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ProteinC is aplasma serineprotease zymogenwhoseactive
form, activated protein C (APC), exerts potent anticoagu-
lant activity. In addition to its antithrombotic role as a
plasma protease, pharmacologic APC is a pleiotropic pro-
tease that activates diverse homeostatic cell signaling
pathways via multiple receptors onmany cells. Engineering
of APC by site-directedmutagenesis provided a signaling
selective APC mutant with 3 Lys residues replaced by
3 Ala residues, 3K3A-APC, that lacks >90% anticoagulant
activity but retains normal cell signaling activities. This
3K3A-APC mutant exerts multiple potent neuroprotective
activities, which require the G-protein–coupled receptor,
protease activated receptor 1. Potent neuroprotection in
murine ischemic stroke models is linked to 3K3A-APC–
induced signaling that arises due to APC’s cleavage in
protease activated receptor 1 at a noncanonical Arg46 site.

This cleavage causes biased signaling that provides a
major explanation for APC’s in vivo mechanism of action
for neuroprotective activities. 3K3A-APC appeared to
be safe in ischemic stroke patients and reduced bleeding
in the brain after tissue plasminogen activator therapy in
a recent phase 2 clinical trial. Hence, it merits further
clinical testing for its efficacy in ischemic stroke patients.
Recent studies using human fetal neural stem and pro-
genitor cells show that 3K3A-APC promotes neuro-
genesis in vitro as well as in vivo in the murine middle
cerebral artery occlusion stroke model. These recent
advances should encourage translational research cen-
tered on signaling selective APC’s for both single-agent
therapies and multiagent combination therapies for
ischemic stroke and other neuropathologies. (Blood.
2018;132(2):159-169)

Introduction
In 2001, when Seligsohn and Lubetsky reviewed the current state
of knowledge for genetic susceptibility to venous thrombosis,
the hereditary deficiencies of antithrombin, protein C, and
protein S plus the gain-of-function mutations in the factor V or
prothrombin genes were central to the current understanding
of hemostasis for white populations.1 The major recognized
function of activated protein C (APC) was that of an anticoag-
ulant plasma serine protease, which inactivates coagulation
factors Va and VIIIa with significant roles for various lipid and
protein cofactors (eg, protein S) (Figure 1A), thereby preventing
venous thrombosis. There were also inklings that APC can
provide anti-inflammatory activity derived from the inflammatory
nature of neonatal purpura lesions with which severe protein
C–deficient infants present2-5 and from the observation that
APC reduced death in a nonhuman primate severe sepsis
model.6 In 2001, it was generally considered that APC was
indirectly anti-inflammatory because its anticoagulant action
would reduce generation of proinflammatory thrombin. Then
came seminal studies of cultured endothelial cells in which
Joyce et al7 showed that APC evoked both anti-inflammatory
and antiapoptotic activities and altered gene expression
profiles, setting the stage for investigations of APC’s non-
hemostatic functions and mechanisms.

Mechanisms for APC’s nonhemostatic functions initially came
from in vitro studies showing that protease activated receptor
(PAR) 1,8,9 which has emerged as a major druggable target,10,11

was required for APC cell signaling effects.12-14 Convincingly, in
vivo studies highlighted the requirement for PAR1 for APC’s
neuroprotective actions.15,16 In 2015, an extensive review in this
journal noted that PAR1 appeared to be required for APC’s
remarkably diverse pharmacologic benefits in preclinical injury
studies, including brain, coronary, and kidney ischemia-reperfusion
injuries, sepsis, total body radiation, organ transplants, and wound
healing, etc.17 Biased signalingmediated by PAR1 is thought to be
central to APC’s benefits in many of those preclinical studies.17,18

Other cell receptors, especially endothelial cell protein C (EPCR)
and PAR3 inter alia, may also significantly contribute to APC-
initiated cell signaling.19-22 However, in this review, we focus on 1
type of APC’s nonhemostatic beneficial properties, namely neu-
roprotection, and on 1 receptor that mediates APC’s neuro-
protective activities, namely PAR1.

