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Several important physiological processes, from perme-
ability to inflammation to hemostasis, take place at the
vessel wall and are regulated by endothelial cells (ECs).
Thus, proteins that have been identified as regulators of
one process are increasingly found to be involved in other
vascular functions. Such is the case for von Willebrand
factor (VWF), a large glycoprotein best known for its
critical role in hemostasis. In vitro and in vivo studies have
shown that lack of VWF causes enhanced vasculariza-
tion, both constitutively and following ischemia. This evi-
dence is supported by studies on blood outgrowth EC
(BOEC) from patients with lack of VWF synthesis (type 3
von Willebrand disease [VWD]). The molecular pathways
are likely to involve VWF binding partners, such as integrin
avf3, and components of Weibel-Palade bodies, such as

angiopoietin-2 and galectin-3, whose storage is regulated
by VWF; these converge on the master regulator of an-
giogenesis and endothelial homeostasis, vascular endo-
thelial growth factor signaling. Recent studies suggest that
the roles of VWF may be tissue specific. The ability of VWF
to regulate angiogenesis has clinical implications for a
subset of VWD patients with severe, intractable gastro-
intestinal bleeding resulting from vascular malformations.
In this article, we review the evidence showing that VWF is
involved in blood vessel formation, discuss the role of VWF
high-molecular-weight multimers in regulating angiogen-
esis, and review the value of studies on BOEC in developing
a precision medicine approach to validate novel treatments
for angiodysplasia in congenital VWD and acquired von
Willebrand syndrome. (Blood. 2018;132(2):132-140)

Introduction

von Willebrand factor (VWWF) is a large glycoprotein that mediates
platelet adhesion to the subendothelium during vascular injury
and stabilizes coagulation factor VIII (FVIII)." The importance of
VWEF in hemostasis is illustrated by the fact that its deficiency and/
or abnormality causes von Willebrand disease (VWD), the most
frequent inherited bleeding disorder. Over the past 2 decades,
other roles for VWF in the vasculature have been identified, in-
cluding inflammation, permeability, and angiogenesis (reviewed
in Rauch et al?). The function of VWF is linked to its interaction with
multiple cellular and extracellular proteins and to its ability to
coordinate the formation of Weibel-Palade bodies (WPBs). The
relevance of these new roles of VWF to patients with VWD is still to
be defined. The ability of VWF to regulate angiogenesis, however,
is connected with gastrointestinal (Gl) vascular malformations ob-
served in some patients with VWD and acquired von Willebrand
syndrome (AVWS), which can cause severe bleeding. In this article,
we will review the evidence supporting a role for VWF in angio-
genesis and the clinical implications of these findings.

VWEF and the vascular endothelium

VWEF structure-function studies and

binding partners

In EC, VWF is constitutively synthesized and stored in WPB.34
Plasma VWF derives almost entirely from constitutive endothelial
secretion>®; VWF released into the subendothelium is involved

132 @ blood® 12 JULY 2018 | VOLUME 132, NUMBER 2

in EC adhesion and binding to extracellular matrix.” The vwf
sequence on chromosome 12 codes for a pro-polypeptide of
2813 amino acids, of which 2050 form the mature peptide.®?
VWEF is synthesized as a monomer of ~220 kD containing
multiple domains'®; some domains mediate binding to a wide
array of proteins. The number of reported VWF binding partners
is increasing rapidly (Table 1). Many interactions, including
binding to platelet GPlb and collagen, are localized in the
A domains. The binding partners’ profile for VWF is likely to vary
depending on its location (plasma vs vessel wall vs intracellular
compartments), the local microenvironment, and physiological
or pathological cues. Experimental data for each ligand will be
required to build a functional map of VWF interactions.

