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KEY PO INT S

l Pre–B-cell ALL induces
T-cell dysfunction
in vivo, mediated in
part by a non–T-cell
receptor–linked
mechanism.

l Prior exposure of
T cells to pre–B-
cell ALL in vivo
impairs subsequent
functionality of CAR-
expressing T cells.

Adoptive transfer of patient-derived T cells modified to express chimeric antigen receptors
(CARTs) has demonstrated dramatic success in relapsed/refractory pre–B-cell acute lym-
phoblastic leukemia (ALL), but response and durability of remission requires exponential
CART expansion and persistence. Tumors are known to affect T-cell function, but this has
not been well studied in ALL and in the context of chimeric antigen receptor (CAR) ex-
pression. Using TCF3/PBX1 and MLL-AF4–driven murine ALL models, we assessed the
impact of progressive ALL on T-cell function in vivo. Vaccines protect against TCF3/PBX1.3
but were ineffective when administered after leukemia injection, suggesting immuno-
suppression induced early during ALL progression. T cells from leukemia-bearing mice
exhibited increased expression of inhibitory receptors, including PD1, Tim3, and LAG3, and
were dysfunctional following adoptive transfer in a model of T-cell receptor (TCR)–
dependent leukemia clearance. Although expression of inhibitory receptors has been
linked to TCR signaling, pre–B-cell ALL induced inhibitory receptor expression, at least in

part, in a TCR-independent manner. Finally, introduction of a CAR into T cells generated from leukemia-bearing mice
failed to fully reverse poor in vivo function. (Blood. 2018;132(18):1899-1910)

Introduction
Pre–B-cell acute lymphoblastic leukemia (ALL) is the most
common oncologic diagnosis in children. Modern risk-adapted
multiagent regimens, which incorporate prolonged mainte-
nance in combination with central nervous system prophylaxis,
has led to cure rates for pediatric pre–B-cell ALL reaching;90%.
Nonetheless, leukemia remains a leading cause of cancer-
related death in children, and outcomes for patients with re-
lapsed or chemotherapy refractory ALL have not changed
substantially over recent decades despite maximization of the
intensity of cytotoxic regimens in such patients.1-4 Furthermore,
adolescents and adults with pre–B-cell ALL have worse out-
comes than younger children.5 Allogeneic hematopoietic stem
cell transplantation offers a curative option for high-risk patients
with a clear contribution from the graft-versus-leukemia (GVL)
effect.6,7 However, in some,8-10 but not all,11 studies, the potency
of GVL for ALL is inferior to that seen in myeloid malignancies.
This has been attributed in part to suboptimal antigen pre-
sentation by ALL blasts in combination with diminished T-cell
function secondary to impaired priming or direct tolerization of
T cells by ALL blasts12-14 resulting in inherent resistance to T-cell
receptor (TCR)–mediated therapy. There has beendramatic success
with immunotherapeutic targeting of ALL using patient-derived
T cells modified to express chimeric antigen receptors (CARTs)

that redirects specificity toward the B-cell antigen CD19.15-19

However poor CART expansion and relapses in a substantial
number of patients suggests that adoptive T-cell therapy for acute
B precursor ALL could be enhanced by the identification of
pathways that contribute to suboptimal of T-cell function.

T-cell function can be negatively regulated by interactions be-
tween ligands expressed on antigen-presenting cells or target
cells and inhibitory receptors expressed on the T-cell surface.20

The prototypic negative regulatory receptors are CTLA4
(CD152), which binds B71 and B72, and the programmed death
receptor 1 (PD1), which binds either PDL1 or PDL2. Checkpoint
inhibitors, which block either the CTLA4 or PD1 axis, have in-
duced objective tumor responses in humans, illustrating the
importance of these negative regulators of immunity in cancer
biology.21 However, T-cell exhaustion is a complex, progressive
phenomena, and PD11 T cells are not inherently dysfunctional.22