APC
APC pathways
Althoughplasma proteinC has been studied for decades,23-25much
remains to be learned about the pathways that are regulated by
APC. Protein C is a serine protease zymogen whose normal plasma
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concentration is 70 nM, whereas very low levels of active APC
(40 pM) are also present in circulating plasma. The physiologic
mechanism for protein C activation involves proteolysis at Arg169
in EPCR-bound protein C by thrombomodulin-bound thrombin.

Two major distinct types of APC activities have been well de-
fined as involving anticoagulant activity and cell signaling
activities.17,23-25 For its anticoagulant effects, APC binds to
phospholipid membranes, where it irreversibly inactivates fac-
tors Va and VIIIa by proteolysis at 1 or more Arg residues
(Figure 1A); these inactivation reactions are greatly enhanced
by physiologically important protein and lipid cofactors (eg,
protein S, high-density lipoprotein, glucosylceramide, etc). Com-
pletely independently of its anticoagulant actions, APC can
initiate cell signaling that can result in multiple distinct cytopro-
tective actions, including but not limited to antiapoptotic and
anti-inflammatory activities, stabilization of endothelial barriers to
prevent vascular leakage, extensive alterations in gene expression
profiles, and neurogenesis (Figure 1B-C).17,23-25 Each of these
actions may contribute to APC’s neuroprotective activities for
different cell types (see “APC and neuroprotection”). These
cytoprotective and neurogenerative activities most often, but not
always, have been shown to involve PAR1 and EPCR; often other
receptors are required, such as PAR3, sphingosine phosphate 1
receptor 1 (S1P1), the integrinMac-1 or other b1 and b3 integrins,

apolipoprotein E receptor 2, epidermal growth factor receptor, and
Tie-2 (tunica intima endothelial receptor tyrosine kinase 2).17,25-32

In this review, we focus mainly on APC-induced signaling that in-
volves PAR1, which is thought to occur in caveola, where EPCR-
bound APC cleaves PAR1 (Figure 1B).11,12,26,33-35

The half-life of endogenous circulating APC in humans is 15 to
0 minutes and is dominantly determined by its irreversible re-
action with the plasma serine protease inhibitors, alpha1-
antitrypsin, protein C inhibitor, and alpha2-macroglobulin.

Engineering selectivity for APC activities
Detailed knowledge for structure-activity relationships of protein
C was initially driven by the goal to understand the basis for
protein C dysfunction in venous thrombosis patients who pre-
sented with protein C mutations: fundamentally, a major goal
was to understand protein-protein interactions involving APC.
However, once the cell signaling activities of APCwere realized,7

we strove to engineer recombinant APC mutants, which selec-
tively retained only its cell signaling activity or only its antico-
agulant activity. This was based on the hypothesis that the
substrates, factors Va and VIIIa, for APC’s anticoagulant actions
differed greatly from the substrates for signaling; indeed, such is
the case for PAR1 and PAR3 and APC’s receptors (EPCR, apoER2,
Mac-1, Tie2) for its cell signaling actions. Signaling-selective APC
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Figure 1. APC anticoagulant and cell signaling path-
ways and the structure of signaling-selective 3K3A-
APC. (A) Anticoagulant activity of APC involves the
proteolytic inactivation of factors Va and VIIIa on mem-
brane surfaces containing phospholipids that are derived
from cells, platelets, lipoproteins, or cellular micropar-
ticles. The irreversible inactivation of factors Va and VIIIa
to yield inactive factors Vi and VIIIi by APC is accelerated
by a variety of lipid and protein cofactors (eg, glucosyl
ceramide, protein S, etc). (B) Beneficial direct effects of
APC on cells require the EPCR and PAR1. One distinction
between proinflammatory thrombin signaling and cyto-
protective APC signaling is the localization of APC sig-
naling in the caveolin-1–rich microdomains (caveolae).
(C) Neuroprotective mechanisms for APC effects on
cells may also involve other receptors including PAR-3.
APC-initiated signaling effects on cells can include
antiapoptotic activities, anti-inflammatory activities, in-
hibition of the inflammasome, stabilization of endothelial
barrier functions including the BBB, and neurogenesis.
(D) The polypeptide structure of APC comprises an
N-terminal GLA domain (green) that binds to negatively
charged lipids and EPCR, 2 EGF-like domains (blue), and
the protease domain containing the active site triad of
serine, histidine, and aspartic acid residues (red). Four
glycosylation sites are indicated by gray-shaded moie-
ties. Substrate selectivity of this protease is determined
by interactions between the targeted substrates and the
active site and also by multiple unique binding exosites
on APC that vary for different substrates. The protease
domain space–filled model (see insert) highlights in the
yellow box 3 positively charged lysine (K) residues within
the so-called 37 loop (KKK 191-193), which is an exosite
for APC’s recognition of factors Va and VIIIa. Mutation of
these 3 residues to alanine (3K3A-APC) reduces APC’s
anticoagulant activity by .90%, but it does not affect its
interactions with the cytoprotective substrates, PAR1, or
its other known cell signaling receptors. Thus, 3K3A-APC
is very signaling selective.
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mutants and an anticoagulant-selective APC mutant were gen-
erated by different laboratories.17,25,36-43 As depicted in the inset
in Figure 1D, which shows the domain structure of APC, the
replacement in APC of the 3 Lys residues by 3 Ala (residues
191-193), generating 3K3A-APC, provided the first signaling-
selective mutant, which lost .90% of its anticoagulant activity
while retaining normal cell signaling activities37; this mutant re-
tains all the neuroprotective properties of wild-type (wt)-APC,
and it has been translated to clinical trials for acute ischemic
stroke21 (see “Ischemic stroke therapy: translation for 3K3A-APC”).

