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KEY PO INT S

l TET2 deficiency leads
to clonal expansion of
dysfunctional human
CFU-E cells.

l The clonal expansion is
associated with
upregulation of c-Kit
and tyrosine
kinase AXL.

Myelodysplastic syndromes (MDSs) are clonal hematopoietic stem cell disorders charac-
terized by ineffective hematopoiesis. Anemia is the defining cytopenia of MDS patients,
yet the molecular mechanisms for dyserythropoiesis in MDSs remain to be fully defined.
Recent studies have revealed that heterozygous loss-of-function mutation of DNA diox-
ygenase TET2 is 1 of the most common mutations in MDSs and that TET2 deficiency
disturbs erythroid differentiation. However, mechanistic insights into the role of TET2 on
disordered erythropoiesis are not fully defined. Here, we show that TET2 deficiency leads
initially to stem cell factor (SCF)–dependent hyperproliferation and impaired differentia-
tion of human colony-forming unit–erythroid (CFU-E) cells, which were reversed by a c-Kit
inhibitor. We further show that this was due to increased phosphorylation of c-Kit ac-
companied by decreased expression of phosphatase SHP-1, a negative regulator of c-Kit.

At later stages, TET2 deficiency led to an accumulation of a progenitor population, which expressed surface markers
characteristic of normal CFU-E cells but were functionally different. In contrast to normal CFU-E cells that require only
erythropoietin (EPO) for proliferation, these abnormal progenitors required SCF and EPO and exhibited impaired
differentiation. We termed this population of progenitors “marker CFU-E” cells. We further show that AXL expression
was increased in marker CFU-E cells and that the increased AXL expression led to increased activation of AKT and ERK.
Moreover, the altered proliferation and differentiation of marker CFU-E cells were partially rescued by an AXL in-
hibitor. Our findings document an important role for TET2 in erythropoiesis and have uncovered previously unknown
mechanisms by which deficiency of TET2 contributes to ineffective erythropoiesis. (Blood. 2018;132(22):2406-2417)

Introduction
Erythropoiesis is a process during which multipotent hemato-
poietic stem cells proliferate, differentiate, and eventually form
mature erythrocytes. Although this process is a continuum, it can
be functionally divided into 2 major stages: early-stage erythro-
poiesis and terminal erythroid differentiation. During early-stage
erythropoiesis, hematopoietic stem cells are first committed to
early-stage erythroid progenitor burst-forming unit–erythroid
cells, which further differentiate to late-stage erythroid progenitor
colony-forming unit–erythroid (CFU-E) cells. During terminal
erythroid differentiation, CFU-E cells undergo 3 or 4 mitoses to
sequentially generate proerythroblasts, basophilic erythroblasts,
polychromatic erythroblasts, and orthochromatic erythroblasts
that expel their nuclei to generate enucleated reticulocytes.
Disruption of the normal process at any stage of erythroid dif-
ferentiation can lead to anemia.

Anemia due to disordered or ineffective erythropoiesis is a
feature of a large number of human hematological disorders.
These include Cooley’s anemia (also known as b-thalassemia),1-3

congenital dyserythropoietic anemia,4-6 Diamond-Blackfan
anemia,7,8 malarial anemia,9,10 and various bone marrow fail-
ure syndromes, such as myelodysplastic syndromes (MDSs).11-13

Although the causative genes responsible for b-thalassemia,14-16

congenital dyserythropoietic anemia,17-20 and Diamond-Blackfan
anemia21,22 have been identified, the molecular basis for the
dyserythropoiesis in MDS remains to be fully defined. Recent
advances in technologies for the detection of genetic abnor-
malities have led to the identification of a set of novel recurrent
mutations in MDS patients.23-25 Of note, heterozygous loss-of-
function mutation of DNA dioxygenase TET2 is one of the most
frequently mutated genes in MDS.26 We and other investiga-
tors have documented that TET2 deficiency led to disordered
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erythropoiesis in human and animal models.27-30 However, the
mechanisms by which TET2 deficiency leads to altered eryth-
ropoiesis are yet to be defined.