T-cell dysfunction and exhaustion have been well described in
the setting of many solid tumors and some types of hematologic
malignancies, including chronic lymphocytic leukemia,23 multi-
ple myeloma,24 and AML25,26 but has been poorly studied in the
context of pre–B-cell ALL. Furthermore, whether cancer-induced
T-cell dysfunction can be overcome through introduction of
a synthetic CAR generating a non-TCR signal is not known.
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Themajority of the preclinical studies of adoptive cell therapy for
hematologic malignancies use xenograft systems in which human
T cells are infused into highly immunodeficient mice bearing
human leukemia. These models have major limitations in terms of
studying in vivo immunobiology due to the lack of a complete
immune system in the murine recipient and the development of
xenogeneic graft-versus-host disease. We established a synge-
neic murine pre–B-cell ALL model in which PD1 is rapidly upre-
gulated on bone marrow T cells in the presence of ALL and
is associated with poor T-cell functionality. We further demon-
strate that ALL-induced T-cell dysfunction can occur in a TCR-
independent manner, is not reversed by blockade of the PD1 axis,
and persists despite in vitro T-cell expansion and redirection of
specificity by a synthetic CD19 CAR. These findings have im-
portant implications for the optimization of immunotherapy for
ALL, especially with regards to adoptive cell therapies utilizing
CARTs generated from patients with leukemia.

Materials and methods
Mice
C57BL/6(H-2b)(B6) and B6/Ly5.2 (CD45.1) were purchased from
the Animal Production Unit, National Cancer Institute (NCI).
B6.129S7-Rag1 , tm1Mom./J mice were purchased from The
Jackson Laboratory (Bar Harbor, ME). OT1/Rag22/2 mice were
purchased from Taconic. All mice were housed in a pathogen-
free animal facility at the National Institutes of Health. Animal
protocols were approved by the NCI Animal Care and Use
Committee.

Cell lines
TCF3/PBX1 cell lines were derived from the spleen of a leukemic
TCF3/PBX1 3 CD3e2/2 (E2a/PBX1) leukemic mice and were
generous gift from Janet Bijl.27 Leukemia cells were first injected
IV into sublethally irradiated (250 cGy) B6 mice. By 3 weeks, all
of these mice developed splenomegaly, hepatomegaly, and
lymphadenopathy consistent with leukemia. Fresh splenocytes
from these leukemic mice were then used for in vitro culture to
establish a stable cell line we called TCF3/PBX1.3.3. Initially,
TCF3/PBX1.3.3 was cultured in StemSpan SFEM (Vancouver,
BC) media, containing recombinant human interleukin-7 (rhIL-7;
50 U/mL), rhIL2 (20 U/mL), recombinant murine IL-3 (20 ng/mL),
stem cell factor (50 ng/mL), Flt3-L (25 ng/mL), b-mercapto-
ethanol, and penicillin/streptomycin/glutamine. After initial cul-
ture in stem cell media supplemented with cytokines, murine
leukemia cells were passaged at least 15 times in 10% complete
mouse media (RPMI 1640 with 10% heat-inactivated fetal calf
serum, 1% nonessential amino acids, 1% sodium pyruvate, 1%
penicillin/streptomycin, 1% L-glutamine [Invitrogen, Carlsbad,
CA], and 1% N-2-hydroxyethylpiperazine-N9-2-ethanesulfonic
acid buffer [Sigma-Aldrich, St. Louis, MO]) without additional
cytokines to ensure a stable cell line. Reverse-transcription
polymerase chain reaction confirmed preservation of the TCF3/
PBX1 fusion gene (data not show). In culture, TCF3/PBX1.3.3 cells
are spherical and have lymphoid blast morphology. TCF3/PBX1
was genotyped with 96 microsatellite markers to scan the 19
mouse autosomes. The Genome Scan scores indicated TCF3/
PBX1 is the equivalent of a N6 conventional backcross of C57BL/
6J. C57/Bl6 MLL-AF4 ALL cell lines were kindly provided by Scott
Armstrong.28 Mice engrafted with MLL-AF4 received 250 cGy
prior to injection. TCF3/PBX1-OVA cells were generated by

transduction the ovalbumin gene using a retroviral vector into
TCF3/PBX1 cells, and TCF3/PBX1-OVA-GFP cells were generated
by transducing the Lenti-GFP into TCF3/PBX1-OVA cells. The
transduced cells were further sorted with a fluorescence activated
cell sorter for the desired expression of ovalbumin or GFP.

Human leukemia samples
Human ALL samples were collected and stored after informed
consent to a NCI institutional review board–approved tissue-
acquisition protocol. Bone marrow specimens were collected
only at the time of a clinically indicated bone marrow evaluation
that was performed as part of routine restaging either prior to
or after implementation of treatment (either standard che-
motherapy or experimental). Peripheral blood specimens were
generally obtained when patients had known circulating blasts
and volume did not exceed prespecified guidelines for re-
search blood draws. All research specimens from human
subjects were obtained with informed consent in accordance
with the Declaration of Helsinki.

Adoptive T-cell transfer, vaccines, CART
production, and in vivo cell depletion
See supplemental Methods (available on the BloodWeb site) for
more information.