Another key determinant of VWF function is its multimeric struc-
ture. The processes of VWF biosynthesis and multimerization have
been reviewed elsewhere.”'? The entire spectrum of circulating
VWEF species ranges from single dimer to multimers made of up to
20 dimers,"® with high-molecular-weight multimers (HMWMs) the
most hemostatically active. Several lines of evidence suggest that
VWF multimerization is also important for VWF regulation of an-
giogenesis (see “VWF and WPB: the endothelial storage cup-
board”). Control of multimerization is carried out by a specific
plasma protease, called a disintegrin-like and metalloprotease with
thrombospondin-type 1 repeats, member-13 (ADAMTS-13). This
activity is regulated by high-shear stress forces, which stretch VWF
in the circulation thus exposing the cleavage site for ADAMTS-13
in the A2 domain.'*"> The importance of ADAMTS-13 in regulating
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Table 1. VWF binding partners

Protein VWEF interacting domain Reference
Plasma proteins Fvill D'D3 100
ADAMTS13 A1-A2-A3 101
Fibrin C1-Cé 102
Complement components C1-C2 103
Platelet receptors GP Ib Al 104
GP llbllla C4 105
P-selectin D'-D3 106
EC receptors Integrin avB3 Cca 7,86
P-selectin D'-D3 106
Choline transporter like protein-2 Al 107
CLEC4AM — 108
VSMC receptors Integrin avB3 Ca 80
Leukocyte receptors B2 integrins D’-D3, A1-A2-A3 109
PSGL-1 Glycans 109
Siglec-5 — 110
LRP1 — 111
ECM proteins Collagen | A3 112
Collagen llI A3 112
Collagen VI Al 113
Thrombospondin A3 114
Heparin Al 115
Others (plasma and/or cellular) Histones A1l 116
DNA/NETs Al 117
Angiopoietin-2 Al 118
Interleukin-8 — 19
Galectin 1 and 3 Glycans 97
Osteoprotegerin Al 120
Multimerin 1 A1 A2 A3 121

ECM, extracellular matrix; NET, neutrophil extracellular trap.

hemostasis is demonstrated by the fact that its deficiency
(by genetic mutations in ADAMTS-13 or inhibitory antibodies)
causes the rare disorder thrombotic thrombocytopenic purpura,
in which ultralarge VWF HMWM, similar to those presentin WPB,
are uncleaved and induce platelet aggregation and thrombotic
microangiopathy.'®

VWF and WPB: the endothelial storage cupboard

In EC, HMWM of VWF are stored in WPB and released upon
stimulation, whereas the lower MWM are released constitutively.®
Detailed studies have shown that VWF directs the biogenesis of
WPB. Transfection of VWF pro-peptide or recombinant VWF into
non-EC induces formation of WPB structures.’”2° Conversely, lack
of VWF expression either in small interfering RNA (siRNA)-treated
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human umbilical vein endothelial cells or in blood outgrowth EC
(BOEC) from type 3 (null) VWD results in loss of WPB.2! Studies on
naturally occurring VWF mutations in HEK-293 cells and on BOEC
from patients with type 1 and type 2 VWD showed that decrease and/
or abnormal processing of VWF can also affect WPB formation.?2#

Mass spectrometry studies have recently characterized the
content of WPB.252¢ Together with VWF, WPB store proteins that
regulate vascular processes such as angiogenesis and inflam-
mation, including osteoprotegerin, galectin-3 (Gal-3), P-selectin,
interleukin-8, and angiopoietin-2 (Ang-2).427 Interestingly, not all
WPB contain all components; indeed, some WPB proteins, such
as Ang-2 and P-selectin, appear to be mutually exclusive.?®
Moreover, WPB distribution appears heterogeneous among EC

€ blood® 12 JULY 2018 | VOLUME 132, NUMBER 2 133

20 aunr g0 uo 3senb Aq jpd'g1069.P00Iq/L¥690Y L/ZE L/2/ZE | /sPd-BloE/pOO|qABU SUOlEDlgndyse//:dly woly papeojumoq



within the same vascular bed.?°?? Early studies investigating the
distribution of WPB in the vasculature found lower WPB numbers
in microvessels,3® with fewer WPB in arteriolar endothelium
compared with capillaries."