PAR1
PAR
The 4 PARs (PAR1-4) comprise a unique subset of the larger
G-protein–coupled receptor (GPCR) family.8,9,44-48 Remarkably, PARs
carry their own agonist ligand (Figure 2A-B), albeit encrypted until
proteolytic activation. In contrast to the general external ligand-
receptor binding mechanisms for GPCR activation, PARs instead
rely on proteases to deencrypt their intramolecular ligand, a
mechanism in which proteolysis generates a new N-terminus that
acts as a tethered ligand with agonistic properties (Figure 2A).49 By
sensing specific proteases, PARs translate and interpret the con-
ditions of their immediate environment for endothelial cells,
platelets, neurons, immune system cells, and other cells to induce
activation of appropriate cell signaling pathways. Many different
proteases, including coagulation factors (thrombin, APC, factor VIIa,
factor Xa), metalloproteinases, kallikreins, and others, engage the
4 different PARs to varying extents with a diverse repertoire of
functional outcomes.10,11,50 However, the efficient activation of
PAR1 by thrombin, facilitated by the high affinity of thrombin for a
hirudin-like sequence present in PAR1 (and PAR3), helped to define
PAR1 as the “thrombin receptor.”51

Proinflammatory effects and a loss of the endothelial barrier
function with vascular leakage result from PAR1 activation
by thrombin on endothelial cells. Surprisingly, these PAR1-
dependent effects of thrombin contrast with PAR1-dependent
signaling by APC that includes anti-inflammatory effects and
enhancement of endothelial barrier function.18,33,52 These op-
posing effects on the same GPCR, PAR1, posed a conundrum of
how APC could elicit cytoprotective signaling involving the
thrombin receptor (ie, PAR1) and raised 2 fundamental ques-
tions: (1) How can PAR1 distinguish whether its activation oc-
curred by thrombin or APC to mediate distinctly different
signaling repertoires with opposite functional outcomes? (2)
How can APC mediate physiologically relevant PAR1 signaling
when PAR1 activation by thrombin, at least in vitro, is kinetically
favored by several orders of magnitude compared with APC? One
consideration for contemplating these questions is that there
are differences in PAR1 internalization after activation by either
thrombin or APC. Activation of PAR1 by thrombin results in rapid,
agonist-induced internalization of PAR1 that terminates induction of
signaling, whereas PAR1 agonist-induced internalization is not
observed after activation by APC.53-56 This indicates that APC-
activated PAR1 may accumulate on the cell membrane over time
and induce continued signaling once a critical interactome is as-
sembled and once certain cellular thresholds are overcome. Such
temporal interpretation of APC-induced signaling is consistent with
the delayed initiation of notable signaling events in cells and the
general requirement of sustained APC signaling to initiate maximal

biological functions on cells. Another consideration is that there is
potentially a distinction between endogenously generated APC vs
therapeutically administered, exogenous APC, as some evidence
indicates that locally generatedAPCmay have superior activity over
exogenously added APC.57

