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24. Schanz J, Tüchler H, Solé F, et al. New comprehensive cytogenetic scoring
system for primary myelodysplastic syndromes (MDS) and oligoblastic
acute myeloid leukemia after MDS derived from an international database
merge. J Clin Oncol. 2012;30(8):820-829.

DOI 10.1182/blood-2018-05-848473

© 2018 by The American Society of Hematology

TO THE EDITOR:

Frequency of PAR4 Ala120Thr variant associated with
platelet reactivity significantly varies across sub-Saharan
African populations
Menikae K. Heenkenda, Tomas L. Lindahl, and Abdimajid Osman

Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

Several studies recently reported so-called racial differences
between whites and blacks in certain processes involved in
thrombosis and hemostasis.1-5 Among these reports was the
finding that the A allele of the rs773902 single-nucleotide
polymorphism (SNP) in the PAR4 gene (F2RL3), which creates a

threonine residue at 120 protein position (Thr120) in place of
alanine, was more common in blacks than in whites and was
associatedwith higher PAR4-induced human platelet aggregation
and Ca21 flux.2 However, the geographic ancestry of study par-
ticipants was ambiguous in these studies. Instead, self-identified
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race and ethnicity was employed, and population clusters of
blacks and whites were identified, which were then verified with
principal component analysis.2-4 Hence, attributes such as race,
white, and black were used, classifications approved by the
American Medical Association. However, the term blacks pri-
marily referring to individuals with sub-Saharan African ancestry
does not represent a homogeneous population, and populations
in this category do not display a similar frequency of PAR4 Thr120
variant. We show here that the allele frequency of this SNP varies
widely across sub-Saharan African populations.

Using pyrosequencing,6 we genotyped the PAR4 rs773902 SNP
in the DNA of 101 unrelated ethnic Somali students and staff
at the East Africa University in Bosaso, Puntland, Somalia, with
different birth places in Somalia. Ethical permission was pro-
vided by the East Africa University in the state of Puntland,
Somalia, and by the local ethics committee in Linköping, Swe-
den. Written informed consent was obtained from all study
participants. DNA sequences flanking the mentioned SNP were
amplified, employing polymerase chain reaction (PCR) primers
ACCATGCTGCTGATGAACCTC (forward primer) and CAGG
TGGTAGGCGATCCG (biotinylated reverse primer). The PCR
reaction was run on a GeneAmp PCR 9700 system (Applied
Biosystems; Bedford, MA), with initial hold step at 95°C for

15 minutes, followed by 50 cycles at 95°C for 30 seconds, 64°C
for 45 seconds, and 72°C for 60 seconds and finally at 72°C for
5 minutes. Sequencing primer TGCTGATGAACCTCG was used
for pyrosequencing, which was run on a PyroMark Q24 in-
strument (Qiagen, Hilden, Germany). PAR4 rs773902 SNP ge-
notype data for different world populations were collected from
the 1000 Genomes Project (1000 GP)7 as well as from the
HapMap database,8 and the relative standard deviation vis-à-vis
distribution of the A allele was calculated. Population haplotype
and heterozygosity were analyzed using the Human Genome
Diversity Project (HGDP) browser,9 as described by Conrad et al.10

We found divergent and inverse allele frequencies of the PAR4
rs773902 SNP in the Somali population compared with data
previously reported for blacks in the United States.2 The A allele
frequency of the PAR4 rs773902 SNP in Somalis was 38% com-
pared with the previously reported 63% for blacks2 or 68% for
Esan individuals in Nigeria according to the 1000 GP.7 Somali
genotype data for the rs773902 SNPwere instead closer to those
of the Maasai people in Kenya (A allele frequency, 41%), as
reported in the HapMap project,8 indicative of regional differ-
ences between West and East African populations (Figure 1A).
Also, the frequency of this SNP in the Somali population (38%)
was not far from that found in Peruvians from Lima, Peru (31%),
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Figure 1. Frequencies of the PAR4 rs773902 SNP in different world populations. (A) Allele frequencies in African and non-African populations, including those reported
in the 1000 GP and HapMap projects as well as the Somali genotype data presented in this letter. (B) Continental frequencies of the A allele using populations reported in
the 1000 GP and HapMap projects. The African panel is represented by 6 West African and 2 East African populations. Error bars represent relative standard deviation of
the mean. (C) The 18 regions of the Somali republic. Birthplaces (ie, provinces of birth) of the study participants are highlighted in green. AFR, African; AMR, admixed American;
EAS, East Asian; ESN, Esan in Nigeria; EUR, European; IBS, Iberian population in Spain; ITU, Indian Telugu from the United Kingdom; KHV, Kinh in Ho Chi Minh City,
Vietnam; MKK, Maasai in Kinyawa, Kenya; PEL, Peruvians from Lima, Peru; SAS, South Asian; SOM, Somalis in Puntland, Somalia; YRI, Yoruba in Ibadan, Nigeria.
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reported in the 1000 GP (Figure 1A). As shown in Figure 1B,
there are also significant variations within continents or even
subcontinents regarding the frequency of the PAR4 rs773902
SNP, making geographical ancestry and/or ethnolinguistic
group, rather than race, more appropriate for population genetic
studies in this particular case. It is worth mentioning that Somalis,
like other populations in the Horn of Africa, display Eurasian
admixture11,12 as a result of early back-to-Africa migrations es-
timated to predate the agricultural revolution.11 Somalis are
nevertheless a sub-Saharan African population.