VWF heterogeneity in EC and tissues

VWEF expression has been used for decades as a marker of the
vascular endothelium. However, several studies have reported
heterogeneous levels of VWF in EC from different tissues and in
arterial vs venous vs capillary endothelium.?2-3% Early studies,
mostly in nonhuman tissues, showed that VWF messenger RNA
is expressed at higher levels in the venous endothelium com-
pared with arteries and arterioles. Interestingly, the different
VWEF levels in EC from different sources are maintained in cultured
EC.35 Elegant studies by Aird et al demonstrated the influence of
the microenvironment on endothelial VWF expression.?” Some
transcriptional activators/repressors and epigenetic mechanisms
that control tissue-specific expression of VWF have been inves-
tigated.*® Remarkably, VWF expression can also vary between EC
within the same tissue.?*%? The heterogeneity of expression of
VWEF is likely to affect its role in a tissue-specific manner, as suggested
by experimental data (see “VWF as a marker of angiogenesis”).

VWF as a marker of angiogenesis

In 1971, Zimmerman first reported immunological detection of
the protein known today as VWF, called FVlll-related antigen at
the time.** The overlap between VWF and FVIII antigen termi-
nology remained for several years; hence, early publications on
VWF expression in the vasculature refer to FVIll-related antigen
or antihemophilic factor. In 1972, Hoyer et al reported that an
antibody to the "antihemophilic factor” detected a protein
expressed in the endothelium.** Since then, hundreds of stud-
ies have used VWF as a marker of EC, because of its selective
endothelial expression, combined with high abundance and
good specific antibodies. VWF expression has been used ex-
tensively to quantify angiogenesis in a variety of tumors.#54¢
However, VWF endothelial expression itself may be regulated in
tumor endothelium. Zanetta et al reported upregulation of VWF
expression by angiogenic factors vascular endothelial growth
factor (VEGF) and fibroblast growth factor-2,#” which are highly
present in the tumor microenvironment. Conversely, anti-VEGF
treatment with bevacizumab has been shown to decrease VWF
plasma levels.*® Thus, at least in some tumors, VWF expression
may not only reflect the increase in microvasculature, but could
also be a consequence of specific regulation of its expression.

VWE as a regulator of angiogenesis:

clinical evidence

Decrease or dysfunction of VWF causes VWD. The disease is
highly heterogeneous, with a complex classification*” that can
be simplified to identify 3 main types: type 1, in which VWF
plasma levels are decreased; type 2, resulting from dysfunctional
VWEF; and type 3, with virtual absence of plasma VWF. VWD can
also be acquired (AVWS) in circumstances in which circulating
VWEF is dysfunctional or reduced from a variety of pathogenic
mechanisms including autoantibodies and mechanical-induced
unfolding followed by proteolytic cleavage.®® Bleeding is the
main clinical manifestation in both congenital and acquired VWD;
however, a connection between VWF and vascular abnormalities
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has been known for a long time. Early descriptions of VWD in the
1930s included abnormalities of the Rumpel-Leede test, sug-
gesting a vascular defect.> An association between VWD and
hereditary hemorrhagic telangiectasia, characterized by arterial-
venous malformations and bleeding,* was also reported; how-
ever, a clear common pathogenetic mechanism shared by the
2 disorders has never been demonstrated. Vascular abnormalities
have been reported in patients with congenital VWD: a systematic
evaluation of the microcirculation in 100 patients with VWD, using
intravital capillary microscopy (capillaroscopy), revealed mor-
phological changes of the nail fold capillaries, with increased
dilatation, microscopic bleeding, and torquation (dysplasia).>®
Thus, lack or dysfunction of VWF correlates with systemic mal-
formations of mucosal vasculature.

