric analysis with primary CD451 cells
isolated from PDX mice after 5 days of treatment with sorafenib
or quizartinib was completed, we observed that FLT3 inhibitors
specifically exerted attenuation on the FLT3 downstream signaling
pathway in leukemic cells from EZH2Mut-engrafted mice but barely
affected the stability of phosphorylated pSTAT5, pAKT, or pERK in
EZH2WT leukemic cells (Figure 2E; supplemental Figure 12).

In vitro MTT assays from primary CD451 cells manifested
EZH2Mut but not EZH2WT leukemic cells, which had conferred
sensitivity to sorafenib or quizartinib treatment (Figure 2F-G).
Further investigation revealed that administration of sorafenib
or quizartinib in vitro dramatically induced tumor cell apoptosis
and suppressed the excess phosphorylation of STAT5, AKT,
and ERK in EZH2Mut T-ALL cells (Figure 2H-J; supplemental
Figure 13). These results demonstrated that hyperactive FLT3
expressions as well as the downstream signaling pathway were
essential for maintenance of PRC2Mut T-ALL cells.

A previous study demonstrated that FLT3 inhibitors induced
apoptosis in ;30% of cells from patients with FLT3 high-
expression T-ALL, and synergistic inhibition of FLT3 and KIT
effectively suppressed the other 70% of cells from patients with
FLT3 high-expression T-ALL.13 However, FLT3 has not been
shown to contribute to leukemogenesis in PRC2-inactivated
T-ALL. EZH2 deletions have been highlighted in previous
studies as a potential target of JAK-STAT pathway inhibition in
murine ETP-ALL.8 Our study identified and characterized an-
other novel oncogenic mechanism involving increases in FLT3
transcription and the downstream signaling pathway resulting
from the loss of H3K27me3 from PRC2 inactivation in T-ALL.
Significantly, our in vivo study further demonstrates that the
aberrant FLT3 downstream pathway is a susceptible therapeutic

target for PRC2-inactivated T-ALL, which provides new insights
into precision therapy for T-ALL.
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