PAR1 biased signaling
Answers to the question of how thrombin or APC can mediate
distinctly different, even opposite PAR1 signaling repertoires
came from considerations of receptor localization in the mem-
brane and discovery of a novel APC cleavage site in PAR1, linked
to biased GPCR signaling. Membrane localization studies
showed that PAR1-dependent cytoprotective signaling by APC
required colocalization of EPCR and PAR1 in caveolin-1–
enriched cellular microdomains, caveolae (Figure 1B).33,34 The
notion that APC-induced PAR1 signaling involved b-arrestin–
mediated activation of signaling pathways rather that the tra-
ditional G proteins indicated that PAR1 was intrinsically capable
of biased signaling, a well-known phenomenon of GPCRs that
explains how different ligands can use the same receptor to se-
lectively activate or inhibit specific signaling cascades with dis-
tinct biological functions.35,58-61 The discovery of noncanonical
PAR1 activation due to cleavage at Arg46 by APC (Figure 2A),
as opposed to the canonical PAR1 activation by thrombin’s
cleavage at Arg41, provided the molecular mechanism for the
generation of biased PAR1 ligands.18 Collectively, these ad-
vances summarized above induced a paradigm shift for the
selectivity of PAR1 signaling repertoires and firmly established
noncanonical PAR1 activation and biased signaling as the
distinction between PAR1 activation by APC or thrombin.10,11,17

GPCRs, including PAR1, are now no longer considered simply
as on-off switches, because they populate a spectrum of multiple
conformations with potentially selective association to either
G proteins (G-protein bias), b-arrestin (b-arrestin bias), or both
(neutral bias), and different GPCR conformers induce different
modes of cell signaling.61,62 Canonical PAR1 activation by
thrombin at Arg41 generates the classical N-terminal sequence,
a SFLLRN-tethered ligand that is strongly biased toward a
G-protein signaling repertoire (Figure 2B).8,63 The noncanonical
activation of PAR1 by APC at Arg46 generates a different
N-terminal sequence, the NPNDKY-tethered ligand (also known
as thrombin receptor peptide 47, TR47) that is a biased agonist
selectively stabilizing PAR1 conformations that associate
with b-arrestin and induce b-arrestin–dependent signaling
cascades, but not the typical G-protein signaling (Figure 2C).18,35

Studies using peptides containing the different N-terminal se-
quences (eg, “thrombin receptor activating peptides” [TRAP]
beginning with SFLLRN- or TR47 peptides beginning with
NPNDKY-) trigger PAR1-dependent, different signaling actions
resembling those triggered by the respective proteases, pro-
viding data supporting the biased signaling concept of PAR1.18

Biased agonism is dictated by the ligand, but biased signaling is
a property of the receptor indicating that allosteric modulators
might also contribute by selectively stabilizing certain subsets of
PAR1 conformations, thereby introducing receptor bias to
preferentially induce b-arrestin–dependent signaling cascades
regardless of the agonist.64,65 This may provide an explanation
for the neuroprotective effects of thrombin at very low con-
centrations, especially when protein C is bound to EPCR, a
phenomenon sometimes referred to as “EPCR occupancy.”66-68
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In vivo proof of concept for APC-initiated PAR1 biased signaling
was recently presented in studies of stroke and sepsis using
genetically modifiedmouse strains carrying R41Q or R46Q point
mutations in PAR1.22 In the setting of transient distal MCAO
stroke studies, 3K3A-APC significantly reduced infarct size for wt
mice and QQ41-PAR1 mice but not for mice carrying QQ46-
PAR1 (Figure 2D). In measurements of ischemia-induced neu-
ronal apoptosis (Figure 2E), 3K3A-APC was antiapoptotic in wt
and QQ41-PAR1 mice but not in QQ46-PAR1 mice. Thus, for
3K3A-APC’s neuroprotective actions in stroke, not only is PAR1
required but also Arg46 in PAR1 is specifically required, strongly
supporting the concept that APC’s neuroprotection requires
PAR1 biased signaling.

