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KEY PO INT S

l TP53 deletion of minor
tumor subclones is
independently
prognostic in newly
diagnosed multiple
myeloma.

l Assessment of
subclonal TP53
deletions by MLPA is
readily applicable in
standard diagnostics,
enabling stratified
patient management.

Multiple myeloma (MM) is a genetically heterogeneous cancer of bonemarrow plasma cells
with variable outcome. To assess the prognostic relevance of clonal heterogeneity of TP53
copy number, we profiled tumors from 1777 newly diagnosed Myeloma XI trial patients
with multiplex ligation-dependent probe amplification (MLPA). Subclonal TP53 deletions
were independently associatedwith shorter overall survival, with a hazard ratio of 1.8 (95%
confidence interval, 1.2-2.8; P 5 .01). Clonal, but not subclonal, TP53 deletions were
associated with clinical markers of advanced disease, specifically lower platelet counts
(P < .001) and increased lactate dehydrogenase (P < .001), as well as a higher frequency of
features indicative of genomic instability, del(13q) (P5 .002) or del(1p) (P5 .006). Biallelic
TP53 loss-of-function by mutation and deletion was rare (2.4%) and associated with ad-
vanced disease. We present a framework for identifying subclonal TP53 deletions by
MLPA, to improve patient stratification in MM and tailor therapy, enabling management
strategies. (Blood. 2018;132(23):2465-2469)

Introduction
Despite recent improvements in survival, patient outcomes re-
main variable in multiple myeloma (MM). It is increasingly rec-
ognized that tumor heterogeneity is a determinant of patient
outcome for many cancers, and the identification of subclonal
driver events is central to better patient stratification.1,2 Aber-
rations in TP53 are recognized to be one of most important
markers of poor prognosis in MM.3 These are secondary driver
events with variable subclonal distribution, with TP53 typically
being deleted and point mutations being relatively rare.4

However, defining the prognostic association of subclonal de-
letion of TP53 in MM at diagnosis with a cutoff for diagnostic
purposes has been problematic as a result of the technical
challenges of using interphase fluorescence in situ hybridization
(iFISH) in MM to quantify subclonal populations.5 To assess the
prognostic relevance of subclonal TP53 deletion at diagnosis,
we profiled 1777 MM trial patients using multiplex ligation-
dependent probe amplification (MLPA), which is readily appli-
cable in diagnostic settings.

Methods
Myeloma IX and XI trial patients
We studied 1777 patients with MM enrolled in the UK NCRI
Myeloma XI trial, and a subset from MRC Myeloma IX and
Myeloma XI underwent comparison of MLPA and iFISH (sup-
plemental Methods, available on the Blood Web site).

Copy number, translocation calling, and
mutation detection
Bone marrow aspirates were processed as detailed in supple-
mental Methods. Details about iFISH profiling of Myeloma IX
and Myeloma XI have been published previously and are de-
scribed in supplemental Methods.6 Myeloma XI cases were
profiled for copy number by MLPA and translocations de-
termined by quantitative PCR, as previously reported.7

The MLPA P425 probemix (MRC-Holland) interrogates TP53
exons 4, 7, and 10. TP53 was considered deleted when
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normalized copy number values of 2 of 3 MLPA probes were
below the defined cutoff. A total of 1357 patient tumors was
further analyzed with probemix X073, covering all exons of
TP53. Previously published exome sequencing was available
for 463 patients.4

Statistical analysis
Statistical analyses were performed in R (version 3.4.1) using
subroutines survival, survC1, and survivalROC. Progression-free
survival was defined as time from randomization to progres-
sion or death, and overall survival (OS) was defined as time
from randomization to death. To define the optimal prognostic

normalized MLPA cutoff value for TP53 deletion calling, we
analyzed subgroups defined by descending (0.05 steps from
1.0 [equivalent to normal diploid copy number]) normalizedMLPA
value using time-dependent receiver operator curve AUCi (in-
tegrated area under the curve) estimates for OS for each cutoff.8

Cox proportional hazards regression was used to estimate
univariate and multivariable hazard ratios (HRs) and 95% confi-
dence intervals (CIs). Kaplan-Meier survival curves were gener-
ated, and homogeneity between groups was assessed using
the log-rank test. The association between categorical variables
was examined using the Fisher exact test, and the association
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Figure 1. Association between subclonal and clonal TP53 deletion and survival in newly diagnosed myeloma. Kaplan-Meier survival curves showing progression-free
survival (A) and OS (B) of 3 approximately equal-sized TP53-deleted clonal subgroups vs no TP53 deletion in 1777 patients in the Myeloma XI trial. OS evaluation of the above
subgroups in landmarked analysis from the time of high-dose melphalan and autologous stem cell transplant (C) and from the time of maintenance randomization (D).
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Figure 2. Relationship between subclonal and clonal TP53 deletion and clinical and genetic characteristics of myeloma. Percentage frequency of genetic changes
(A) and clinical changes (B) associated with low, intermediate, and high deletion of TP53 clone. (C) MLPA values normalized for 13q probes in the same patients with low,
intermediate, and high deletion of TP53 clone. (D) MLPA values across the subset of patients with del(TP53) and increasing size of del(13q) clone. Lower MLPA values
represent increasing size of deleted clone.
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between continuous variables was determined using the Wil-
coxon signed-rank test. A 2-sided P value,.05 was considered
significant.

