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KEY PO INT S

l A 7-gene signature
is derived that can
identify myeloma
patients who respond
better to bortezomib-
or lenalidomide-based
therapy.

l Treatment according
to the signature is
noninferior to
treatment with
combined bortezomib,
lenalidomide, and
dexamethasone.

Improving outcomes in multiple myeloma will involve not only development of new
therapies but also better use of existing treatments. We performed RNA sequencing on
samples from newly diagnosed patients enrolled in the phase 2 PADIMAC (Bortezomib,
Adriamycin, and Dexamethasone Therapy for Previously Untreated Patients with Multiple
Myeloma: Impact ofMinimal Residual Disease in Patients with Deferred ASCT) study. Using
synthetic annealing and the large margin nearest neighbor algorithm, we developed and
trained a 7-gene signature to predict treatment outcome. We tested the signature in
independent cohorts treated with bortezomib- and lenalidomide-based therapies. The
signature was capable of distinguishing which patients would respond better to which
regimen. In the CoMMpass data set, patients who were treated correctly according to the
signature had a better progression-free survival (median, 20.1 months vs not reached;
hazard ratio [HR], 0.40; confidence interval [CI], 0.23-0.72; P 5 .0012) and overall survival
(median, 30.7 months vs not reached; HR, 0.41; CI, 0.21-0.80; P 5 .0049) than those who
were not. Indeed, the outcome for these correctly treated patients was noninferior to that for
those treated with combined bortezomib, lenalidomide, and dexamethasone, arguably the

standard of care in the United States but not widely available elsewhere. The small size of the signature will facilitate clinical
translation, thus enabling more targeted drug regimens to be delivered in myeloma. (Blood. 2018;132(20):2154-2165)

Introduction
Multiple myeloma is a plasma-cell neoplasm characterized by
lytic bone lesions, hypercalcemia, renal impairment, and bone
marrow failure. Although outcomes have improved in recent
years with the introduction of novel agents, the disease re-
mains incurable, and clinical responses display considerable
heterogeneity.1,2 Additional improvements will come not only
from introduction of new drugs but also from better use of
existing drugs. Younger, fitter patients are usually treated with
a drug combination involving a proteasome inhibitor (PI)

and/or an immunomodulatory drug (IMiD) followed by high-dose
melphalan therapy with autologous stem-cell transplantation
(ASCT). For transplantation-ineligible patients, recent trial data
suggest that the treatment of choice may be a combination of the
PI bortezomib (Velcade;Millennium Pharmaceuticals, Cambridge,
MA), the IMiD lenalidomide (Revlimid; Celgene, Summit, NJ), and
dexamethasone (VRD).3 However, this combination is expensive
and is not funded in most countries outside the United States.
Furthermore, for frail patients, 3-drug combinations may prove
too toxic.
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It is possible that treatment outcomes in myeloma might be
improved by the application of precision medicine (ie, the rational
selection of drugs based on the biology of each patient’s tumor).
Several studies have demonstrated the potential of using tran-
scriptomic data to derive prognostic information in myeloma.4-6

Signatures can be usefully combined7 but are generally agnostic
to treatment,4,5,8-12 and their main clinical utility is likely to be the
identification of patients who may benefit from trials for high-risk
disease. We sought to derive a signature that could predict re-
sponses to specific therapies.

The phase 2 PADIMAC (Bortezomib, Adriamycin, and Dexa-
methasone [PAD] Therapy for Previously Untreated PatientsWith
Multiple Myeloma: Impact of Minimal Residual Disease in Pa-
tients With Deferred ASCT) study was designed to examine
whether patients with good responses to PAD could safely avoid
upfront ASCT. We employed RNA-sequencing (RNA-seq) on
available good-quality RNA from enrolled patients and derived a
training data set from patients with sustained deep responses
in the absence of ASCT. We thus generated a signature for
predicting bortezomib responsiveness in patients with myeloma
not receiving ASCT. When tested in independent data sets, the
signature performed well, identifying patients who benefited
from bortezomib-based treatment in the absence of an IMiD.
Furthermore, when tested on lenalidomide plus dexamethasone
(RD)–treated patients, the signature performed in a reciprocal
fashion, suggesting that it could be used as a binary classifier
to choose between bortezomib-based treatment and RD. Patients
who had been treated correctly according to the signature clas-
sification had a superior survival to those who had not. Indeed, in
the related CoMMpass (Clinical Outcomes inMultipleMyeloma to
Personal Assessment of Genetic Profile) data set, correctly treated
patients receiving either bortezomib-based therapy (without IMiD)
or receiving RD (without bortezomib) had a noninferior survival to
those treated with VRD. This suggests that our signature could be
employed to improve the safety and cost effectiveness of mye-
loma therapy without compromising outcomes.