APC can induce noncanonical activation of PAR3 by cleavage
at Arg41 as opposed to the canonical activation of PAR3 by
thrombin’s cleavage at Lys38.69 Although PAR3 is considered to
be a nonsignaling GPCR, its requirement for neuroprotective
effects of APC in vivo indicates our incomplete understanding of
PAR3 engagement in APC-mediated signaling.16,45,70 Emerging
concepts in molecular mechanisms of GPCR signaling,50,58,71

such as GPCR dimerization bias, may provide some insights into
how noncanonical PAR3 activation may contribute to APC-
induced cytoprotective signaling as PAR3 is known to form
heterodimers with PAR1.50,72 Alternatively, transactivation bias,
such as the phosphorylation and activation of the receptor
tyrosine kinase Tie2 by noncanonical PAR3 activation, may
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promote triggering of signaling nodes that are normally outside
the realm of PARs.32,73,74

PAR1 cleavage by other proteases
Besides APC and thrombin, other proteases are known to cleave
PAR1, including inter alia, elastase, cathepsin G, proteinase 3,
kallikrein, granzymes A and B, matrix metalloproteinases 1, 2, 9,
and 13, plasmin, and factors VIIa and Xa in EPCR-dependent
reactions (see Flaumenhaft and De Ceunynck, 10 Hamilton and
Trejo,11 Nieman,50 Isermann,75 Mohan Rao et al76). PAR1 cleavages
by theseproteases havebeen characterized to varying extents; such
cleavagesmay either activate or inactivate PAR1 and/ormay involve
biased signaling. Cleavage of PAR1 at Asp39 by matrix metal-
loprotease 1 has beenwell studied, and someof its potential effects
have been characterized in vitro.77 However, none of these pro-
teases provides neuroprotection, the focus of this review; thus, their
PAR1 cleavage activities are not further discussed here.

APC and neuroprotection
APC is neuroprotective for a variety of acute and chronic neu-
ropathologies, including ischemic stroke, traumatic brain injury,
chronic cerebral ischemia, amyotrophic lateral sclerosis, and
multiple sclerosis, as previously reviewed.17,19-21,25,75,78-81 For
these neuroprotective activities, APC’s cell signaling activities
are central to the primary mechanism of action because many
studies show that various APC receptors, especially PAR1, PAR3,
and EPCR, are required, and signaling-selective APC’s are as
active as neuroprotectants as wt-APC. Both in vitro and in vivo
studies showed that APC beneficially affects all the cells of the
neurovascular unit and neurons (Figure 3A). APC in blood readily
accesses endothelial cells to stabilize the blood-brain barrier (BBB)
and also can reach neurons due to EPCR-dependent transport
of APC across the BBB.82 In later discussion, we highlight APC’s
neuroprotective actions relevant to ischemic stroke and summa-
rize the emerging translation of this knowledge to the clinic.

Ischemic stroke
Three clinical research studies from the 1990s stimulated us to
pursue studies of the neuroprotective activity of APC. These
included the finding that circulating APC was lower in stroke
patients vs controls, that plasma protein C levels were inversely
associated with ischemic stroke, and that during the short is-
chemic phase in the brain during routine carotid endarterec-
tomy, brain-blood levels of APC were increased.83-85 In 2001, we
demonstrated human APC’s neuroprotection in a murine is-
chemic stroke model, which employed middle cerebral artery
occlusion (MCAO).86 Subsequently, we used recombinant mu-
rine APC87 or its signaling-selective variants to avoid cross-
species artifacts in mechanistic studies.19,21

When human hypoxic brain endothelial cells were studied, recombi-
nant human andmurine wt-APC had remarkable antiapoptotic activity
that was based on reducing p53, normalizing the proapoptotic
Bax/Bcl-2 ratio, and lowering caspase-3 signaling.15 Moreover, these
neuroprotective benefits of APC were observed using MCAOmurine
models, and data showed that APC’s neuroprotection in vitro and in
vivo requires APC-initiated PAR1-dependent and PAR3-dependent
cell signaling. To enable translation to the clinic for combined therapies
using tissueplasminogenactivator (tPA) andAPC,weshowed thatAPC
protects the brain from tPA’s toxicity. For example, MCAO studies
showed that APC reduced infarct volume (Figure 3B), tPA-induced