Vascular malformations and
angiodysplasia in VWD and AVWS

The most significant evidence of the link between VWD and
vascular malformations is angiodysplasia of the Gl tract. En-
doscopies carried out because of bleeding of the Gl tract show
that angiodysplasia is a major cause of digestive tract bleeding
and is commonly observed in elderly people, with incidences
ranging from 2.6% to 6.2%.%+% In VWD patients, Gl bleeding
often occurs at a younger age. Interestingly, Gl bleeding po-
tentially associated to angiodysplasia occurs mainly in VWD
patients lacking VWF HMWM.%¢38 |n a retrospective study on
4503 VWD patients, the incidence of angiodysplasia was 0% in
type 1, 2% in type 2, and 4.5% in type 3 VWD.>¢ Bleeding from
angiodysplasia occurs mainly in types 2A, 2B, and 3 VWD,
characterized by the lack of VWF HMWM.5¢58 A multicenter
retrospective study found that the risk of Gl bleeding in patients
with type 1 VWD was only marginally increased compared with
the general population.>? A large prospective study comparing
type 2M and 2A VWD patients, with similar FVIIl and VWF levels,
showed a higher bleeding risk in type 2A patients because of a
high prevalence of Gl bleeding.® Interestingly, no Gl bleeding
was observed in a 7-year prospective study on patients with
VWD Vicenza, a clearance defect causing lower plasma FVIIl and
VWF than VWD type 2A patients, but with ultralarge VWF
multimers.®! Thus, clinical evidence supports the important role
of HMWM in Gl bleeding. However, a retrospective study within
the VWD Prophylaxis Network of 48 VWD patients with Gl
bleeding found that most types of VWD (types 1, 2A, 2B, 2M,
and 3) were represented, including 9 patients with type 1 VWD
(18.7%), 4 of which had documented angiodysplasia. In line with
previous reports, the majority (60.4%) of patients with docu-
mented angiodysplasia had type 2A or 3 VWD.¢? These studies
suggest that the lower the VWF activity, the more likely is de-
velopment of abnormal Gl vessels. The study also highlighted
the complexity of diagnosing angiodysplasia in patients with Gl
bleeding, because in >60% of patients, the cause of bleeding
remained unexplained, despite adequate investigation.

The importance of HMWM in preventing Gl bleeding has also
been suggested in AVWS.%® Occurrences of Gl bleeding and
AVWS have been described mainly in 2 specific acquired con-
ditions. Heyde syndrome is a rare condition that occurs in 3% of
patients with aortic stenosis and is associated with Gl bleeding
believed to be caused by the loss of VWF HMWM. 446465 |n some
of these patients, HMWM are lacking as a result of high-shear
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Table 2. Therapeutic approaches to Gl bleeding

Agent No. patients VWD type Outcome Reference
Octreotide 2 1 Successful 122
2A

Thalidomide 1 2B Successful, previous failure with octreotide 123

1 2B Successful, several drugs associated 124

5 NA No response 62
HD atorvastatin 1 1 Successful, previous failure with octreotide and thalidomide 125

1 2A Successful, previous failure with thalidomide 126
Tamoxifen 2 3 Successful 127

HD, high dose; NA, not available.

stress exerted by the stenotic valve, with increased stretching of
the VWF molecule and increased susceptibility to ADAMTS-13.%¢
In patients with AVWS associated with left ventricular assisted
devices (LVADs), Gl bleeding has also been linked to the presence
of angiodysplasia.®” Despite the widespread finding of AVWS, not
every patient with an LVAD develops major bleeding complica-
tions, suggesting that other key determinants of bleeding may
vary in this population. The prevalence of angiodysplasia in LVAD
patients is not known because the invasive techniques used for
diagnosis, namely endoscopy, carry a particularly high risk of
complications in these patients. This highlights the need for a
noninvasive imaging tool that could help predict bleeding risk and
stratify patients for management and outcome.