Materials and methods
Sample accrual and processing and data generation
Sample accrual and RNA isolation RNA of sufficient quality for
RNA-seq was available from 44 patients treated in the PADIMAC
trial (ISRCTN03381785). The trial protocol is described in the
supplemental Materials, available on the Blood Web site. PADIMAC
was conducted in accordance with the Declaration of Helsinki
and Good Clinical Practice guidelines and was approved by the
National Health Service National Research Ethics Service. Par-
ticipants provided written informed consent. Patient registration
and trial management were performed by the Cancer Research
UK and University College London Cancer Trials Centre. All pa-
tients had newly diagnosed untreated myeloma and Eastern
Cooperative Oncology Group performance status of 0 to 3 and
were eligible for ASCT. Total RNA was isolated using standard
methodology, as described in the supplemental Materials.

Identification of mutations and gene expression Standard
methods were used to identify mutations and determine gene
expression. Detailed methodology is described in the supple-
mental Materials and supplemental Table 1. Briefly, reads were
mapped with TopHat13 and aligned with Samtools.14 Single-
nucleotide variants (SNVs) and small indels were identified

using VarScan,15,16 and RNA fusions were identified using
FusionCatcher.17 Read counts were generated with the Rsubread
package.18,19 Raw and count-level data have been uploaded to
Gene Expression Omnibus (GEO; GEO reference GSE116324).
Differentially expressed genes were identified using DESeq2,20-22

and theGage23 and Pathview24,25 packageswere used for pathway
analysis.

Machine learning
Selection of test data sets Test RNA-seq data sets were de-
rived from CoMMpass (https://research.themmrf.org/). Micro-
array test sets were obtained for relapsed/refractory patients
treated with bortezomib26 (GEO reference GSE9782), plasma-
cell leukemia (PCL) patients treated with RD27 (GEO reference
GSE39925), and newly diagnosed myeloma patients treated
with PAD followed by ASCT28 (GEO reference GSE19784). We
refer to these data as the Millennium, PCL, and HOVON/GMMG
data sets, respectively.

Data preprocessing, training, validation, and testing RNA-seq
counts were normalized and corrected for heteroscedasity
according to published methods.29-35 Potential signature genes
were identified from the PADIMACdata set by an empirical Bayes
method,36 then selected as described using synthetic annealing,37

with an error rate determined by a support vector machine
implemented from the e1071 package (https://cran.r-project.
org/web/packages/e1071/index.html).

Signature assignments were made using the large margin
nearest neighbor (LMNN) algorithm.38 Performance within the
PADIMAC data set was checked by 10-fold cross-validation. For
external testing, all PADIMAC data were used for training, with
an initial 50:50 split into training and internal validation sets fixed
for all testing. R and Matlab scripts replicating this process have
been included with the supplemental Materials. All CoMMpass,
Millennium, PCL, or HOVON/GMMGdata were used for testing.
To determine the robustness of the signature performance in
each case, a form of permutation testing was used, as described
in the supplemental Materials.

Statistical considerations Null and observed assignments
were compared using the Mann-Whitney-Wilcoxon test. Survival
was compared using the Cox proportional hazards model.
P values #.05 were considered significant.

Results
Initial assessment of PADIMAC data excludes a
mutation-based classifier
We performed RNA-seq on purified CD1381 plasma cells from a
cohort of 44 patients treated in the PADIMAC trial. Clinical
data are shown in supplemental Table 2. We first explored the
possibility of using a mutation-based classifier for bortezomib
responsiveness. We identified fusion and SNV transcripts from
the RNA-seq data (Figure 1A-B; supplemental Tables 3 and 4).
There were 0 to 8 fusions in each sample, with a median of
1 (Figure 1A). Expected IgH-WHSC1 fusions were detected from
t(4;14) patients (supplemental Table 3). There was a median of
9 SNVs per patient in coding regions, which is lower than seen
in previous DNA sequencing studies.39-42 This may reflect
reduced expression from mutant alleles43 as well as a failure
to detect mutations in the furthest 59 regions of some genes.
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Figure 1. Fusion events, key SNVs, and translocation/cyclin D (TC) classification of PADIMAC data. Each column represents a single sample. Samples are arranged into
and color coded by their TC classes (shown at the bottom). (A) Number of fusion events in each sample. (B) Key SNVs in each sample. (C) Expression of genes whose
dysregulation is associated with TC classification in each sample.
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Nevertheless, we identified many of the known driver mutations
in myeloma (Figure 1B; supplemental Table 4). Other known
drivers were not mutated in our cohort, which may be related to
sample size or may reflect lack of expression of mutated alleles.43

Overall, 45.5% of patients in the cohort achieved very good
partial remission or better after PAD induction (supplemental
Table 2). We defined a bortezomib-good group, namely patients
who achieved very good partial remission or better and
who were progression free at 1 year without ASCT (13 [29.5%] of
44). We termed the remaining patients bortezomib standard
(31 [70.5%] of 44). There were no associations between these
groups and age, International Staging System (ISS), or myeloma
type (supplemental Table 5). We also saw no significant asso-
ciations between bortezomib responsiveness and presence of
key cytogenetic, SNV, or translocation events (supplemental
Table 6). There were trends toward significant associations
between the bortezomib-good group and both the presence
of any translocation and the presence of a b2 microglobulin

translocation (supplemental Table 6). However, we did not feel
that these associations were sufficiently strong for predicting
clinical outcomes. We therefore turned to expression profiling.