In vitro colony-forming assays
Colony-forming assays were performed as described in the
manufacturer’s protocol (Stem Cell Technology catalog number
04100). Briefly, TCF3/PBX1 cells were serially diluted (24300 cells/
100 mL, 8100 cells/100 mL, 2700 cells/100 mL, 900 cells/100 mL,
300 cells/100 mL, 100 cells/100 mL) and incubated in triplicate in
1% MethoCult H4100 plus RPMI (containing 10 ng/mL rhIL-7) for
6 to 7 days at 37°C and 5% CO2. The number of colonies was
then counted and recorded. The frequency of tumor-initiating
cells was calculated based on the slope of the linear range of
the plot formed by the average of colonies at each dilution.

Flow cytometry analysis
Fluorochrome-conjugated anti-CD45R (B220), anti-CD127 (IL-
7Ra), anti-BP1, anti-CD43, anti–immunoglobulin M (anti-IgM),
anti-IgD, anti-CD8, anti-CD19, anti-m chain, anti-CD43, anti-BP1,
anti-PDL1, anti-Tim3, anti-LAG3, anti-CD45.2, and streptavidin–
fluorescein isothiocyanate were purchased from Becton Dickinson
(BD), eBioscience, or Jackson Immunoresearch. Via-Probe was pur-
chased from Becton Dickinson. Anti-human CD45RO, CD8a, CD3,
PDL1, PDL2, Tim3, and LAG3 were purchased from BioLegend.
Labeled cells were analyzed with a dual-laser flow cytometer
(FACSCalibur, BD) or 3-laser flow cytometer (LSR Fortessa, BD)
and data analyzed using FlowJo software (Tree Star, Ashland,OR)

Flow sorting to isolate PD11 and PD12 T cells
Single-cell suspensions were made from freshly harvested
mouse spleen and enriched for T cells with a Miltenyi Pan T Cell
Isolation Kit II (catalog number 130-095-130) following the
manufacturer’s protocol. T cells were stained and sorted into
PD11 and PD12 populations using the BD FACSAria II.

Immunohistopathology
TCF3/PBX1 cells were stained on a glass slidewithWright-Giemsa
stain. Spleen and liver from leukemic mice were fixed with 10%
formalin and transferred to 70% ethanol. Specimens were sent for
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paraffin block generation, sectioned at 5 mm, and stained with
hematoxylin andeosin (AmericanHisto Labs). Femurswere harvested
from naive or tumor-bearing mice, fixed in 4% paraformaldehyde
overnight at 4°C, and decalcified in 0.1 M Tris/0.26 M EDTA (8%
EDTA) pH 7.4 buffer with constant agitation at room temperature
for 5 days. Slides were then washed with EDTA in 13 phosphate-
buffered saline and resuspended in 30% vol/vol glucose (phos-
phate-buffered saline) at 4°C and sent to Histoserv (Germantown,
MD) for sectioning and hematoxylin and eosin staining.

Serum cytokines
Micewere bled intoMicrotainer tubes (BD reference 365967), and
serum was recovered from after centrifugation for 15 minutes at
maximum speed in a Sorvall Legend Micro 17R centrifuge. Serum
cytokine levels were detected using a BD Cytometric Bead Array
Mouse Th1/Th2/Th17 Cytokine Kit (catalog 560485) following the
manufacturer’s procedure.

Checkpoint inhibitor blockade
Anti-PD1 (clone RMP1-14), anti-Tim3 (clone RMT3-23), and anti-
PDL1 (clone10F.9G2)werepurchased fromBioXCell. Anti-PD1and/or
anti-Tim3were given every 3 to 4 days at a dose of 200mg/mouse.
All antibodies were administered intraperitoneally after tumor
challenge and continued until the mice became terminally ill.

Microarray
Untouched B-cell progenitors from bone marrow were isolated
using CD43 (Ly-48) MicroBeads (Miltenyi Biotec, catalog number
130-049-801). CARTs were made from either naive or tumor-
bearing mice as described above. RNA was extracted for
microarray hybridization and global gene expression on Affi-
matrix chips (mouse Gene ST 1.0). The array results were further
analyzed for differential gene expression between samples and
compared against data a tumor database (https://pob.abcc.
ncifcrf.gov/cgi-bin/JK).