In the present study, we used a short hairpin (shRNA)-mediated
knockdown approach, including human CD341 cells and highly
purified populations of erythroid cells at distinct stages of dif-
ferentiation, to study the effects of TET2 deficiency on human
erythropoiesis. We show that TET2 knockdown led to hyper-
proliferation of CFU-E via upregulation of c-Kit, followed by
expansion of a dysfunctional population of CFU-E cells via
upregulation of AXL. Our findings identified an important role
for TET2 in regulating normal human erythropoiesis and un-
covered the underlying molecular mechanisms by which de-
ficiency of TET2 contributes to defective erythroid progenitors
in MDSs.

Materials and methods
Antibodies and reagents
The antibodies used for western blotting were rabbit anti-human
c-Kit, phosphorylated (p-)c-Kit (Y719), ERK, p-ERK, SHP-1, and
AXL from Cell Signaling Technology (Beverly, MA), rabbit anti-
human AKT and p-AKT from IMAGENTX (Beijing, China), and
mouse anti-human glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) fromPPLYGEN (Beijing, China). Antibodies used for flow
cytometry analysis were mouse anti-human CD34-phycoerythrin
(PE), CD36-fluorescein isothiocyanate, 7-aminoactinomycin
acid, glycophorin A (GPA)–PE, and GPA-allophycocyanin from BD
Pharmingen (Franklin Lakes, NJ), annexin V–PE–Cy7 and CD123
(IL-3R)–PE–Cy7 from Thermo Fisher Scientific (Waltham, MA), and
a4-integrin–allophycocyanin from Miltenyi Biotec (Bergisch
Gladbach, Germany). Band 3–FITC antibody was generated by
our laboratory as described previously.30 c-Kit inhibitor (STI571)
and AXL inhibitor (R428, BGB324) were obtained from Selleck
Chemicals (Houston, TX).

CD341 cells culture and
shRNA-mediated knockdown
The detailed culture medium composition, the culture protocol,
preparation of lentivirus, and transduction in CD341 cells have
been described previously.30,31 The plasmids of pLKO.1–
luciferase–shRNA, pLKO.1–TET2–shRNA1 (TRCN0000418976),
and pLKO.1–TET2–shRNA2 (TRCN0000142853) were from
Sigma (Santa Clara, CA).

Flow cytometry analysis and
fluorescence-activated cell sorting (FACS)
of erythroblasts
The differentiation of erythroid cells was assessed using recently
identified surface markers by flow cytometry and the erythroid
cells at the distinct developmental stage were sorted using
a MoFlo high-speed cell sorter (Beckman-Coulter, Pasadena,
CA), as previously described.32,33 Sorted CFU-E cells were cul-
tured in the second-phase media as previously described.33

Single-cell sorting
Luciferase-shRNA and TET2-shRNA1 cells at day 6 of culture
were stained for the erythroid progenitors surface markers CD34
and CD36, and single CFU-E cells (CD342 and CD361) were
sorted on a MoFlo high-speed cell sorter into 96-well plates

containing 100 mL of culture medium containing erythropoietin
(EPO; 1 U/mL) or EPO plus stem cell factor (SCF; 10 ng/mL).

Colony-forming assay
Sorted CFU-E cells were diluted at a density of 200 cells in 1 mL
of MethoCult H4330 medium (which contains EPO but not SCF)
or H4330 medium, with addition of SCF (10 ng/mL) for colony-
forming assay (STEMCELL Technologies), and incubated at
37°C in a humidified atmosphere with 5% CO2. The CFU-E colo-
nies were defined according to previously described criteria.32

Cytospin assay
The detailed protocols of cell collection, staining, and image
acquisition have been described previously.33

qRT‐PCR
The primer sequences are listed in supplemental Table 1 (avail-
able on the Blood Web site), and the detailed protocols of RNA
extraction, reverse transcription, primer design, and quantitative
real-time polymerase chain reaction (qRT-PCR) have been de-
scribed previously.30

Western blotting
Whole-cell lysates of erythroid cells were prepared with radio-
immunoprecipitation buffer (PPLYGEN) in the presence of protease
inhibitor and PhosSTOP cocktails (Roche, Basel, Switzerland).
Protein concentration was measured using a BCA protein assay kit
(PPLYGEN). All of the procedures were performed as described
previously.33