Although populations with Northern and Western European an-
cestry are relatively homogeneous, the situation is farmore complex
in sub-Saharan Africa. As the birthplace of Homo sapiens, Africa
hosts the highest level of genetic diversity in the world in both
nuclear and mitochondrial genomes.13 We compared the
haplotype structures of a 100-kbp segment on chromosome 19
encompassing the PAR4 gene (Figure 2A) among populations
on different continents using the HGDP. The HGDP does not

contain Somali data, but the 3 other sub-Saharan African pop-
ulations analyzed (San, Pygmy, and Bantu) showed highly mosaic
and complex haplotype structures compared with non-Africans
(Figure 2B), consistent with previously reported data showing
that African haplotype blocks are more diverse, are shorter in
length, and have lower levels of linkage disequilibrium com-
pared with their counterparts in non-Africans.14 The heterozy-
gosity pattern in the same chromosomal region also suggested
a higher degree of allelic variation in sub-Saharan Africans
when compared with Europeans (Figure 2C-D). The San, a
population in southern Africa, showed the greatest reduction in
heterozygosity among the 3 African populations. In contrast, the
heterozygosity score of the Basque population, as well as Sar-
dinian and Adygei populations, considered outliers in the
European gene pool,15,16 did not substantially deviate from the
average heterozygosity score of whites. Thus, comparing blacks
and whites is not justifiable in this case, and classifications
such as black race and black ethnicity do not make sense in
medical settings. The case of African Americans is particularly
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Figure 2. Haplotype and heterozygosity variations for populations in different continents using a 100-kbp region on chromosome 19 encompassing the PAR4
gene (F2RL3). (A) Snapshot viewing the region examined, which encodes 3 genes including F2RL3, utilizing the University of California Santa Cruz genome browser.
The F2RL3 gene (3747 base pairs) is highlighted in red. (B) Continental haplotype plots. Rows and columns represent haplotypes and SNPs, respectively. Haplotypes of
the same color are identical. The complexity of African haplotypes (shown here as denser and richer mosaics) is a result of haplotype diversity and lower degree of
linkage disequilibrium. (C) Heterozygosity scores for European populations. Dashed lines denote subpopulations; solid line represents the average (all). For European
populations, combined heterozygosity scores for Caucasians are also included. Horizontal axis shows position of chromosome 19, and vertical axis represents
heterozygosity (hzy). European populations included are: Adygei (purple), Basque (blue), Sardinian (green), and Caucasian (red). (D) Heterozygosity graph similar to
that shown in panel C for African populations, including San (blue), Pygmy (red), and Bantu (green). Note the higher heterozygosity variation in African populations
compared with Europeans.
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problematic. Although many of the earliest African Americans
may trace their ancestry to West Africa, other African Ameri-
cans may descend from elsewhere on the African continent,
and these may not necessarily share disease haplotypes with
the former.

The HapMap and 1000 GP international projects have sub-
stantially contributed to our understanding of the human ge-
nome and population genetics. However, data provided by
these organizations have limitations, because many regions and
indeed a majority of the ethnolinguistic groups of the world are
not covered. For example, only 7 of the 26 populations included
in the 1000GP represent African ancestry, despite the remaining
19 belonging to a single branch of the initial human diversity
that left Africa ;60 000 years ago. Moreover, of the 7 African
populations in the 1000 GP, 6 represent ancestry in West Africa
and just 1 elsewhere on the continent. Caution should therefore
be taken when interpreting the information presented in these
genetic databases.

In conclusion, we show that the allele frequency of the PAR4
rs773902 SNP in the Somali population is markedly different to
that previously reported for blacks. Ethnicity based on geographical
ancestry (eg, African Americans of West African ancestry, rather
than black race or blacks) is preferred when investigating alleles
associated with platelet reactivity or with any other physiological
condition. Use of self-identified race and ethnicity and principal
component analysis alone are not sufficient to establish a pop-
ulation structure with broad African designation. A better reference
database of African variation will also be required. It is hoped that
ongoing efforts, such as the African Genome Variation Project,17

will illuminate the genetic variation in Africa. In addition, se-
quencing or genotyping of sufficiently large numbers of DNA
samples from each of the various ethnolinguistic groups of the
world will be necessary in the future to acquire deep understanding
of common disease alleles among human populations.
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