Several reports have described Gl bleeding and angiodysplasia in
lymphoproliferative disorders, including monoclonal gammopathy
of uncertain significance, chronic lymphocytic leukemia, and
multiple myeloma.® In these disorders, the reduction of VWF and
HMWM is attributable either to adsorption of VWF onto malignant
cells or to increased clearance of the complex between mono-
clonal immunoglobulins and VWF .

Treatment of angiodysplasia-associated
GI bleeding in VWD

The mechanism responsible for angiodysplastic malformations
in VWD is unknown; hence, treatment of bleeding associated
with angiodysplasia can be very difficult. A few patients may be
treated by surgical or endoscopic approaches when the lesions
are limited in extension and well identified. Although patients
may initially respond well to treatment with VWF-FVIII concen-
trates, bleeding often recurs and prophylactic regimes have
been tried with partial success.”® The prophylactic treatment
may be very costly and the recurrence of bleeding affects sig-
nificantly the quality of life of these patients. Alternative phar-
macological approaches have been anecdotally tried in a few
patients using drugs with antiangiogenic action (Table 2).6%7!
Thalidomide is an antiangiogenic drug with anti-inflammatory
and immunomodulatory effects.”? The antiangiogenic effects
may be linked to its ability to decrease expression of VEGF.”®
Atorvastatin exerts dose-dependent effects on angiogenesis: at
high doses, it has been shown to inhibit angiogenesis through
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effects on endothelial proliferation and survival.”* Octreotide is
typically used for the control of hemorrhage from esophageal
varices and in patients with angiodysplasia not associated with
VWD because it induces a reduction in splanchnic and portal
blood flow.”> In VWD, these drugs have shown inconsistent
results in controlling Gl bleeding; because of the rarity of the
disorder, properly designed clinical studies on a sufficient num-
ber of patients are difficult to perform.

In AVWS, surgical correction of valve stenosis is accompanied by
the restoration of a normal multimeric pattern and the abol-
ishment of bleeding complications.®®> There have been reports of
Gl bleeding and angiodysplasia in AVWS patients with monoclonal
gammopathy of uncertain significance, resistant to desmopressin
and VWF/VIII concentrates, which responded successfully to
prophylaxis with intravenous immunoglobulins, with normalization
of FVIIl and VWF levels and multimeric pattern.87¢7” The chal-
lenges of treating Gl bleeding in VWD and AWVS patients high-
lights the need to identify the molecular pathways that may
provide novel therapeutic targets.

VWE as a regulator of angiogenesis:

experimental evidence

A few years ago, direct evidence for VWF's role in the control of
angiogenesis was reported.?' In vitro studies on EC showed that
inhibition of VWF expression using siRNA resulted in increased
proliferation, migration, and in vitro angiogenesis.2' A similar
overall pattern was found in BOEC from patients with VWD,?'-78.79
although significant differences in the cellular phenotypes have
been observed depending on different molecular defect. Con-
versely, plasma-derived VWF was shown to inhibit endothelial
tube formation in an in vitro model of angiogenesis.?! In VWF-
deficient mice, angiogenesis and vascular density were increased
in vivo,?' whereas recruitment of vascular smooth muscle cells
(VSMCs), a sign of arterial maturation, was delayed in the devel-
oping retinal vasculature.® Recently, Xu et al reported enhanced
angiogenesis in the brain of VWF-deficient mice in response to
hypoxia.?! Interestingly, this study also investigated the angiogenic
response to ischemia in ADAMTS-13—-deficient mice, where VWF is
not cleaved and hence levels are increased. In these mice, an-
giogenesis was decreased and was normalized by inhibition of VWF
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Figure 1. VWF regulation of angiogenesis through multiple pathways: model. A model for multiple pathways likely to be involved in VWF regulation of angiogenesis. In EC,
VWEF is essential for the formation of WPB, organelles that store the growth factor Ang-2. Loss of intracellular VWF results in increased release of Ang-2 from WPB; Ang-2 binding
to its receptor Tie-2 can synergize with VEGFR-2 signaling to destabilize blood vessels and promote angiogenesis. Thus loss of VWF could enhance angiogenesis via an Ang-2/
Tie-2/VEGFR-2 pathway. Moreover, VWF released from WPB interacts with the adhesion receptor integrin av3 and stabilizes its expression on the cell surface. In selected
conditions, avB3 integrin is able to quench VEGFR-2 activity and downstream signaling, thus exerting a repressive effect on angiogenesis. Loss of VWF in EC results in decreased
avB3 expression, which may cause enhanced VEGFR-2 signaling. Enhanced, deregulated VEGFR-2 signaling has been shown to cause dysfunctional angiogenesis leading to
dysplastic blood vessels, similar to those described in angiodysplasia. Finally, WPB also store the carbohydrate-binding protein Gal-3. Gal-3 promotes angiogenesis through
pathways that involve both avB3 and VEGFR-2; levels of Gal-3 are increased in brain microvasculature of VWF-deficient mice. Thus, VWF is likely to affect multiple angiogenic
pathways, both as an extracellular ligand and because of its ability to control storage and possibly expression of endothelial proteins. VEGFR-2, VEGF receptor-2.

expression or activity, demonstrating that the effect of ADAMTS-13
on angiogenesis is dependent on VWF. The conclusion from these
studies is that VWF is involved in blood vessel formation, with a
predominantly inhibitory role. However, contrary to these reports,
a recent study by de Vries et al®? found impaired arteriogenesis
and angiogenesis in VWF-deficient mice following ligation of
the femoral artery. These findings highlight the complexity of the
role of VWF in modulating blood vessel formation and support the
hypothesis of a tissue- and stimulus-specific function.

It is important to stress that the role exerted by VWF in the
modulation of blood vessel formation is mild and clearly not
essential for embryonic development, given that severe VWF
deficiency occurs in patients who can reach adulthood, and in
many cases old age, and no apparent severe developmental
issues are associated with lack of VWF in patients or in animal
models. However, the enhanced vasculature in the ear’ and
brain’® in VWF-deficient mice, and the presence of dysplastic
vessels in the nail bed of VWD patients,® point to a mild effect of
VWF on vascular development.

VWF, angiodysplasia, and angiogenesis:

molecular pathways

Given the multiple binding partners of VWF (Table 1), there are
many potential mechanisms through which VWF may influence
blood vessel formation. The ability of VWF to control the for-
mation of WPB offers another possible route to the control of
angiogenic modulators. So far, the evidence points to VWF
modulating angiogenesis through a network of pathways, sche-
matically summarized in Figure 1. These pathways have been
recently reviewed elsewhere®3; here, we will briefly summarize
the evidence, highlight recent findings, and discuss their possible
relative importance.
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VEGFR-2 signaling

In vitro studies implicate VEGFR-2 signaling in the phenotypes of
VWEF-deficient EC.2' This has now been confirmed in vivo since
enhanced VEGFR-2 phosphorylation was found in the micro-
vasculature of VWF-deficient mice. Many studies have shown
that excessive, dysregulated VEGF signaling causes formation of
unstable, fragile, and leaky vessels,® similar to angiodysplastic
lesions; indeed, a role for increased VEGF has been proposed in
angiodysplasia.”®8> This is an attractive hypothesis that specu-
lates that dysregulated VEGFR-2 signaling could lead to the
development of abnormal vasculature as observed in VWD
patients. How VWF modulates VEGFR-2 signaling is unclear. The
original hypothesis of a role for integrin avB3, a VWF ligand®
that controls activity of VEGFR-2,# still requires validation.