bleeding (Figure 3C), and proinflammatory upregulation of NF-ĸB
(Figure 3D) in wt mice but not in PAR1 null mice.19,88,89 Detailed
studies showed that APC was directly neuronal protective in vitro
and in vivo,16 and mechanistic studies showed that this neuronal
protection requires PAR1, PAR3, and EPCR.16,19 For example,
when cultured neurons from wt mice and PAR1 and PAR3
knockout mice (Figures 3E) were studied, as well as those 3 mice
strains themselves, 3K3A-APC reduced N-methyl-D-aspartate–
induced neuronal apoptosis.16,19,88-90 Thus, APC’s neuronal pro-
tective actions require PAR1 andPAR3. These results anddata from
recent studies of mice carrying the 46QQ-PAR1 point mutation
strongly support the concept that APC-induced, PAR1-dependent
biased signaling following Arg46 cleavage is central to APC’s in
vivo neuroprotective benefits in this model of ischemic stroke.22

APC and neuroinflammation
Neuroinflammation is a major causal factor for ischemic stroke
pathology. NLRP3 inflammasomes that generate caspase-1,
which, in turn, generates the cytokines interleukin-1b and in-
terleukin-18 help to mediate development of inflammation in
ischemic stroke.91-93 Suppression of NLRP3 is reported to at-
tenuate tPA-induced hemorrhagic transformation in a rat stroke
model.94 We believe that the recent discovery that signaling se-
lective 3K3A-APC thwarts NLRP3 inflammasome activation is likely
a major factor contributing to APC’s neuronal anti-inflammatory
actions.95 Consonant with this general point is the observation
that APC suppresses the proinflammatory upregulation of NF-ĸB
(Figure 3D), which is linked to inflammasome pathology.

Ischemic stroke therapy: translation
for 3K3A-APC
No new drug has been approved since tPA for therapy for is-
chemic stroke.96 Efforts to translate the signaling-selective 3K3A-
APC variant from preclinical successes to the clinic for therapy for
ischemic stroke were based on its multiple, powerful neuro-
protective actions summarized above and elsewhere19-21 and on
the promise of reduced bleeding risk compared with wt-APC
since.90% of anticoagulant activity is lost due to its 3 Lys-to-Ala
mutations.37,38 Development of a new process for manufacturing
3K3A-APC for clinical studies enabled establishment of its safety
and pharmacokinetic profiles in 2 animals.97 A successful phase 1
trial of 3K3A-APC in healthy adult human subjects established its
safety and maximum tolerated dose (0.54 mg/kg) when it was
administered IV 5 times every 12 hours,98 laying the groundwork
for subsequent phase 2 studies in stroke patients.

The phase 2A NeuroNEXT trial NN104 (RHAPSODY) (see
NCT02222714 at clinical trials.gov) was a dose-escalation safety
trial for 3K3A-APC in stroke patients with a primary objective to
evaluate the drug’s safety, and it included single doses and
4 multiple ascending doses of drug. Acute ischemic stroke
patients were treated first with recanalization therapy (tPA and/or
thrombectomy which mechanically removes thrombi from large
arteries). Then, as in phase 1 studies, participants received up to 5
3K3A-APC infusions, each separated by 12 hours, beginning within
2 hours of recanalization therapy (tPA and/or thrombectomy). The
RHAPSODY trial reported in January 2018 showed that 3K3A-APC
in acute stroke patients was safe and that the maximum tolerated
dose was 0.54 mg/kg.99 Hemorrhage incidence was reduced in
3K3A-APC–treated patients vs placebo-treated patients from
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87% to 67% (P 5 .046). Thus, successful phase 1 and phase 2A
trials have set the stage for further development of 3K3A-APC for
therapy for acute ischemic stroke.

APC and regenerative activities
Among APC’s nonhemostatic activities, its recently discovered
ability to promote murine and human neurogenesis is certainly a
rather striking, and very promising, phenomenon. This activity has
been characterized in vivo for murine neurons in the setting of
transient MCAO and in vitro and in vivo for fetal human neural
stem and progenitor cells (NSCs). The signaling selective 3K3A-
APC variant not only reduces damage to neurons but also pro-
motes growth and regeneration of neurons.70,100,101 This section
summarizes the ability of APC to manifest regenerative activities.