Derivation of a 7-gene bortezomib
response signature
Expression of target genes known to be differentially expressed
using microarray44 and quantitative polymerase chain reaction45

technologies in the translocation/cyclin D classification was
consistent with that previously described (Figure 1C),44 con-
firming the utility of RNA-seq for measuring relative gene ex-
pression inmyeloma.We therefore proceeded to identify a gene
signature for bortezomib responsiveness. We ranked potential
genes using synthetic annealing37 (supplemental Figures 1 and 2).
Derived signatures comprising 4 to 11 genes performed bet-
ter than permuted assignments in cross-validation of PADIMAC
data using the LMNN algorithm (supplemental Figures 3 and 4;
Matthews correlation coefficient [MCC]: median, 0.55 vs 20.045;
Mann-Whitney U, 0; 2-tailed P5 .00090; supplemental Figure 4A;

1.0

A B

D E

C
1.0

p=5.67x10–30

p=2.85x10–34 p=2.42x10–341.0

0.8

0.6

F-
m

ea
su

re

0.4

0.2

0.0

0.5

M
at

th
ew

s c
or

re
la

tio
n 

co
ef
fic

ie
nt

0.0

-0.5

Null Signature Null Signature

-1.0

0.8

0.6

Pe
rfo

rm
an

ce

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0.0

0 12 24

HR=0.37

p=0.0063

Predicted bortezomib standard
Predicted bortezomib good

36
Time since diagnosis (months)

48

3.0

2.5

2.0

Ha
za

rd
 ra

tio

Pr
op

or
tio

n 
al

ive
 an

d 
pr

og
re

ss
io

n-
fre

e

1.5

1.0

0.5

0.0

Null Signature

0.0

4 5 6 7
Signature size (genes)

8 9 10 11

MCC
F-measure

Figure 2. A 7-gene signature accurately predicts response to bortezomib-based therapy in PADIMAC and the independent CoMMpass data sets. (A) MCCs and
F measures of bortezomib-good assignments by 4 to 11 gene signatures derived from synthetic annealing after cross-validation within the PADIMAC data set. (B-C) MCCs and
F measures of bortezomib-good assignments by the 7-gene signature after multiple (n 5 100) cross-validations within the PADIMAC data set (signature) compared with the
MCCs and F measures of permuted assignments (null). The P values are those of the Wilcoxon-Mann-Whitney test, under the null hypothesis that the distributions of observed
and null performances are the same. (D) Kaplan-Meier plot showing the progression-free survival (PFS) of patients who received bortezomib-based therapy within CoMMpass
(n5 147) and who were predicted to benefit (n5 39; broken line) or not (n5 108; solid line) from bortezomib-based therapy by the 7-gene signature after training in PADIMAC.
The P value and hazard ratios (HRs) are those obtained from Cox regression analysis. (E) HRs for disease progression of bortezomib-good vs bortezomib-standard patients who
received bortezomib-based therapy in CoMMpass. Predictions were made by the 7-gene signature, trained in PADIMAC, and followed repeated (n 5 100) training/validation
splits (signature). The HRs are compared with a null data set of HRs obtained after permutations of the assignments (null). The P value is that of theWilcoxon-Mann-Whitney test,
under the null hypothesis that the distributions of observed and null performances are the same.
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F measure: median, 0.67 vs 0.25; Mann-Whitney U, 0; 2-tailed
P 5 .00090; supplemental Figure 4B). Of these signatures, the
best performing was the 7-gene signature (Figure 2A). Because
training of the LMNN algorithm parameters involves splitting
the training set into training and internal validation sets (sup-
plemental Figure 2), we checked that the 7-gene signature was
robust by performing multiple (n 5 100) training/validation splits

and comparing performance with permuted assignments (n5 100)
during cross-validation. The observed assignments had higher
MCCs and F measures than the null assignments (MCC: median,
0.50 vs 0.0054; Mann-Whitney U, 8; 2-tailed P 5 2.85 3 10234;
Figure 2B; F measure: median, 0.64 vs 0.26; Mann-Whitney U, 3;
2-tailed P5 2.423 10234; Figure 2C), confirming that the signature
performed well regardless of the training/validation split.