RNA sequencing and bioinformatics analysis
RNA was extracted from FACS-sorted cells, and cDNA libraries
were prepared using an Illumina TruSeq kit and sequenced on an
Illumina HiSeq 2500 System (Epigenomics Core, Weill Cornell
Medical College, New York, NY). The data were analyzed as
previously described.30-32

Global DNA methylation quantitation
Genomic DNA was extracted from 1 3 106 cells using a PureLink
Genomic DNA Mini Kit (Thermo Fisher Scientific). DNA was
denatured, and twofold serial dilutions were spotted on the ac-
tivated polyvinylidene difluoride membrane with methyl alcohol.
The blotted membrane was air-dried, UV-cross-link, blocked with
5% nonfat milk, and incubated with rabbit polyclonal anti-5hmC
(1:10000) and anti-5mC (1:300) antibodies, as well as horseradish
peroxidase–conjugated anti-rabbit immunoglobulin G secondary
antibody (1:3000). Signal density was quantified using an Azure
c600 imaging system (Azure Biosystems).

Site-specific quantitative analysis of 5mC and 5hmC
The 5mC and 5hmC levels at the promoter region of AXL were
determined using an EpiJET 5hmC and 5mCAnalysis Kit (K1501;
Thermo Fisher Scientific). The detailed protocol was described
previously.30 The primers used for the analysis, Fwd/Rev-AXL-
CCGG (2414) and Fwd/Rev-AXL-CCGG (1320), are listed in
supplemental Table 1.

Statistical analysis
Statistical evaluations of different experimental groups were
performed using GraphPad Prism 7 (unpaired t test), and P, .05
was considered to indicate statistical significance.
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Results
TET2 knockdown led to SCF-dependent
hyperproliferation of human CFU-E cells
Li et al have previously shown that Tet22/2 mice exhibited mild
anemia accompanied by erythroblast proliferation in bone
marrow, spleen, and liver.27 We recently documented that TET2
knockdown in human CD341 cells led to hyperproliferation of
erythroid cells.30 These findings strongly suggest an important
regulatory role for TET2 in erythropoiesis. However, the function
of TET2 in normal erythropoiesis and the mechanisms by which
TET2 deficiency contributes to defective erythropoiesis have yet
to be fully defined. Because erythropoiesis involves multiple
developmental stages, we sought to examine whether TET2
deficiency causes stage-specific defects. To this end, we used an
shRNA-mediated knockdown approach in human CD341 cells in
conjunction with an in vitro erythroid-differentiation system. We
sorted erythroid cells at all distinct developmental stages using
the experimental strategy that we described previously.32,33 RT-
PCR analysis revealed that, with the exception of the burst-
forming unit–erythroid cell stage, efficient knockdown was
achieved at all other developmental stages (Figure 1A). We then
compared the colony-forming ability of luciferase control and
TET2-knockdown CFU-E cells. In the presence of EPO only, the
size of luciferase and TET2-knockdown colonies is similar
(Figure 1B, left panel). Interestingly, in the presence of both EPO

and SCF, the size of the luciferase CFU-E colonies increased
compared with their size in the presence of EPO only, indicating
that SCF enhances proliferation of CFU-E cells. Notably, the size
of ;20% of TET2-knockdown CFU-E colonies was significantly
larger than that of luciferase CFU-E colonies (Figure 1B, right
panel; Figure 1C). We further examined the cell growth using
liquid culture in the presence of both EPO and SCF. As shown
in Figure 1D, proliferation of TET2-knockdown cells was higher
than that of luciferase CFU-E cells. Moreover, although the
growth of control cells plateaued starting at day 10 of culture,
TET2-knockdown cells continued to grow until day 30. In con-
trast, growth of sorted proerythroblasts, basophilic erythroblasts,
polychromatic erythroblasts, and orthochromatic erythroblasts
was not affected by TET2 knockdown (Figure 1E). These findings
demonstrate that TET2 knockdown led to SCF-dependent
hyperproliferation of a subpopulation of human CFU-E cells.