Statistical analysis
Statistical tests were performed using GraphPad Prism 7 Version
7.0a forMacOSX (GraphPad Software, SanDiego, CA). Significant
differences comparing the survival curve of 2 groups were de-
termined by a log-rank (Mantel-Cox) test. A P value , .05 was
considered significant. Comparisons between 2 groups were
performed using a Mann-Whitney U test. Comparisons between
multiple groupswere performed using a 1-way analysis of variance.

Results
Characterization and validation of a syngeneic
pre–B-cell ALL model
To comprehensively evaluate the impact of progressive pre–B-cell
ALL on an intact immune system, we generated a stable, trans-
plantable murine leukemia cell line (TCF3/PBX1.3) from TCF3/
PBX1 transgene–expressing mice.27 TCF3/PBX1.3 expresses
immunophenotypic markers (CD191B2201CD1271 with cyto-
plasmic m-chain but no surface IgM expression) consistent with an
early B-cell phenotype (Figure 1A; supplemental Figure 1A) rep-
resentative of pro–B and pre–B-1-cell stages.29 Morphologically,
TCF3/PBX1.3 appears lymphoblastic (Figure 1B). Gene expression
confirmed this early B-cell phenotype, demonstrating a profile that
was similar to human pre–B-cell ALL based on unsupervised hi-
erarchical clustering (supplemental Figure 1B).

Following injection into immunocompetent mice, TCF3/PBX1.3
rapidly infiltrates lymphoid tissues, resulting in loss of primary
tissue architecture (Figure 1C-D). Distribution of TCF3/PBX1.3 to
the bone marrow can be detected as early as 5 days after in-
jection (Figure 1E) with subsequent leukemic infiltration of the
meninges (data not shown) resulting in hindlimb paralysis. TCF3/
PBX1.3 is lethal following injection of as few as 1000 cells into
immune-competent mice (Figure 1F).

Immune resistance attenuates ALL progression
To establish the role of adaptive immune cells in delaying
progression of TCF3/PBX1.3, time to lethality was compared in
immunodeficient and immunocompetent mice. TCF3/PBX1.3
cells (105) were injected into unconditioned C57BL/6 mice, sub-
lethally irradiated (250 cGy) C57BL/6 mice, and T-cell/B-cell–
deficient Rag12/2 mice. Disease progression was more rapid in
irradiated and Rag12/2mice than in immunocompetent recipients
(Figure 1G) with consistent leukemic engraftment and lethality
occurring in irradiated recipients following injection of 100 cells
(supplemental Figure 1C). Colony-forming assays in semisolid
methylcellulose estimated a colony-initiating cell frequency of
;4% (supplemental Figure 1D), consistent with engraftment of
100 cells in immunodeficient mice.

Vaccination mediates T-cell–dependent
protection against TCF3/PBX1.3 but is
therapeutically ineffective
Based on the accelerated progression of TCF/E2aPBX1.3 in
lympho-deficient RAG2/2 and irradiated recipients, we next tested
whether vaccination could protect against leukemia progression.
C57BL/6 mice were primed (2 weeks prior to leukemia challenge)
and boosted (1 week prior) with 1 of 3 types of vaccines: dendritic
cells (DCs) pulsed with apoptotic (irradiated 15000 cGy) TCF3/
PBX1.3, unpulsed DCs, or apoptotic TCF3/PBX1.3 alone (Figure
2A-B). Both apoptotic cell-loaded mature DCs and apoptotic
TCF3/PBX1.3 alone provided comparable protection. We next
investigated the contribution of T cells to vaccine-mediated
leukemic resistance. CD41 T cells and/or CD81 T cells were
depleted from C57BL/6 mice following vaccination and 3 days
before tumor challenge. Depleting either CD41 or CD81 T cells
had a minimal impact on vaccine-mediated protection; however,
depleting both subsets fully abrogated the protective effects of
vaccination (Figure 2C). Finally, we sought to determine whether
a tumor vaccine was therapeutic when given to mice already
bearing leukemia. Despite the robust protection provided by
vaccination prior to leukemia challenge, there was no effect on
survival when administered 3 days following TCF3/PBX1.3 chal-
lenge (;0.1% bone marrow infiltration; Figure 1E) followed by
a boost at day 10 (Figure 2D). Thus, even minimal leukemic
burden prevents therapeutic efficacy of vaccination.