Results and discussion
To identify the clinically relevant threshold for subclonal TP53
deletions, we interrogated step-wise increasing fractions of TP53
deletion by MLPA using the time-dependent receiver operating
characteristic curve analysis method (AUCi) for OS.9 We identified
a normalized TP53 MLPA value ,0.8 as the cutoff providing
optimal prognostic power, identifying 192 of 1777 (10.8%) tumors
as TP53 deleted (supplemental Figure 1). These results were
consistent in intensively (transplant eligible) and nonintensively
treated patients (nontransplant eligible) (supplemental Table 1).
The optimized ,0.8 MLPA cutoff is equivalent to 10% to 20%
subclonal 17p deletion, MLPA levels ,0.6 were equivalent to
clonal deletionswith$50% tumor fraction, andMLPA values,0.5
were equivalent to fully clonal (95% to 100%) del(17p) compared
with iFISH in a matched data set from the Myeloma IX6 and
Myeloma XI trials (supplemental Figure 2B). The distribution of
MLPA-normalized values for TP53 probes across 1777 Myeloma
XI tumors is shown in supplemental Figure 2. Inclusion of sub-
clonal deletions using an MLPA cutoff ,0.8 was confirmed as
prognostically most informative by univariate Kaplan-Meier log-
rank testing (P5 6.7310215), Cox regression (Wald P5 4.1310214),
and C-statistic by Uno et al10 (supplemental Table 2). A limitation
of the study is the lack of a validation trial data set.

Treatment allocation, key demographics, and induction re-
sponse were comparable between patients with TP53-deleted
and nondeleted tumors, as defined by MLPA ,0.8. However,
patients with TP53 deletion showed features of advanced dis-
ease and associated morbidity, specifically reduced platelet
counts ,150 3 109/L (P 5 5.1 3 1024) and poorer performance
status (World Health Organization [WHO] performance status
$ 2) (P5 .0012) (supplemental Table 3). Although WHO was
independently associated with shorter survival, the association
between WHO and TP53 deletion suggests an interrelationship
with genetic and clinical features that are normally thought of as
patient related rather than disease related.

To characterize the features of subclonal vs clonal deletion,
TP53-deleted tumors were divided into 3 equal-sized subgroups
based on MLPA values: subclonally deleted tumors (n 5 67;
MLPA cutoff $0.7 , 0.8), intermediate clonal tumors (n 5 64;
MLPA $0.55 , 0.7), and clonally TP53 deleted tumors
(n 5 61; MLPA ,0.55). All 3 groups were independently as-
sociated with OS, with a subclonally deleted HR of 1.8 (95% CI,
1.2-2.8; P5 .01), an intermediate-deleted HR of 2.9 (95%CI, 1.9-
4.4; P 5 5.6 3 1027), and a clonally deleted HR of 2.2 (95% CI,
1.4-3.2; P 5 .0002) (Figure 1A-B; supplemental Table 4).
Landmarked analyses from autologous stem cell transplant and
lenalidomide maintenance randomization show consistent
results for all 3 groups (Figure 1C-D; supplemental Table 4).

Correlating clinical characteristics, patients with clonal, rather
than subclonal, TP53 deletion had markers of high disease
burden, specifically reduced platelet counts (,1503 109/L, 35%
vs 9%; P5 .00047) and high LDH levels (.300 U/L, 57% vs 32%;
P 5 .012) (Figure 2B). Clonal vs subclonal deletion of TP53 was
associated with higher rates of del(13q) (68% vs 40%; P 5 .002)

and/or del(1p) (21% vs 4%; P 5 .006) (Figure 2A). The rate of
TP53 mutations was increased in clonal deletions (3/18) vs
subclonal deletions (1/21). Although MLPA cannot compre-
hensively assess clonal architecture, an association between
TP53 deletion clonality and an increasing size of del(13q) clone
(P 5 .002) (Figure 2C-D; supplemental Figure 5) raises the
possibility of coevolution of these lesions. Deletion of TP53 and
RB1 on chromosome 13q have been shown to be important in
cell cycle11 and senescence,12 suggesting possible mechanisms
for how their codeletion may confer a competitive advantage.

Clonal homozygous TP53 deletions defined by MLPA values
,0.25 were present in 9 of 1777 tumors (0.5%) analyzed with the
P425 MLPA probemix for exons 4, 7, and 10 of TP53. To identify
patterns of focal homozygous deletions, all 11 TP53 exons were
analyzed using a specifically designed X073 MLPA probemix in
1357 patients. Homozygous deletion frequency was low (0.6%),
and deletions were focal and not restricted to the DNA-binding
domain of TP53. Homozygous TP53 deletion was associated with
a very short median OS of 22.4 months and an HR for OS of
3.7 (95% CI, 1.5-8.9; P 5 .004) (supplemental Figure 3; supple-
mental Table 5). Most patients with homozygous TP53 deletions
had markers of clinically and molecularly advanced disease, with
elevated LDH (.300 U/L) in 67%, reduced platelet counts (,1503
109/L) in 67%, and del(13q) in 88%. Exome-sequencing data
were available for 422 of the tumors profiled using MLPA. Of these,
10 tumors (2.4%) had biallelic (mutation1deletion) TP53 loss of
function, and 47 tumors (11.1%) hadmonoallelic loss. Biallelic and
monoallelic TP53 loss was independently associated with inferior
survival (supplemental Figure 3, supplemental Table 5).

In summary, we demonstrate an independent association be-
tween subclonal TP53 deletions and MM outcome. Detection of
subclonal TP53 deletion by MLPA is readily applicable within
diagnostic settings and could enable stratified treatment
approaches aimed at preventing subsequent rapid disease
evolution.
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