TET2 knockdown significantly impaired human
terminal erythroid differentiation
Terminal erythroid differentiation refers to the process by which
CFU-E cells differentiate into morphologically recognizable
proerythroblasts that undergo 3 or 4 mitoses to sequentially
generate basophilic erythroblasts, polychromatic erythroblasts,
and orthochromatic erythroblasts. Because the differentiation of
CFU-E cells to proerythroblasts is characterized by expression of
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Figure 1. Hyperproliferation of TET2-knockdown CFU-E cells in the presence of SCF. (A) qRT‐PCR analyses of TET2 mRNA levels (normalized to actin) of sorted luciferase
and TET2-knockdown erythroid cells. (B) Colony-forming ability of sorted luciferase and TET2-knockdownCFU-E cells in the presence of EPOonly (left panel) or in the presence of EPO plus
SCF (right panel). Scale bar, 50 mm. (C) Percentage of larger-size colonies in panel B. (D) Growth curves of sorted luciferase and TET2-knockdown CFU-E cells cultured in the presence of
EPO plus SCF. (E) Numbers of cell divisions of sorted erythroblasts at the indicated stages in culture. All results are from 3 independent experiments. *P , .05, **P , .01, ***P , .001.
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the erythroid lineage–specific marker GPA, we monitored the
changes in GPA expression. Figure 2A shows the representative
flow cytometry analysis of GPA expression of sorted CFU-E cells
cultured for different periods of time. It shows that, on day 0, all
cells were GPA2. On day 5, although only ;17% of control cells
were GPA2, ;35% of TET2-knockdown cells were still GPA2.
Furthermore, on day 15, although almost all control cells were
GPA1, ;30% of TET2-knockdown cells continued to be GPA2.
Quantitative analysis revealed that, although almost all control
cells progressively became GPA1, a fraction of TET2-knockdown
cells remained GPA2, even on day 28 of culture (Figure 2B). We
further examined the terminal erythroid differentiation of GPA1

cells to late-stage erythroblasts by monitoring surface expres-
sion of band 3 and a4 integrin.33 Figure 2C shows the repre-
sentative plots of band 3 vs a4 integrin of GPA1 cells at days 5
and 15 of culture, which reveal that, although control cells
progressively became band3hia4 integrinlow, the majority of

TET2-knockdown cells still express high levels of a4 integrin,
demonstrating impaired differentiation of proerythroblasts to late-
stage erythroid cells. Quantitative analyses clearly showed that
there were more proerythroblasts and basophilic erythroblasts in
the TET2-knockdown group than in the control group (Figure 2D).
Consistent with flow cytometric analysis, cytospin analyses show
that, although luciferase CFU-E cells progressively differentiate
to orthochromatic erythroblasts, TET2-knockdown cells are still
at the early stages of differentiation, even on day 15 of culture
(Figure 2E). These findings demonstrate that TET2 knockdown
significantly impaired terminal erythroid differentiation.

TET2 knockdown led to upregulation and activation
of c-Kit
The findings that SCF promoted proliferation and impaired
differentiation of TET2-knockdown CFU-E cells strongly suggest
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Figure 2. TET2 knockdown impaired human terminal erythroid differentiation. (A) Representative flow cytometry analysis of GPA expression of sorted luciferase and TET2-
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a role for the c-Kit signaling pathway in the enhanced cell
proliferation of TET2-knockdown CFU-E cells. To test this thesis,
we compared the expression of c-Kit in sorted luciferase CFU-E
cells and TET2-knockdown CFU-E cells by qRT-PCR and western
blot analysis. Figure 3A shows that there was a modest, but
significantly higher, messenger RNA (mRNA) level (;1.4-fold) of
c-Kit in TET2-knockdown CFU-E cells. Consistent with the in-
creased mRNA level, the protein level of c-Kit was also increased
(;1.3-fold) (Figure 3B). Moreover, the phosphorylation levels of
c-Kit were also increased (approximately two-fold). Because the
increase in c-Kit phosphorylation is higher than the noted in-
crease in c-Kit expression, we reasoned that additional factors
contribute to the activation of c-Kit. In this context, we measured
the expression level of phosphatase SHP-1, which has been
shown to interact with p–c-Kit and dephosphorylate the
receptor.34,35 As shown in Figure 3C, the protein level of SHP-1
was significantly decreased in TET2-knockdown cells compared
with control cells. To demonstrate that the increased activation
of c-Kit is responsible for the enhanced proliferation and im-
paired differentiation, we examined the effects of c-Kit inhibitor
STI571 on cell growth and differentiation. As shown in Figure
3D, STI571 dramatically inhibited the growth of TET2-
knockdown cells (;150-fold), with far less inhibitory effect on
the growth of control cells (;10-fold). Furthermore, the impaired
differentiation of TET2-knockdown cells, as assessed by surface
expression of GPA (Figure 3E) and a4 integrin/band 3 (Figure 3F-
G), as well as cytospin analysis (Figure 3H), was also rescued by
STI571 treatment. Thus, the hyperproliferation and impaired
differentiation of TET2-knockdown cells are associated with
upregulation and activation of c-Kit.