Table 1. Cox regression results for survival comparisons

Treatment (data set) Comparison n1 n2
Median survival

1, mo
Median survival

2, mo HR* (CI) P

Bortezomib based (C) Bortezomib standard vs
bortezomib good (PFS)

108 39 21.9 36.2 0.37 (0.17-0.81) .0063

RD (C) Bortezomib standard vs
bortezomib good (PFS)

29 11 Not reached 18.8 2.35 (0.76-7.63) .16

Bortezomib based or
RD (C)

Incorrectly treated vs correctly
treated (PFS)

119 68 20.1 Not reached 0.40 (0.23-0.72) .0012

Bortezomib based or
RD (C)

Incorrectly treated vs correctly
treated (OS)

119 68 30.7 Not reached 0.41 (0.21-0.80) .0049

Bortezomib based or RD
or VRD (C)

All VRD vs all non-VRD (PFS) 208 187 43.7 26.0 1.50 (1.06-2.13) .02

Bortezomib based or RD
or VRD (C)

All VRD vs all non-VRD (OS) 208 187 Not reached 37.8 2.05 (1.34-3.13) .00084

Bortezomib based or RD
or VRD (C)

All VRD vs non-VRD correctly
treated (OS)

208 68 Not reached Not reached 1.12 (0.58-2.13) .74

Bortezomib based or RD
or VRD (C)

All VRD vs non-VRD correctly
treated (PFS)

208 68 43.7 Not reached 0.86 (0.50-1.47) .57

Bortezomib based 6 ASCT Bortezomib correctly treated vs
ASCT (PFS)

47 39 36.6 36.2 1.16 (0.47-2.87) .75

Bortezomib based 6 ASCT Bortezomib correctly treated vs
ASCT (OS)

47 39 43.7 Not reached 3.10 (0.80-12.01) .08

VRD (C) Lenalidomide best vs
bortezomib best (OS)

164 44 Not reached Not reached 1.41 (0.69-2.90) .36

VRD (C) Lenalidomide best vs
bortezomib best (PFS)

164 44 43.7 45.4 1.11 (0.62-1.97) .74

Bortezomib alone (M) Lenalidomide best vs
bortezomib best (PFS)

135 38 4.14 4.77 0.66 (0.43-1.0) .04

Bortezomib alone (M) Lenalidomide best vs
bortezomib best (OS)

148 40 15.2 21.8 0.57 (0.53-0.91) .01

RD (PCL) Lenalidomide best vs
bortezomib best (PFS)

8 10 Not reached 1.0 Not defined† 2.5231025

RD (PCL) Lenalidomide best vs
bortezomib best (OS)

8 10 Not reached 12.5 Not defined† .0013

PAD/ASCT (H) Lenalidomide best vs
bortezomib best (PFS)

84 57 26.6 31.8 0.91 (0.60-1.37) .63

PAD/ASCT (H) Lenalidomide best vs
bortezomib best (OS)

85 58 Not reached Not reached 0.73 (0.40-1.34) .30

All signature assignments were based on the 7-gene signature. Correctly treated patients (rows 3, 4, and 7-10) were those predicted by the signature as lenalidomide best and who were
treated with RD or those predicted as bortezomib best and treated with bortezomib-based therapy.

C, CoMMpass data set; CI, confidence interval; H, HOVON/GMMG data set; M, Millennium data set; n1, first group in comparison; n2, second group in comparison; OS, overall survival.

*HR: second group vs first group.

†HR for the PCL group is not defined because all patients in group 2 experienced progression before any progressions in group 1 (row 11) or because there were no deaths in group 1 (row 12).
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The genes comprising the signature are EMC9, FAM171B, PLEK,
MYO9B, RCN3, FLNB, and KIF1C (supplemental Table 7). We
did not see enrichment of these genes within the pathway
gene sets from the Molecular Signatures Database46-48 (http://
software.broadinstitute.org/gsea/msigdb/annotate.jsp; C2
collection). However, at least 3 of the proteins (EMC9, RCN3, and
KIF1C) are associated with the endoplasmic reticulum, and
3 others (PLEK, MYO9B, and FLNB) interact with actin filaments.
Furthermore, 3 genes (EMC9, MYO9B, and KIF1C) associate
positively with proliferation in myeloma.10 Despite the lack of
objective pathway enrichment in our signature, supervised anal-
ysis of the RNA-seq data as a whole did reveal pathways up-
regulated in bortezomib-good patients (supplemental Table 8).

The 7-gene signature is predictive of outcome in
bortezomib-treated patients in the independent
CoMMpass data set
To enable testing of our signature in an independent external
data set, we extracted RNA-seq data from CoMMpass. We
selected previously untreated patients who did not proceed
to ASCT, because none of the bortezomib-good patients had
undergone transplantation. There were 147 such bortezomib-
treated patients (who had received no IMiD), 40 RD patients,
and 208 VRD patients for whom RNA-seq data were available
(supplemental Tables 9-11). There were a few differences in
clinical features between the groups. PADIMAC patients, being
transplantation eligible, were younger than all the CoMMpass
cohorts (supplemental Figures 5-7). VRD-treated patients in
CoMMpass were younger than the bortezomib-treated and RD
cohorts (supplemental Figures 9 and 10). RD-treated patients
had higher rates of del13 than PADIMAC or bortezomib-
treated patients and a lower rate of t(4;14) than bortezomib-
treated patients (supplemental Figures 6 and 8). There were

no differences in ISS stage between the groups (supplemental
Figures 5-10).