Central nervous system (CNS) regenerative effects
of APC and its cell-signaling analogs
In studies using a murine 1-hour MCAO injury followed by reper-
fusion, APC promoted postischemic endogenous neovascularization

and neurogenesis.100 An APC multiple dosing regimen initiated 3 to
6 days after stroke enhanced cerebral perfusion in the ischemic
border, inhibited BBB leakage of proteins, and increased
the number of endothelial replicating cells by approximately
fivefold, as determined within 7 days of stroke. Moreover, the
APC multidosing regimen starting 3 to 6 days after an ischemic
insult increased proliferation of neuronal progenitor cells in
the subventricular zone by 40% to 50%, as well as migration of
newly formed neuroblasts from that zone toward the ische-
mic border by approximately twofold. These effects of APC
on neovascularization and neurogenesis required PAR1 and
appeared to be independent of APC’s reduction of the in-
farction volume. That study was first to characterize neurogenesis
and also to suggest a significant extension of the therapeutic
window for APC intervention in the postischemic brain.100

The discovery of murine neurogenesis in vivo led to in vitro
studies of whether human 3K3A-APC can influence neuronal
production from human resident progenitor cells.70 In 2013,
studies of human fetal NSCs showed that 3K3A-APC stimulates
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Figure 3. Neuroprotective effects of APC in the neuro-
vascular space and in neurons. (A) APC can provide multiple
neuroprotective effects in the neurovascular unit of the brain
after ischemic stroke. APC inhibits the breakdown of the
BBB, preventing extravasation of inflammatory cells. EPCR-
mediated transfer of APC across the BBB permits APC to
engage PAR1, PAR3, and EPCR directly on neurons, glia, and
other cells in the brain to convey multiple cytoprotective
activities and dampen neuronal damage. APC attenuates
neuroinflammatory responses. Furthermore, APC promotes
neurogenesis and vascular regeneration in the brain that di-
rectly contribute to repair and regeneration of the affected
brain tissue after ischemic stroke (see Figure 4). Studies
showing the requirement for PAR1 for APC’s neuroprotection
are seen in panels B-D that show an assessment of brain
damage after a 1-hour transient MCAO in wt (PAR11/1) and
knockout (PAR12/2) mice treated with recombinant murine
(rm)-tPA and recombinant murine wt-APC (0.2 mg/kg).
Damage quantified at 24 hours after onset of ischemia was
based on brain infarct volume (B), hemorrhage (C), and altered
levels of NF-ĸB (D). Values are mean 6 standard error of the
mean (SEM), and n5 3-6mice per group; * designates data for
mice receiving both APC and rm-tPA (for details regarding
panels B-D, see Cheng et al88). (E) Studies using cultured
neuronal cells from wt mice (PAR11/1, PAR31/1) and PAR12/2

and PAR32/2 knockout mice treated with 3K3A-APC showed
the requirement for both PAR1 and PAR3 for 3K3A-APC’s direct
neuronal protection against N-methyl-D-aspartate–induced
excitotoxic injury of neurons (E). Values are mean6 SEM, n5 5
mice per group. (For details regarding panel E, see Guo et al90).
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human neuronal proliferation and differentiation. 3K3A-APC’s ef-
fects were comparable to those previously reported for fibroblast
growth factor andbrain-derived neurotrophic factor.Of note, 3K3A-
APC’s effects included inhibition of astroglial differentiation and
a modest antiapoptotic effect during neuronal production.70