TET2 knockdown led to generation of “marker
CFU-E” cells
As described above, TET2 knockdown led to the persistent
presence of a GPA2 cell population. To further characterize
this cell population, we FACS sorted TET2-knockdown GPA2

cells on day 13 of culture (Figure 4A). Cytospin analysis shows
that, morphologically, TET2-knockdown GPA2 cells are in-
distinguishable from luciferase CFU-E cells isolated from the
first phase of culture at day 6 (Figure 4B). Consistent with
cytospin analysis, flow cytometry analysis reveals that, similar
to luciferase CFU-E cells (characterized as IL-3R2GPA2CD361

CD342CD71high), TET2-knockdown GPA2 cells are immuno-
phenotypically the same as CFU-E cells (Figure 4C). However,
as shown in Figure 4D, in contrast to luciferase CFU-E cells,
which require only EPO for proliferation, TET2-knockdown
GPA2 cells required EPO and SCF for proliferation. Further-
more, differentiation of the TET2-knockdown GPA2 cells, as
assessed by surface expression of GPA (Figure 4E) and a4
integrin/band 3 (Figure 4F-G), as well as cell morphology
(Figure 4H), was also significantly impaired. Given the fact
that TET2-knockdown GPA2 cells are immunophenotypically
similar to CFU-E cells, but are functionally different, we termed
them “marker CFU-E” cells. Intriguingly, in contrast to the
increased phosphorylation of c-Kit and decreased SHP-1 in
TET2-knockdown CFU-E cells isolated at day 6 of culture
(Figure 3C), the phosphorylation level of c-Kit in marker CFU-E
cells isolated at day 13 of culture was decreased (Figure 4I-J),
with no change in SHP-1 protein level. Together, our findings
demonstrate that TET2 knockdown led to SCF-dependent
expansion of dysfunctional CFU-E cells with time.

TET2 knockdown led to changes in gene expression
in marker CFU-E cells
To explore the molecular basis for the generation of marker CFU-E
cells after TET2 knockdown, we performed RNA sequencing (RNA-
seq) analysis on luciferaseCFU-E cells and TET2-knockdownCFU-E
cells isolated at day 6 of culture and TET2-knockdownmarker CFU-
E cells isolated at day 13 of culture. Bioinformatics analysis revealed
that only 51 geneswere differentially expressedbetween luciferase
CFU-E cells and TET2-knockdown CFU-E cells. In contrast, 400
genes were differentially expressed between luciferase CFU-E cells
and TET2-knockdown marker CFU-E cells, whereas 305 genes
were differentially expressed between TET2-knockdown CFU-E
cells and TET2-knockdown marker CFU-E cells (Figure 5A). The list
of differentially expressed genes is shown in supplemental Table 2.
Gene-set enrichment analysis of the differentially expressed genes
in TET2-knockdown marker CFU-E cells compared with luciferase
CFU-E cells or TET2-knockdownCFU-E cells revealed alterations in
several pathways, including upregulation of genes associated with
an “organ-regeneration” pathway (Figure 5B). Notably, the ex-
pression of AXL, a gene associated with hematological malignancy
and transformation,36-39 is significantly upregulated in TET2-
knockdown marker CFU-E cells (Figure 5C). The increased AXL
mRNA level was confirmed by qRT-PCR analysis (Figure 5D).
Consistent with the increased mRNA level, western blotting
analysis revealed that AXL is abundantly expressed in TET2-
knockdown marker CFU-E cells but is not detectable in lucifer-
ase CFU-E cells or TET2-knockdown CFU-E cells (Figure 5E-F).
Because activation of AXL triggers the AKT and ERK pathways,39