Leukemia progression promotes phenotypic T-cell
exhaustion and functional impairment
We hypothesized that therapeutic vaccine failure could be due
to the impact of preexistent ALL on T-cell function. CD81 T cells
from leukemia-vaccinated and live leukemia-bearing C57BL/6
mice were analyzed by flow cytometry 12 days after tumor
challenge or vaccination. As expected, the majority of CD81

T cells from healthy mice demonstrated a naive phenotype
(CD442CD62L1). In contrast, the bone marrow of leukemia-
bearing mice contained a majority of effector memory T cells
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(CD441CD62L2; Figure 3A) that was more pronounced than in
the bone marrow of vaccinated mice that contained substantial
numbers of central memory CD81 T cells (CD441CD62L1).

We next investigated whether phenotypic markers of T-cell
exhaustion were upregulated during leukemia progression.
Indeed, there was a significant increase in the proportion of
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Figure 1. TCF3/PBX1.3 exhibits an immunophenotype and in vivo behavior consistent with pre–B-cell ALL. (A) Cultured TCF3/PBX1.3 cells (analyzed by flow cytometry)
demonstrating expression of B-lineage receptors CD191 and B2201 as well as the immature B-cell marker CD1271 (IL-7Ra) with cytoplasmic m-chain present but without surface IgM
expression. (B) Wright-Giemsa stain of TCF3/PBX1.3 demonstrating typical lymphoblastic morphology. (C) Spleens of C57BL/6 mice 2 weeks after injection of 13 105 TCF3/PBX1.3
cells IV (top) or saline (bottom). (D) Histological sections of tissues frommice in panel C stained with hematoxylin and eosin. (E) CD45.1 congenic mice received 13 105 TCF3/PBX1.3
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competent C57BL/6 mice received decreasing doses of leukemia (P , .004, Mantel-Cox test; irradiated vs healthy) or mice (P , .003, Mantel-Cox test; Rag12/2 vs healthy).
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PD1-expressing CD41 and CD81 T cells in the bone marrow
1 week after leukemia challenge compared with non–leukemia-
bearingmice (Figure 3B). Further characterization of PD11 T cells
in leukemia-bearing mice demonstrated coexpression of Tim3
and Lag3 (Figure 3C-D). We next confirmed that the phenotypic
exhaustion associated with progression of the TCF3/PBX1 cell
line was also observed in the setting of primary murine leukemia
(supplemental Figure 2) and in the bone marrow and peripheral
blood of patients with ALL (supplemental Figure 3).

TCF3/PBX1.3 expresses PDL1 at higher levels than bone-
marrow derived DCs pulsed with TCF3/PBX1.3 (supplemental
Figure 4A) suggesting that the presence of leukemia could in-
duce functional impairment of PD1-expressing T cells. Thus, we
next evaluated the ability of T cells from vaccinated and
leukemia-bearing donors to clear leukemia following adoptive
transfer into secondary recipients. T cells from apoptotic cell–
vaccinated mice mediated a significant survival benefit com-
pared with naive T cells (Figure 3E; P , .0001, Mantel-Cox test).
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compared with non–leukemia-bearing mice. Bottom panels represent gating on PD11 CD41 and CD81 T cells. (D) Scatter plots showing percentage of PD11 CD41 and PD11

CD81 bone marrow T cells expressing Tim3 and LAG3 at day 12 following injection of TCF3/PBX1.3 compared with non–leukemia-bearing mice. (P , .001, unpaired Student
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However, T cells from mice bearing viable leukemia (harvested
at 12 days following leukemia injection) provided no therapeutic
benefit (P , .0001, Mantel-Cox test), further indicating that
leukemia rapidly induces impairment in T-cell functionality. Fi-
nally, to confirm that the upregulation of exhaustion markers was
not unique to TCF3/PBX1.3, we also analyzed T cells in the bone
marrow of mice bearing a syngeneic ALL driven by over-
expression of MLL-AF4, which also demonstrated increased
expression of PD1, Tim3, and Lag3 (Figure 3F).