VWEF binds to avB3 via its arg-gly-asp sequence in the C-terminal
region.® Surprisingly, very little is known about the signaling
events that follow VWF binding to avB3 on EC. Interaction of
other avB3 ligands, such as vitronectin, is known to activate
signal transduction via complex formation with adaptor proteins
and kinases including FAK and Src-family kinases at focal ad-
hesion complexes.®® Whether VWF also affects these pathways is
currently unknown. VWF can also interact with avB3 on VSMC,
and Scheppke et al implicated this pathway in arterial maturation
during vascular development.®

WPB proteins: Ang-2 and Gal-3

VWF drives the formation of WPB, the endothelial storage or-
ganelles that contain multiple proteins, including the angio-
genesis regulator Ang-2.28 Ang-2 is part of the angiopoietins/
tie-2 pathway, a crucial system regulating vascular homeostasis
and angiogenesis.?? Ang-2 has been shown to destabilize blood
vessels and synergize with VEGF to promote angiogenesis.?®?!
In vitro studies on VWF-deficient EC (siRNA-treated or BOEC
from type 3 VWD) show that VWF regulates the endothelial
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storage and release of Ang-2.2'92 Interestingly, this is not a
generalized effect on all WPB proteins, because interleukin-8
release is not regulated by VWF (K.E.S. and A.M.R., unpublished
data). VWF also controls Ang-2 synthesis: messenger RNA levels
of Ang-2 are increased in EC treated with VWF siRNA,2' in BOEC
from type 3 VWD patients,’??? and in EC from hearts of VWF-
deficient mice.*? Interestingly, the regulation of Ang-2 levels by
VWF appears to be tissue-specific, because it was not observed
in the kidney or liver of VWF-deficient mice.*? Increased Ang-2
levels in mouse hearts was accompanied by significant mi-
crovascular damage of heart capillaries and abnormal cardiac
function. These data raise the intriguing possibility that VWF's
tissue-specific control of Ang-2 storage and expression may
resultin vascular and ultimately organ dysfunction, possibly by
affecting VEGFR-2 signaling. This pathway is not only a major
regulator of blood vessels homeostasis, but has also been
shown to influence cardiomyocyte survival,?® myocardial blood
flow, and hemodynamics,* indicating another possible mecha-
nism underlying the abnormal cardiac function described in VWF-
deficient mice. The relevance of these pathways in VWD patients
remains to be established.

Another WPB molecule recently implicated in VWF-dependent
control of angiogenesis is Gal-3, a carbohydrate-binding protein
that promotes angiogenesis.” Gal-3 inhibitors block VEGF-
mediated angiogenesis in vitro.” It also binds to both VEGFR2,
promoting its phosphorylation, and to integrin avB3; its in-
teraction with the integrin is essential for its proangiogenic
activity.”® Gal-3 also binds VWF?; this suggest a complex
network of pathways that can modulate angiogenesis. In
VWEF-deficient mice, Gal-3 levels were increased in the brain
microvasculature after stroke®'; thus, it is possible that, at
least in this tissue, raised Gal-3 levels contribute to the en-
hanced angiogenesis. Gal-3 inhibitors, already in clinical trials
and exhibiting a good safety profile (www.clinicaltrials.gov:
NCT01899859), may represent an interesting future option for
treatment of Gl bleeding.

Angiogenesis studies in VWD patients:

circulating markers

Enhanced expression of VEGF®® and Ang-27% has been de-
scribed in regions of the colon affected by angiodysplasia and in
plasma from non-VWD patients with sporadic bowel angio-
dysplasia. Recent studies from Groeneveld et al on plasma from
a cohort of VWD patients comprising 395 type 1, 239 type 2, and
21 type 3 revealed that median levels of Ang-2 were significantly
reduced, whereas levels of Ang-1 and VEGF were increased
compared with controls.”” Because platelets are a large source
of Ang-1, it is possible that platelet activation might have
contributed to the enhanced levels of Ang-1 in plasma sam-
ples. In patients who experienced Gl bleeding resulting from
angiodysplasia, there was a significant increase in Gal-3 levels
compared with patients with bleeding from different sites.?
There was also a trend toward increased Ang-2 levels and to-
ward decreased Ang-1 levels. The balance between these
growth factors (and their relationship with the VEGF pathway) is
crucial to the formation and maintenance of healthy vascula-
ture®’; therefore, it is possible that an Ang-1/Ang-2 imbalance
could contribute to aberrant vascularization seen in these vas-
cular lesions.
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Angiogenesis studies in VWD
patients: BOEC