We trained our 7-gene signature on the PADIMAC data and
tested its ability to identify patients who would benefit from
bortezomib-based therapy within CoMMpass (supplemental
Figure 11). Patients who received bortezomib-based therapy
and were assigned to the bortezomib-good group had a better
PFS than those assigned to the bortezomib-standard group
(Figure 2D; Table 1, row 1). The randomization seed for the
PADIMAC training/validation split had been fixed before testing.
To ensure that the predictive ability of the signature was robust,
we performed multiple additional training/validation splits of the
PADIMAC training set and compared the resulting assignments
in the CoMMpass test set with permuted assignments that
formed a null data set. As expected for a robust signature, HRs
for the predicted bortezomib-good patients were lower than
HRs from random predictions (Figure 2E; Table 2, row 1).

The 7-gene signature has reciprocal performance in
RD-treated patients and has the potential to
select therapy
To distinguish between the signature acting as a general pre-
dictor of good-prognosis disease and as a specific predictor of
bortezomib-sensitive disease, we tested it in RD-treated pa-
tients. We reasoned that, if the signature were bortezomib
specific, the survival of RD-patients assigned to the bortezomib-
good group would be no better than the survival of those
assigned to the bortezomib-standard group. To our surprise,
RD-treated patients assigned to the bortezomib-good group in
fact had an inferior PFS to those assigned to the bortezomib-
standard group (Figure 3A; Table 1, row 2). Although the differ-
ence was not significant, those assigned to the bortezomib-good

Table 2. Mann-Whitney-Wilcoxon results testing the robustness of the 7-gene signature to assignments

Treatment (data set) Comparison

Median
HR*

observed
Median
HR* null

Mann-
Whitney U P

Bortezomib based (C) Bortezomib standard vs bortezomib good
(PFS)

0.44 0.94 348 5.67 3 10230

RD (C) Bortezomib standard vs bortezomib good
(PFS)

2.01 0.93 1526 1.91 3 10217

Bortezomib based or
RD (C)

Incorrectly treated vs correctly treated (PFS) 0.48 0.92 185 5.44 3 10232

Bortezomib based or
RD (C)

Incorrectly treated vs correctly treated (OS) 0.46 0.85 3 2.52 3 10234

Bortezomib alone (M) Lenalidomide best vs bortezomib best (PFS) 0.68 0.97 489 2.75 3 10228

Bortezomib alone (M) Lenalidomide best vs bortezomib best (OS) 0.53 1.00 108 5.67 3 10233

RD (PCL) Bortezomib best vs lenalidomide best (PFS) 0.24 0.83 1334 2.84 3 10219

RD (PCL) Bortezomib best vs lenalidomide best (OS) 0.20 0.96 1117 1.98 3 10221

Mann-Whitney-Wilcoxon results testing the robustness of the 7-gene signature to assignments across multiple (n 5 100) training/validation data splits; 100 assignments were made in each
data set by the 7-gene signature after random training/validation splits (observed). Each of these assignments was then permuted to maintain assignment ratios (null). The performance of the
observed and null assignments for predicting PFS and OS was compared in terms of HRs by the Mann-Whitney-Wilcoxon test.

C, CoMMpass data set; H, HOVON/GMMG data set; M, Millennium data set.

*HR: second group vs first group.
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group across repeated training/validation splits had consistently
lower survival, with higher HRs than those obtained by permuting
the assignments (Figure 3B; Table 2, row 2).

The implication of these findings is that patients predicted to
do well with bortezomib by our signature do poorly when
treated with RD and vice versa. Hence, the 7-gene signature
could be used as a binary classifier to rationally choose between
bortezomib-based therapy and RD. To test this, we selected
CoMMpass patients treated with bortezomib-based therapy or
with RD and assigned each to a bortezomib-best or lenalidomide-
best group.We then compared survival between those patients who

received the predicted best treatment and those who did not.
Patients who received the correct therapy had a superior PFS
(Figure 3C; Table 1, row 3) and OS (Figure 3D; Table 1, row 4).
The incorrectly treated patients had a median PFS of 20.1
months and a median OS of 31.2 months, whereas the median
PFS andOSwere not reached for correctly treatedpatients. These
predictions were again robust to the initial training/validation
split of the PADIMAC data set (supplemental Figure 12; Table 2,
rows 3 and 4).