Phenotypic T-cell exhaustion occurs in the absence
of cognate antigen
We next used a TCR transgenic model in which all T cells express
a TCR that recognizes an antigen not expressed on TCF3/PBX1.3
to test whether antigen recognition is required for upregulation
of PD1 in the presence of leukemia. CD81 T cells from leukemia-
bearing OT-1/Rag2/2 transgenic mice in which T cells express
a TCR specific for the ovalbumin antigen also upregulate PD1 in
the presence of pre–B-cell ALL not expressing ovalbumin
(Figure 4A) as well as Tim3 and Lag3 (Figure 4B). We next
adoptively transfer polyclonal CD81 T cells from CD45.1 congenic
mice andCD45.2OT-1 T cells into lymphocyte-deficient recipients
and compared PD1 induction in the presence of TCF3/PBX1.3 or
TCF3/PBX1.3 expressing ovalbumin. As expected, there was
a marked increase in the level of PD1 expression on OT-1 T cells in
the presence of ovalbumin-expressing leukemia consistent with
TCR-induced PD1 upregulation (supplemental Figure 4B). How-
ever, there was also a significant increase in PD1 expression on
both OT-1 T cells in the presence of leukemia not expressing
cognate antigen. Taken, together these results suggest that TCR-
independent mechanisms contribute to leukemia-induced T-cell
dysfunction occurring in the context of pre–B-cell ALL. T cells from
mice bearing either TCF3/PBX1.3 or MLL-AF4 were adoptively
transferred into secondary recipients 2 days after injection with
TCF3/PBX1.3 transduced with ovalbumin. As shown in Figure 4C-D,
OT-1 T cells from TCF3/PBX1.3- or MLL-AF4–bearing donors
were less effective at clearing leukemia at day 14. Finally, OT1
cells from leukemia-bearing donors demonstrated reduced pro-
liferation (supplemental Figure 5A) and cytotoxicity (supplemental
Figure 5B) upon stimulation by ovalbumin-expressing TCF3/
PBX1.3.

Leukemia-induced phenotypic changes on T cells is
not reversible by blockade of PD1 or Tim3
To determine whether ALL-induced T cell dysfunction segregated
with PD1-expression, we adoptively transferred T cells sorted
based on PD1 from vaccinated or leukemia-bearing donors into
Rag12/2 mice (supplemental Figure 6). PD11 and PD12 T cells
from mice primed with irradiated leukemia were equivalent in
delaying leukemia progression (Figure 4E). In contrast, both PD11

and PD12 T cells from mice with viable leukemia were less
effective at delaying leukemia progression in secondary recipi-
ents, suggesting that T-cell dysfunction in the presence of pre–B-
cell ALL is not associated with PD1 expression. Indeed, blockade
of PD1 did not reverse leukemia-induced T-cell dysfunction

(Figure 4F). Combined PD1 or Tim3 blockade also failed to
reduce time to lethality (Figure 4G). Finally, adoptive transfer of
vaccine-primed T cells with immune checkpoint blockade with
anti-PD1 and anti-Tim3 was also unable to improve functionality
of primed T cells into leukemia-bearing mice (Figure 4H).

Exhaustion markers can be induced by cytokines
present in leukemia-bearing mice
Cytokines may contribute to TCR-independent induction
markers of T-cell exhaustion.30,31 Multiple cytokines, including IL-
6, IL-10, and tumor necrosis factor a (TNF-a), are elevated in the
serum of mice bearing both TCF3/PBX1.3 and MLL-AF4 (Figure
5A-B; supplemental Figure 7). Furthermore, exposure of CD4
and CD8 T cells to IL-6, IL-10, and TNF-a in vitro results in in-
creased expression of Tim3 (Figure 5C). Exposure of T cells to all
3 cytokines further increases Tim3 expression, suggesting that
cytokines may contribute TCR-independent induction of ex-
haustion markers induced in the presence of pre–B-cell ALL.

CAR expression does not fully reverse
leukemia-induced T-cell dysfunction
We have previously shown that a murine CD19-targeted CAR can
mediate complete regression of TCF3/PBX1.3 when generated
from leukemia-naive donors.32 We next tested whether pro-
gressive ALL impacts functionality of CARTs generated from
leukemia-bearing donors. Activation and expansion of T cells in
the presence of anti-CD3/CD28 beads transiently induces ex-
pression of PD1 on T cells during the process of CART production
from leukemia-naive donors. However, PD1, Tim3, and LAG3
expression persists on CARTs generated from leukemia-bearing
donors (Figure 6A-C). Finally, CARTs from healthy donors com-
pletely eradicated leukemia, resulting in 100% survival. In contrast,
while CARTs from leukemia-bearing donors demonstrated ac-
tivity, leukemia-induced lethality occurred in 60% of treated mice
(Figure 6D). Finally, CARTs generated from MLL-AF4–bearing
donors were also less effective at clearing TCF3/PBX1.3 (sup-
plemental Figure 8). Thus, leukemia-induced T-cell dysfunction
persists following the introduction of a CAR and has implications
for the efficacy of adoptive cell therapies for ALL.