we examined the phosphorylation of AKT and ERK in marker CFU-
E cells, and, as expected, phosphorylation of AKT and ERK was
increased in marker CFU-E cells (Figure 4I-J). To further document
that the upregulation of AXL contributes to expansion of marker
CFU-E cells, we examined the effect of R428, an AXL inhibitor, on
cell growth in liquid culture with EPO and SCF. Similar to c-Kit
inhibitor, AXL inhibitor R428 significantly inhibited the growth of
TET2-knockdown cells (;135-fold), with a much smaller effect on
luciferase cells (;20-fold) (Figure 5G). Moreover, the delayed
differentiation of TET2-knockdown CFU-E cells was partially res-
cued by the inhibitor, as assessed by surface expression of GPA
(Figure 5H) and a4 integrin/band 3 (Figure 5I-J) and cytospin
evaluation of erythroid cells (Figure 5K). These findings suggest
that upregulation of the AXL pathway contributes to impaired
erythropoiesis caused by TET2 knockdown.

Global DNA methylation changes in
TET2-knockdown marker CFU-E cells
TET2 modulates gene expression by regulating DNAmethylation.
Specifically, it has been documented that TET family members
promote active DNA demethylation by converting 5mC to
5hmC.40,41 Unexpectedly, we recently showed that TET2 or TET3
knockdown did not cause significant changes in global 5mC or
5hmC levels in erythroid cells.30 Our current finding that only 51
genes are differentially expressed between luciferase CFU-E cells
and TET2-knockdown CFU-E cells, but ;400 genes are differen-
tially expressed between luciferase CFU-E cells and TET2-
knockdown marker CFU-E cells, suggests that TET2 knockdown
might cause changes in DNA methylation in TET2-knockdown
marker CFU-E cells. To test this thesis, we examined 5mC and
5hmC levels by dot blot analysis. As shown in Figure 6A-C, the
5mC level increased and the 5hmC level decreased in TET2-
knockdown marker CFU-E cells compared with luciferase CFU-E
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cells, implying that changes in global DNA methylation occur at
later stages of cell differentiation following TET2 knockdown.

To understand how TET2 knockdown led to upregulation of AXL,
we examined the methylation status of the AXL promoter region

using methylation-sensitive restriction enzyme analysis, followed
by quantitative polymerase chain reaction. Among the 6 CCGG
sites (2414, 2146, 296, 269, 258, 1320) in the AXL promoter
region (Figure 6D), 2 CCGG sites (2414, 1320) could be ex-
amined by methylation-sensitive restriction enzyme analysis. As
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shown in Figure 6E, the 5hmC level at site 2414 in the AXL
promoter was increased in TET2-knockdownmarker CFU-E cells,
whereas no changes in 5mC and 5hmC levels were observed at
site1320 (Figure 6F). These findings suggest that AXL could be
a direct target of TET2.

TET2 knockdown led to SCF-dependent clonal
expansion of CFU-E cells
MDS is characterized by the clonal expansion of hematopoietic
stem and progenitor cells.42-45 The persistent presence of GPA2

erythroid cells following TET2 knockdown strongly suggests
clonal expansion of erythroid progenitors. To test this thesis, we
performed a single-cell proliferation assay of FACS-sorted lu-
ciferase CFU-E cells and TET2-knockdown CFU-E cells. As shown
in Figure 7A, in the presence of EPO alone, no significant dif-
ference in cell growth was noted between individual luciferase
CFU-E cells and TET2-knockdown CFU-E cells. In the presence
of EPO and SCF, the growth of ;20% of individual TET2-
knockdown CFU-E cells was significantly more than that of in-
dividual luciferase CFU-E cells (Figure 7B). Cytospin analyses
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revealed that, although luciferase and low-proliferative (LP)
TET2-knockdown CFU-E cells differentiated into late-stage
erythroblasts, there was persistence of early-stage erythro-
blasts in highly proliferating (HP) TET2-knockdown CFU-E cells,
even after 15 days in culture (Figure 7C). Interestingly, AXL