We excluded the possibility that the signature was acting as a
surrogate for clinical features. We saw no association between
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Figure 3. The 7-gene signature can be used as a classifier to select between bortezomib-based therapy and RD in the independent CoMMpass data set. (A) Kaplan-
Meier plot showing the PFS of patients who received RD therapy (n5 40) within CoMMpass and whowere predicted to benefit (n5 11; broken line) or not (n5 29; solid line) from
bortezomib-based therapy by the 7-gene signature after training in PADIMAC. The P value and HR are those obtained from Cox regression analysis. (B) HRs for disease
progression of bortezomib-good vs bortezomib-standard patients who received RD in CoMMpass. Predictions were made by the 7-gene signature, trained in PADIMAC, and
followed repeated (n 5 100) training/validation splits (signature). The HRs are compared with a null data set of HRs obtained after permutations of the assignments (null). The
P value is that of the Wilcoxon-Mann-Whitney test, under the null hypothesis that the distributions of observed and null performances are the same. (C) Kaplan-Meier plot
showing the PFS of patients who received bortezomib-based therapy or RD within CoMMpass (n5 187) and who received the correct (n5 68; broken line) or incorrect (n5 119;
solid line) therapy predicted by the 7-gene signature after training in PADIMAC. The P value and HR are those obtained from Cox regression analysis. (D) Kaplan-Meier plot
showing theOS of patients who received bortezomib-based therapy or RDwithin CoMMpass (n5 187) and who received the correct (n5 68; broken line) or incorrect (n5 119;
solid line) therapy predicted by the 7-gene signature after training in PADIMAC. The P value and HR are those obtained from Cox regression analysis. (E) Kaplan-Meier plot
showing the OS of patients (n5 276) who received VRD (n5 208; solid line) or who received bortezomib-based therapy or RD within CoMMpass and who received the correct
therapy predicted by the 7-gene signature (n 5 68; broken line) after training in PADIMAC. The P value and HR are those obtained from Cox regression analysis. (F) Kaplan-
Meier plot showing the OS of patients who received VRD in CoMMpass (n 5 208; solid line) and who were predicted to benefit from RD (n 5 164; solid line) or from
bortezomib-based therapy (n 5 44; broken line) by the 7-gene signature after training in PADIMAC. The P value and HR are those obtained from Cox regression analysis.

2160 blood® 15 NOVEMBER 2018 | VOLUME 132, NUMBER 20 CHAPMAN et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/132/20/2154/1747271/blood849893.pdf by guest on 18 M

ay 2024



signature assignment and key cytogenetic events (P5 .13; Fisher’s
exact test; supplemental Table 12), and in multivariate Cox re-
gression, ideal treatment according to the signature retained
significance for survival when age, ISS, or myeloma subtype were
taken into account (supplemental Table, 13 rows 1 and 2).

Because of the finding of proliferative genes in our signature,
we also wanted to check that it was not acting as a surrogate
for the gene expression–based proliferation index (GPI50)
signature10 or other prognostic signatures. Because these sig-
natures have not, to our knowledge, been applied to RNA-seq
data previously, we first tested that they could be applied to the
CoMMpass data set. Indeed, when all of the GPI50, University
of Arkansas for Medical Sciences (UAMS70), Erasmus University
Medical Centre (EMC92), and Intergroupe Francophone du
Myélome (IFM15) signatures4-6,10 were applied to CoMMpass,
the distribution of scores was similar to that seen in microarray
data sets5 (supplemental Figure 13A,C,E,G). Furthermore, all
signatures retained prognostic significance using thresholds equiv-
alent to those previously published5 (supplemental Figure 13B,
D,F,H). Having established that these prognostic signatures
were effective in RNA-seq data, we examined whether there
was any association between their assignments and the as-
signments of our 7-gene signature. Nonewas seen (supplemental
Table 14). Furthermore, receiving ideal treatment according to
the 7-gene signature retained its prognostic significance even in a
multivariate analysis including these signatures (supplemental
Table 15).

A recent trial reported the superiority of VRD over RD in
transplantation-ineligible patients,3 but VRD treatment is not
currently fundedwidely outside the United States. Wewondered
whether rationally selected therapy could be a cost-effective
alternative to this gold-standard treatment. We first demon-
strated that VRD was superior to unselected bortezomib-based
treatment and RD in CoMMpass (supplemental Figure 14;
Table 1, rows 5 and 6).We then compared the survival of patients
treated correctly according to our signature with the survival of
all patients treated with VRD in CoMMpass. There was no sta-
tistically significant difference in OS (Figure 3E; Table 1, row 7)
or PFS (supplemental Figure 15A; Table 1, row 8) between
patients treated correctly with bortezomib or RD and those
treated with VRD. This was also true in a multivariate analysis
incorporating clinical features (supplemental Table 13, rows
3 and 4). We also compared the outcomes of CoMMpass
patients treated correctly with bortezomib according to the
signature (without transplantation) with those of all patients
receiving bortezomib-based induction followed by ASCT.
Interestingly, there was no significant difference in survival
between the 2 groups (supplemental Figure 16; Table 1, rows
9 and 10), although there was weak evidence of an effect
implying longer OS with transplantation.

We hypothesized that the 7-gene signature should have minimal
predictive ability in VRD-treated patients. As expected, we saw
no difference between the outcomes for patients assigned to the
bortezomib-best or lenalidomide-best group when those pa-
tients were treated with VRD. This was true both for OS (Figure 3F;
Table 1, row 11) and for PFS (supplemental Figure 15B; Table 1,
row 12). This lack of predictive ability was also seen in multivariate
analyses incorporating clinical features (supplemental Table 13,
rows 5 and 6).