Anti-PAR blocking antibodies (Figure 4A), small interfering RNA
inhibition studies of PARs (Figure 4B), sphingosine 1 phosphate

receptors (S1P1-5; not shown), and sphingosine kinases (SphKs)
(Figure 4C) revealed that PAR1, PAR3, S1P1, and SphK-1 are re-
quired for the in vitro human fetal neurogenic effects of 3K3A-APC.
In this setting, 3K3A-APC activated Akt, a downstream target of
S1P1, andAkt activationwas inhibited by silencing of S1P1, SphK-1,
PAR1, and PAR3 (Figure 4B-C). Moreover, adenoviral transduction
of human NSCs with a kinase defective Akt mutant abolished the
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embryo-derived NSCs in vitro. (A) Stimulation of human NSCs proliferation in culture by 3K3A-APC requires PAR1 and PAR3 but not PAR2. Quantification of proliferation was
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EPCR. Through integration of signaling linked tomultiple downstream effectors, activation of the PI3K/Akt signaling node by 3K3A-APC induces proliferation, migration, survival,
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effects of 3K3A-APC on NSCs, confirming a key role for Akt acti-
vation in 3K3A-APC–mediated proliferation, migration, and neu-
ronal differentiation of human fetal NSCs.70 Therefore, these in vitro
studies revealed the potential of APC-based therapy for structural
repair of the human CNS through the actions of PAR1, PAR3, and
S1P1 in resident NSCs (Figure 4D).

Potential of stem cells and APC
combination therapy
The findings above stimulated a subsequent study that asked
whether 3K3A-APC therapy combined with NSC delivery might
be developed as an effective combination therapy for neuronal
replacement and circuit repair after stroke.101 This study in-
vestigated the effects of late postischemic 3K3A-APC treatment
on the production in vivo of neurons from transplanted human
fetal NSCs,102 and the effects of this combination therapy on
long-term neurological recovery and the restoration of disrupted
neural circuitry in the postischemic mouse brain. Using the
permanent distal MCAO model in mice, this study showed that
late postischemic treatment of mice with 3K3A-APC adminis-
tered 7 days after distal MCAO–induced stroke stimulated neu-
ronal production by human NSCs transplanted into the mouse
brain, promoted circuit restoration, and improved functional
recovery.101 This study elegantly demonstrated the improved
functional integration of grafted NSCs into the host neuronal
circuitry as a result of 3K3A-APC treatment, suggesting 3K3A-
APC may potentiate the integration and neurogenic activity of
transplanted human NSCs in vivo in man. This combination
therapy could be of interest not only in the repair of stroke-
damaged neural circuits but also in regard to NSC delivery
for various neurological disorders characterized by discrete
neuron loss.

Therapy with human stem cells holds promise for the treatment
of stroke and other CNS disorders.103,104 Stem cell therapy for
stroke has been validated in multiple stroke models in rodents,
large mammals, and primates.105-109 These studies have re-
peatedly suggested that grafted cells homing to the damaged
brain regions can exert multiple beneficial effects such as
neuron protection, anti-inflammation, neovascularization, and
proneurogenesis, which all ultimately result in improved neu-
rological outcomes.103,105,107 As noted above, the study of Wang
et al provided direct evidence for functional integration of
transplanted cells into the host neural circuits, which is accom-
panied by substantial improvement in sensory-motor perfor-
mance after stroke.101 This suggests that this combination
approach employing 3K3A-APC may potentially be used for late
treatment of stroke in patients in ongoing phase 1 (NCT01151124)
and phase 2 (NCT02117635) clinical trials that involve directly
injectingmanufacturedNSCs into the brain of patients that remain
moderately to severely disabled following an ischemic stroke. For
example, the phase 1 PISCES trial found that a single intracerebral

injection of up to 20millionNPCs did not have adverse events and
was associated with improved neurological function.110 As the
3K3A-APC regimen for ischemic stroke (RHAPSODY) has proven
to be safe in ischemic stroke patients,99 APC-based combination
therapies combined with NSC transplantation in ongoing and
future clinical trials may help regeneration of stroke-damaged
CNS circuits.

Conclusions
APC initiates biased cell signaling via cleavage at Arg46 in
PAR1 in combination with other cell receptors. This non-
hemostatic property of signaling selective 3K3A-APC pro-
vides pharmacologic benefits that merit translation to the
clinic.17 3K3A-APC exerts neuroprotective actions via multiple
cells of the neurovascular unit and appears to be safe in is-
chemic stroke patients. This justifies further clinical testing
for efficacy in ischemic stroke patients. The discovery that
3K3A-APC combined with human NSCs leads to enhanced
neurogenesis should encourage translational research cen-
tered on 3K3A-APC not only for ischemic stroke but also for
multiagent, combination therapies with NSCs for multiple
neuropathologies.
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