expression is significantly higher in HP cells than that in LP cells
(Figure 7D-F). Taken together, our findings demonstrate that
TET2 knockdown led to SCF-dependent clonal expansion of
erythroid progenitors, at least in part by upregulation of c-Kit
and AXL.
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Discussion
Ineffective erythropoiesis and the resultant anemia are common
features of MDS. However, our understanding of the molecular
and mechanistic basis for ineffective erythropoiesis in MDS
remains to be fully defined. Recent studies revealed that the
gene encoding DNA dioxygenase TET2 is one of the most
frequently mutated genes in MDS. Studies by us and other
investigators have demonstrated that TET2 deficiency impairs
erythroid differentiation.20-22 Here, we document that TET2
knockdown enhanced proliferation and impaired differentiation
of human erythroid progenitor CFU-E cells, and, with time, there
is a clonal expansion of dysfunctional CFU-E cells. We further
uncovered that this results from sequential upregulation of c-Kit
and the tyrosine kinase AXL.

Erythropoiesis is a complex multiple-step process. Usingmethods
that we developed to highly enrich erythroid cells at each distinct
developmental stage,32,33 we were able to identify the effect of
TET2 deficiency in a stage-specific manner. The hematopoiesis of
MDS is characterized by the hyperproliferation and impaired
differentiation of progenitor cells and apoptosis of late-stage
cells.23,24,46 Our finding that TET2 deficiency leads to clonal ex-
pansion of erythroid progenitor CFU-E cells is in line with the
pathologic changes noted in MDS patients. In addition to TET2,
TET3 is expressed in erythroid cells; interestingly, in contrast to
the effects of TET2 deficiency on erythroid progenitors, TET3
knockdown impaired human terminal erythroid differentiation
with no effect on erythroid progenitors.30 Overlapping and/or
redundant roles for TET family members have been documented
in other cells.27,47-49 Our findings demonstrate that TET family
members play distinct and stage-specific roles in erythropoiesis.

It has been well documented that EPO is sufficient for the pro-
liferation and survival of CFU-E cells.50,51 Interestingly, when we
perform CFU-E colony assays and cell-proliferation assays in the
presence of EPO and in the presence of EPO and SCF, we find
that the colony size is larger when EPO and SCF are present
compared with EPO alone. Thus, it appears that, although SCF
is not essential for CFU-E cell proliferation, it does enhance
their proliferative capacity. Notably, SCF further enhanced the
proliferation of TET2-knockdown CFU-E cells significantly. Our
finding is consistent with the previous report that c-Kit expression
was upregulated in Tet2 shRNA-expressing mouse bone marrow
progenitor cells.52 Moreover, Tet2 restoration in Tet2-knockout
mice decreased the expression of c-Kit.53 Additionally, the extent
of the increase in c-Kit phosphorylation is greater than the noted
increased expression level of c-Kit protein, suggesting additional
mechanism(s) contribute to the increased c-Kit phosphorylation.
Supporting this hypothesis, we found that phosphatase SHP-1,
a negative regulator of c-Kit,35 is significantly decreased in TET2-
knockdown CFU-E cells. Interestingly, decreased expression of
SHP-1 protein has been reported in MDS patients.54 In future
studies, it will be interesting to examine the relationship between
TET2 mutation and expression of SHP-1 in these diseases. To-
gether, our findings suggest that 1 mechanism by which TET2
deficiency contributes to the increased proliferation and impaired
differentiation ofmyeloid progenitors is through upregulation and
activation of c-Kit. Importantly, our findings that c-Kit inhibitor
reversed the proliferation and differentiation of TET2-knockdown
CFU-E cells suggest that c-Kit inhibitor could be a potential
therapeutic approach for patients with TET2 mutations.