The 7-gene signature performs well in other
independent data sets
We were keen to test how our signature would perform in
other nontransplantation settings, such as relapsed disease.
However, being limited by the availability of publicly available
RNA-seq data, we turned to microarray data. There were 2 suit-
able data sets available. One comprised samples from patients
with relapsed/refractory myeloma treated with single-agent
bortezomib26 (the Millennium data set). The second contained
transcriptomic data from a small series of patients with PCL treated
with RD27 (the PCL data set). We reasoned that, within the
Millennium data set, patients assigned to the bortezomib-best
class should have a better survival, whereas within the PCL data
set, those assigned to the lenalidomide-best class should have
a superior outcome.

Signature assignments behaved as predicted. In the Millen-
nium data set, the bortezomib-best group had a superior PFS
(Figure 4A; Table 1, row 13) and OS (Figure 4B; Table 1, row 14)
compared with the lenalidomide-best group. These results were
robust to training/validation splits (Figure 4C; Table 2, rows 5 and
6). In the PCL data set, those predicted to be in the lenalidomide-
best group had a superior PFS (Figure 4D; Table 1, row 15) and
OS (Figure 4E; Table 1, row 16) compared with patients assigned
to the bortezomib-best group. Again, the signature was robust,
with little influence from the training/validation split (Figure 4F;
Table 2, rows 7 and 8).

The 7-gene signature loses predictive power in
patients proceeding to ASCT
The bortezomib-good patients in the PADIMAC training set
avoided ASCT because of their good response, according to
trial protocol. We had thus far confined testing in external data
sets to patients who had not undergone ASCT. We wondered
whether the signature would retain its predictive power in pa-
tients proceeding to ASCT or whether transplantation would
overcome the survival differences between correctly and incor-
rectly treated patients. The HOVON-64/GMMG-HD4 phase 3
trial49 compared patients with newly diagnosed myeloma treated
with conventional chemotherapy vs those treated with PAD. Both
groups of patients proceeded to ASCT.

We used our signature tomake bortezomib-best and lenalidomide-
best assignments in patients who had received PAD. We rea-
soned that, if the signature retained its predictive power in the
ASCT setting, we would see superior survival in those patients
assigned to the bortezomib-best group. However, this was not
the case, and we saw no significant difference in either PFS
(Figure 5A; Table 1, row 17) or OS (Figure 5B; Table 1, row 18)
between the different signature assignments.

As a further check for the specificity of the signature, we also
tested its predictive value in the dexamethasone-only arm. As
anticipated, there was no difference in PFS between those
patients predicted to be bortezomib good and those predicted
to be lenalidomide good (supplemental Figure 17A). However,
patients predicted to be bortezomib good had a superior OS
in this arm (supplemental Figure 17B). This is likely because
patients receiving dexamethasone were eligible to receive
crossover bortezomib upon disease progression.
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Discussion
If it can be realized, precision cancer medicine will benefit
patients in terms of improved efficacy and reduced toxicity and
will benefit society in terms of better management of limited
drug budgets. Transcriptomics has considerable promise in this
area.50 There are signatures that predict for overall prognosis
in cancer,51-62 including myeloma,4-12 and signatures that pre-
dict response to individual therapies.63-67 However, we are not
aware of any published signature that can be used to rationally
select between different active cancer therapies. Remarkable
improvements in myeloma outcome over recent years have
been seen thanks to the introduction of multiple novel agents,
but this has been associated with increasing costs of treatment.68

Therefore, precision medicine is arguably of particular importance

in this disease to help navigate through the increasing arma-
mentarium of available therapies.