Access to EC from VWD patients via the isolation of BOEC from
peripheral blood represents a game changer in the potential to
understand the vascular consequences of loss or dysfunction of
VWE. Based on the models discussed here, it is clear that dif-
ferent defects causing VWD may result in different cellular
phenotypes. Thus, one could predict that in VWD patients with
disrupted endothelial WPB, such as type 3 and severe type 1
patients, the Ang-2 pathway may be predominant. However, in
patients with dysfunctional VWF, such as type 2 VWD, WPB
appear mostly normal; in these patients, the interaction of VWF
with the EC surface and/or with extracellular protein may con-
tribute to the angiogenic phenotype. To date, 3 reports have in-
vestigated the angiogenic phenotypes of BOEC from VWD .2"78.79
In 2011, Starke et al studied the in vitro angiogenic potential of
BOEC isolated from 9 VWD patients (types 1 and 2) and found
overall significantly enhanced in vitro angiogenic profiles, in line
with VWF-deficient human umbilical vein endothelial cells.?’ The
following studies have identified distinct in vitro angiogenesis
defects in BOEC, based on clinical classification. Groeneveld et al
showed a decrease in directional migration in BOEC from type 1,
but not type 2 VWD, compared with controls.”® This study also
demonstrated that the increased angiogenic phenotype observed
in early passages of BOEC from type 1, 2, and 3 patients was lost
at later passages, highlighting one of the many technical issues
with this approach (see “BOEC methodological issues and future
perspectives”). Selvam et al reported heterogeneous phenotypes
in BOEC from 5 patients with type 3 VWD and variable levels of
VWEF synthesis.”” These studies show a range of abnormalities, at
times unexpected, with no overall consistent picture, in line with
the complexity and heterogeneity of this disease. They also
highlight the great potential of using VWD BOEC to dissect the
pathways through which VWF controls angiogenesis. An in-
teresting question is whether BOEC represent a valid model for
the investigation of cellular mechanisms underlying VWD, given the
tissue-specific profiles observed in VWF-deficient mice. Because of
their progenitor state, BOEC could recapitulate a cellular state
not influenced by the tissue microenvironment. Moreover,
BOEC are ideal for coculture and 3-dimensional models mim-
icking different vascular beds. Such models, currently being
developed in several laboratories, will significantly change the
way we investigate vascular function and disease.

BOEC methodological issues and

future perspectives

Optimization and standardization of protocols for isolation, in
vitro expansion, and analysis are required to allow a better
interpretation of the results obtained with BOEC. Some key
technical points have emerged from these early studies. Crucially,
BOEC isolation currently requires a fresh blood sample, which
significantly limits the application of the method. Careful phe-
notypic characterization of the cells before functional assays is
required. Also, differences in proliferation rates will result in dif-
ferent population doublings for cells at the same passage number,
the convention used to standardize the “age” of cells in culture.
This may be a problem for BOEC cells with a high replicative
potential, such as VWF-deficient cells.?'”® These limitations need
to be overcome, given the significant value that cellular studies
could add to the understanding of this disease. A major appli-
cation of BOEC studies will be to define the relative importance of
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the different molecular mechanisms described previously, and
more to come, in the regulation of blood vessel formation. More
studies on VWD BOEC will allow the design of personalized
treatment of angiodysplasia and intractable Gl bleeding in VWD.
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