During normal in vitro erythropoiesis, GPA2 cells progressively
decrease and eventually disappear on day 15. Our finding that
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TET2 knockdown led to the persistent presence of the GPA2 cell
population suggests clonal selection and expansion. Although
these cells are characterized by the expression of normal CFU-E
cell surface markers, they are functionally different from normal
CFU-E cells in that SCF is required for their continued survival. We
termed this cell population marker CFU-E cells. Intriguingly, in
contrast to the increased activation of the c-Kit pathway in TET2-
knockdown CFU-E cells, the phosphorylation of c-Kit was signif-
icantly decreased in these clonally expanded TET2-knockdown
marker CFU-E cells, explaining the requirement for SCF for their
survival. More surprisingly, in spite of the decreased phosphor-
ylation of c-Kit, phosphorylation levels of AKT and ERK are in-
creased. In exploring the mechanisms for the clonal expansion of
the marker CFU-E cells, we found that a tyrosine kinase AXL is
significantly increased. Similar to c-Kit inhibitor, AXL inhibitor
reversed the proliferation and differentiation of marker CFU-E
cells, suggesting that AXL inhibitor could also be a potential
therapeutic approach for patients with TET2 mutations.

Regarding the molecular mechanisms for transformation or
hyperproliferation due to Tet2 deficiency, 1 previous study
showed that Tet2 loss and Nras mutation cooperatively drove
myeloid transformation via downregulation of Spry2 and acti-
vation of mitogen-activated protein kinase signaling.55 Another
1 showed that Tet2 loss decreased Pten expression, leading
to hyperproliferation of bone marrow–derived mast cells in
a phosphatidylinositol 3-kinase–dependent manner.56 In the
present study, we show that sequential upregulation of c-Kit and

AXL is responsible for the hyperproliferation and clonal ex-
pansion of human erythroid progenitors. These findings suggest
that Tet2 deficiency leads to transformation or hyperproliferation
via different pathways in a cell-type–specific manner.

In further defining the mechanism for the increased AXL ex-
pression, we found that the 5hmC level at 2414 in the AXL
promoter is increased. This finding seems to be contradictory to
the predominant role of TET2 in converting 5mC to 5hmC.
However, it should be noted that TET family members play dual
roles in regulating 5hmC levels and in regulating gene ex-
pression. For example, it has been reported that TET2 deletion
in mouse embryonic stem cells results in an increase in 5hmC
levels at some promoter/transcription start site regions.57

Moreover, in addition to catalyzing the conversion of 5mC to
5hmC, TET family members can further oxidize 5hmC to 5fC and
5caC.58,59 Alternatively, the increased 5hmC level could be due
to impaired oxidation of 5hmC to 5fC and 5caC. Thus, the effect
could be more complex and worth future in-depth analyses.

In summary, our findings document that TET2 deficiency leads to
clonal selection of human erythroid progenitor CFU-E cells.
Initial hyperproliferation of CFU-E cells occurs via upregulation
of c-Kit, followed by clonal expansion of dysfunctional CFU-E
cells as the result of upregulation of AXL. These findings provide
new insights into the mechanisms for the ineffective erythro-
poiesis associated with TET2mutation. Moreover, because TET2
mutations frequently occur in many hematologic malignancies,26
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Figure 7. TET2 knockdown led to the SCF-dependent clonal expansion of CFU-E cells. (A) Growth of sorted single luciferase or TET2-knockdown CFU-E cells cultured in the
presence of EPO for 7 days. (B) Growth of sorted single luciferase or TET2-knockdown CFU-E cells cultured in the presence of EPO plus SCF for 15 days. Note that cells can be
divided into HP and LP populations. (C) Representative cytospin images of erythroblasts from panel B. (D) mRNA levels of AXL in the LP cells (pooled) and HP cells (pooled). (E)
Western blot analysis of AXL of pooled LP and HP cells. (F) Quantitative analysis of AXL protein levels from 3 independent experiments. *P, .05. NS, not statistically significant.
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it is likely that our findings may also provide novel insights into
these diseases.
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