Distinct gene expression profile on CARTs
generated from leukemia-bearing donors vs
healthy donors
Since PD1 blockade does not reverse the impaired functionality of
CARTs generated from leukemia-bearing donors, we performed
gene expression profiling to identify alternative pathways that
could contribute to leukemia-induced T-cell dysfunction. Con-
sistent with phenotypic data, CARTs produced from leukemia-
bearing donors expressedmore PD1, Tim3, and LAG3 in addition
to other genes known to be associated with T-cell dysfunction
(Figure 6E).22 Finally, unbiased pathway analysis revealed differ-
ential expression of genes regulating a number of other cellular
processes (carbohydrate and cholesterol metabolism, chromatin
remodeling, and hypoxia) that could serve as targets to improve

Figure 3 (continued) t test). (E) Leukemia-bearing mice were given 5 3 106 T cells from mice bearing leukemia or vaccinated with irradiated TCF3/PBX1.3 (as in panel A). Mice
received 105 TCF3/PBX1.3 on day 0, 500 cGy irradiation on day 2 and adoptive transfer of T cells on day 2. Mice receiving T cells from vaccinated donors demonstrated survival
benefit compared with leukemia-bearing donors (P , .0001, Gehan-Breslow-Wilcoxon test). (F) Percentage of CD81 T cells expressing PD1, Tim3, and LAG3 in mice bearing
MLL-AF4 ALL at day 23 following leukemia injection compared with non–leukemia-bearing irradiatedmice. Control mice received 250 cGy irradiation. Line represents themean,
and error bars represent standard error of the mean.
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Figure 4. PD1 expression induced by progressive ALL is partially TCR independent and does not define functional impairment, nor does blockade of inhibitory
receptors prevent or reverse dysfunction. (A) CD81 T cells from the bone marrow and spleens of OT1/RAG2/2 TCR transgenic mice were analyzed by flow cytometry for PD1
expression 10 days after injection of 13 105 TCF3/PBX1.3 challenge. (P, .01, unpaired Student t test). (B) Representative zebra plots of mice represented in panel A. (C) CD81 T cells
from the bone marrow and spleens of OT1/RAG2/2 TCR transgenic mice harvested and enriched using a T-cell selection column 14 days after injection with TCF3/E2aPBX1.3 and
transferred into secondary recipients (1 3 106/recipient) 2 days after injection with ovalbumin-transduced TCF3/E2aPBX1.3. Fourteen days later, bone marrow analyzed by flow
cytometry for ovalbumin-expressingCD191B2201 cells. (D) Experimental design as inpanelDwith the exception thatOT1donorswere irradiated (250 cGy) and injectedwithMLL-AF4
and T cells were harvested 21 days later. Non–leukemia-bearing donors also received irradiation. (E) Leukemia-bearingmicewere given a subcurative dose (13 106) of sorted PD11or
PD12 T cells frommice bearing leukemia or vaccinated with irradiated TCF3/PBX1.3. RAG1mice received 105 TCF3/PBX1.3 on day 0 and adoptive transfer of T cells on day 2. (F) Anti-
PD1 (200 mg/dose) and/or anti-PDL1 (200 mg /dose) was administered intraperitoneally every 3 days beginning 1 day after 105 TCF3/PBX1.3 challenge. (G) Anti-TIM3 (250 mg/dose)
and/or anti-PD1 was administered as in panel D. (H) Splenic CD81 T cells were collected from irradiated TCF3/PBX1.3 vaccinated mice (as in Figure 3G) and administered with or
without PD1 and/or TIM3 blockade. Antibody administration was initiated 1 day prior to T-cell transfer and continued for up to 5 weeks (P , .0001, Mantel-Cox test).
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functionality of T cells used for the generation of adoptive cell
therapies (supplemental Figure 9).

Discussion
There has been tremendous success in the treatment of pediatric
B precursor ALL over the past 3 decades, with the majority of
patients being cured using standard chemotherapy. However,
there remains a subset of children who will relapse following
upfront cytotoxic chemotherapy despite. Furthermore, adoles-
cents and adults with ALL fare less well, with lower remission
induction to upfront chemotherapy and higher rates of relapse.5