Here, we describe the derivation and testing of a 7-gene sig-
nature that can be used to select between bortezomib-based or
RD therapy in myeloma patients not undergoing ASCT. Patients
treated correctly according to the signature in the CoMMpass data
set had a 69.7% 3-year OS, similar to the outcome of patients
treated with VRD, probably the current standard of care for
transplantation-ineligible patients.3 These comparisons have to be
viewed with caution, because CoMMpass is not a clinical trial.
Nevertheless, there was no evidence that VRD-treated patients
represented a poor-prognosis cohort in CoMMpass; there were no
significant differences between the rates of poor-risk cytogenetics
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Figure 4. The 7-gene signature accurately predicts bortezomib or lenalidomide responsiveness in further independent data sets. (A) Kaplan-Meier plot showing the PFS
of patients who received single-agent bortezomib within the Millennium studies (n5 173) and who were predicted to benefit from bortezomib-based therapy (n5 38; broken
line) or from RD therapy (n5 135; solid line) by the 7-gene signature after training in PADIMAC. The P value and HR are those obtained from Cox regression analysis. (B) Kaplan-
Meier plot showing theOS of patients who received single-agent bortezomib within theMillennium studies (n5 188) and whowere predicted to benefit from bortezomib-based
therapy (n5 40; broken line) or RD therapy (n5 148; solid line) by the 7-gene signature after training in PADIMAC. The P value and HR are those obtained from Cox regression
analysis. (C) HRs for PFS and OS of patients predicted to benefit from bortezomib-based therapy who received bortezomib in the Millennium studies. Predictions were made by
the 7-gene signature, trained in PADIMAC with repeated (n 5 100) training/validation splits (signature). The HRs are compared with a null data set of HRs obtained after
permutations of the assignments (null). The P values are those of the Wilcoxon-Mann-Whitney test, under the null hypothesis that the distributions of observed and null
performances are the same. (D) Kaplan-Meier plot showing the PFS of patients who received RDwithin the PCL study (n5 18) and whowere predicted to benefit (n5 8; solid line)
or not (n5 10; broken line) from RD therapy by the 7-gene signature after training in PADIMAC. The P value is that obtained from Cox regression analysis. (E) Kaplan-Meier plot
showing theOS of patients who received RDwithin the PCL study (n5 18) and whowere predicted to benefit (n5 8; solid line) or not (n5 10; broken line) from RD therapy by the
7-gene signature after training in PADIMAC. The P value is that obtained fromCox regression analysis. (F) HRs for PFS andOS of patients predicted to benefit from lenalidomide-
based therapy and who received RD in the PCL study. Predictions were made by the 7-gene signature, trained in PADIMAC with repeated (n 5 100) training/validation splits
(signature). The HRs are comparedwith a null data set of HRs obtained after permutations of the assignments (null). The P value is that of theWilcoxon-Mann-Whitney test, under
the null hypothesis that the distributions of observed and null performances are the same.
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or ISS in the VRD group and the bortezomib- or RD-treated group,
and noninferior survival was maintained in a multivariate model
incorporating ISS.

If the outcomewith rationally selectedbortezomib- or lenalidomide-
based therapy is equivalent to that with VRD, it would be
important to consider why this might be. It may be that many
patients treated with VRD are predominantly benefiting from
just the bortezomib or the lenalidomide. Alternatively, it might
be that any gains in combining the drugs are offset by in-
creased toxicity, particularly in older or frailer patients. It is
important to note that the reciprocal performance that we
observed is an intrinsic property of the signature and not
simply because bortezomib sensitivity is automatically asso-
ciated with lenalidomide resistance (and vice versa). This is
clearly not the case in clinical practice, nor is it consistent with
the existence of multiple treatment-agnostic prognostic sig-
natures in myeloma.

Although PADIMAC was a trial for transplantation-eligible
patients, the signature was trained on patients who had had
a good response in the absence of ASCT. Therefore, our initial
test set comprised patients who were transplantation ineligible
(there were no data sets from transplantation-eligible patients
who did not proceed to transplantation). Transplantation-
ineligible patients would be the most obvious to benefit af-
ter successful translation of the signature to the clinic. When
tested in transplantation-eligible patients who had received
PAD and ASCT in the HOVON-64/GMMG-HD4 trial, the signa-
ture lost its predictive ability, implying that transplantation can
overcome the effect of not receiving the correct treatment. An
interesting question would be whether receiving the correct
predicted treatment without transplantation is equivalent to
ASCT. We saw no survival difference between transplantation-
ineligible patients treated correctly with bortezomib and all
transplantation-eligible patients treated with bortezomib
followed by ASCT. However, there was weak evidence of an
effect suggesting better OS for patients who underwent
transplantation.

There are limitations of our signature that need to be over-
come before employment in a clinical trial. The signature as-
signs approximately one quarter to one third of patients to the
bortezomib-best group and the remainder to the lenalidomide-

best group by default. It may be that this larger group is
heterogeneous, with some patients having poorer prognosis
or multiclonal disease and thus requiring VRD or the addition
of other novel agents. Others may benefit equally from bor-
tezomib- or lenalidomide-based treatments, regardless of sig-
nature assignment. Our signature was not capable of identifying
these different groups (data not shown). Our external test co-
horts were fairly small because of the lack of publicly available
and appropriate test data sets, and prospective validation of
our signature will be needed. This will probably require the
development of a quantitative polymerase chain reaction or
focused sequencing panel, although the small number of
genes in the signature means that this should be feasible.
Finally, it is not clear to what extent our signature represents a
drug effect or a class effect, because of the lack of publicly
available test data sets involving patients treated with alter-
native PIs or IMiDs. Future data may become available from
clinical trials in which expression profiling is incorporated into
the protocol.

We believe that our signature has the potential to move the
myeloma field toward rational therapy decisions for transplantation-
ineligible patients in the future. It is essential that myeloma ge-
nomic data sets with relevant clinical outcome data continue to
be made publicly available to allow refinement and prospective
validation of these approaches. This will require the ongoing
support of the myeloma research community.
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