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)

offers the chance of cure following high-risk relapse if patients can
be rendered minimal residual disease negative,33 but the con-
tribution of GVL to success of allo-HSCT for ALL is limited com-
pared with other hematologic malignancies.10 Because T cells are
a major contributor to the GVL effect, this finding suggests that
pre–B-cell ALL may be inherently less responsive to unmodified
T-cell immunotherapy than other hematopoietic malignancies.
Malignancy-induced T-cell dysfunction has beenwell described in
hematologic malignancies, including acute myelogenous leuke-
mia,34 but it has not been well studied in the context of ALL. One
of the challenges in studying ALL immune biology has been the
relatively limited availability of murine models for B-cell precursor
leukemia, as themajority of syngeneicmurinemodels of lymphoid
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ute to phenotypic T cell exhaustion. (A) Serum was
collected from leukemia-bearing mice 12 days after
TCF3/PBX1.3 injection. Cytokines were measured by
multiplex assay. Unirradiated C57Bl/6 mice were used
as controls. (B) Serum was collected from MLL-AF4–
bearing mice (conditioned with 250 cGy irradiation
prior to injection) as in panel A and serum analyzed
for cytokines. Irradiated mice were used as controls.
(C) TCF3/PBX1.3.3 was cultured in the presence of IL-6
(200 mg /mL), IL-10 (100 mg /mL), TNF-a (100 mg/mL), or
all 3 cytokines combined. Tim3 expression was eval-
uated by flow cytometry after 2 or 3 days of culture.

PRE-B ALL–INDUCED T-CELL DYSFUNCTION blood® 1 NOVEMBER 2018 | VOLUME 132, NUMBER 18 1907

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/132/18/1899/1469566/blood815548.pdf by guest on 19 M

ay 2024



malignancies are phenotypically mature.35 Evaluation of immu-
notherapy in syngeneicmodels ofmature B-cell malignanciesmay
not be predictive in lymphoblastic leukemia, as interactions

between adaptive immune cells and other hematopoietic cells in
the bone marrow are likely to have significant immunobiological
consequences.
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Using syngeneic murine models of pre–B-cell ALL in immune
competent mice, we demonstrate that T-cell dysfunction is in-
duced by progressive leukemia and that this can impact the ef-
ficacy of immunotherapeutic approaches that rely on T cells
residing in the leukemic host. T-cell depletion has been associated
with loss of protection in a syngeneic murine36 model, and our
data extend this observation to the context of vaccines and
CARTs. Furthermore, we establish that T-cell dysfunction is initi-
ated early in the course of leukemia progression, precluding ef-
ficacy of a therapeutic vaccine. Although the data presented here
were generated using 2 separate leukemia models, one limitation
is that we used a transplantable model (rather than a primary
leukemia model) to achieve consistent onset and allow for sys-
tematic analysis of T-cell function. Nonetheless, these findings
have important implications for the successful generation of im-
munotherapy for ALL in general and suggest that in contrast to
AML and mature B-cell malignancies, where checkpoint inhibitors
have achieved success, immune checkpoint blockade may not be
effective as an isolated modality in ALL.

Our results may also shed light on the low potency of the GVL
following allo-HSCT. Rather than inherent resistance of ALL blasts
to T cell killing, the data presented here are consistentwith amodel
wherein ALL blasts are not only poor antigen-presenting cells12,37

but also actively suppress the function of host-resident T cells.
Interestingly, the potency of irradiated leukemia cells at inducing
an immune response protective against leukemia challenge is also
consistent with prior studies showing that ALL blasts can be ma-
nipulated to improve antigen-presenting cell function.14 Indeed,
vaccines administered during immune reconstitution following an
allo-HSCT and prior to relapse are therapeutically effective and
may be a strategy to improve outcomes following allo-HSCT.38

However, our finding that even minimal levels of ALL present early
during leukemia progression inhibit T-cell responses to a vaccine
are consistent with recent data that MRD levels of ALL impair GVL
and result in rapid posttransplant relapse.33 T-cell dysfunction in-
duced early during solid tumor initiation has also been described.39

Dramatic success in ALL has been achieved with the ex-vivo
expansion of T cells genetically modified to express a CAR tar-
geting a leukemia-associated protein. In most trials, CARTs are
derived from T cells harvested from peripheral blood of patients
harboring leukemia at the time of collection or prior to collection.
Despite potent activity at inducing remission, a CAR product
cannot be generated for all patients, the marked expansion re-
quired for remission induction is not universal, and the persistence
of CARTs appears to improve the likelihood of durable remissions.
Thus, T cell quality is an important component of CART efficacy.
The data presented here indicate that the presence of leukemia in

the host may impact the potency of a CART product despite
in vitro expansion and genetic manipulation to redirect specificity.
Generation of CARTs from a third-party donor or an allogeneic
donor in the case of transplanted patients obviates the impact of
ALL on T-cell quality. There is also enthusiasm for combining
immune checkpoint inhibition with CARTs in the setting of poor
expansion or relapse. The data presented herewould suggest that
inhibiting the PD1-PDL1 access may not be sufficient, but clinical
trials will be required.
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