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Inherited thrombocytopenias are associated with bleeding of all
types of severity depending on the reduction in platelet count
and whether there is altered platelet function.1 The normal range
for platelet counts varies by up to threefold, but an individual’s
platelet count is normally maintained within a narrow range. This
requires a constant balance between thrombopoiesis and platelet
senescence and consumption. Heritable forms of thrombocyto-
penia are frequently caused by genes that regulate megakaryo-
cytic differentiation and/or platelet production. Next-generation
sequencing strategies, such as whole-exome sequencing, are
efficient in identifying gene mutations that cause Mendelian
disorders.2-4 In this study, we used a whole-exome sequencing
approach to elucidate the genetic basis of a severe form of con-
genital thrombocytopenia.

We present a UK consanguineous family of Pakistani origin with
2 cousins with severe thrombocytopenia (Figure 1B). The pro-
band, III:5, was aged 3 years with a platelet count of 3 3 109/L

when entered into theUKGenotyping andPhenotypingof Platelets
(GAPP) study. He was born by emergency caesarean section at
34 weeks gestation and had neurological symptoms shortly after
birth and bilateral intraventricular hemorrhages. He had a ven-
triculoperitoneal shunt inserted, which required several revisions,
with HLA platelet transfusion prophylaxis. He has developmental
delay, skull abnormalities secondary to hydrocephalus, and nys-
tagmus. His baseline platelet count has remained;103 109/L. He
received HLA-matched platelet transfusions every 1 to 2 weeks for
the first 12 months of life, and his platelet count increased well
thereafter. There were no other abnormalities in the blood count.
The bone marrow aspirate and trephine showed a normocellular
specimen with normal megakaryocyte numbers and morphology
and normal cytogenetics. Patient III:3 was aged 7 years when
recruited into the study. She had a baseline platelet count of
15 3 109/L to 20 3 109/L and receives weekly HLA-matched
platelet transfusions to minimize symptoms from epistaxis and
hematomata, previously causing hospitalization. In both patients,
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Figure 1. Identification of a homozygous missense substitution in GNE. (A) Filtering strategy of whole-exome sequencing results to identify candidate variants in patients
III:3 and III:5 of the same family. (B) Segregation analysis of the exome candidates in family members where DNA was available. The 3 variants (in the genes GNE, FRMPD1,
and ANKRD18A) were shared by both affected children and were located within a region of homozygosity on chromosome 9p13.3. Double lines linking parents signify first-
cousin unions. (C) Linear domain organization of GNE encoding the enzymeUDP-GlcNAc 2-epimerase/ManNAc kinase. Experimental allosteric sites are based on in vitro studies
(AS), region of unknown function (UF). The approximate position of amino acid substitutions (p.G416R and p.G559R) found in the family in this study and in an independent
study,11 respectively, are indicated and based on transcript NM_005476. del, deletion; WT, wild-type.
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coagulation parameters were normal, and there were no anti-
platelet autoantibodies or HLA antibodies. Blood (15 mL) from
patients and healthy controls was taken in 10% by volume 3.8%
trisodium citrate. Platelet-rich plasma (PRP) was prepared and flow
cytometry was conducted as previously described.5 Transmission
electron microscopy was performed as described previously6 and
examined using a JEOL 1200EX transmission electron micro-
scope. The number of a-granules per square micrometer was
calculated for at least 40 platelets from each patient or control.
The whole exome of the 2 affected individuals was sequenced
with the SureSelect human All Exon 50Mb kit (Agilent Technol-
ogies) and sequencing on the HiSeq 2000 (Illumina) with 100-bp
paired-end reads. The sequences were aligned to the reference
genome (hg19 build).5 To verify candidate mutations, Sanger
sequencing was performed using standard methods on an ABI
3730 automated sequencer.

Both patients had severe thrombocytopenia with platelet counts
in PRP of 1.5 3 107/mL (patient III:5) and 2.5 3 107/mL (patient
III:3), reference range 2.1 3 108/mL to 7.1 3 108/mL (mean 6 2
standard deviation [SD]). Mean platelet volume in patients III:5
and III:3 was 15.0 fL and 10.4 fL, respectively (reference range,

7.68-10.0 fL). Parental platelet counts were normal. An extremely
high immature platelet fraction of 87% and 83% (normal range,
1.3% to 10.8%; n 5 40) was found in patients III:5 and III:3,
respectively, which suggests rapid production (possibly due to
rapid clearance). Flow cytometry was used to assess platelet
function in the 2 affected individuals using an assay validated for
activated platelets with dilutions of PRP from healthy volunteers.
The levels of surface glycoproteins CD42b (GPIba), CD41 (aIIb),
and GPVI in patient III:3 were within the reference ranges
established in healthy volunteers, whereas for patient III:5, the
levels of CD42b and CD41 fell outside these ranges. This could
suggest global platelet dysfunction, where loss of glycans can
lead to failure of the receptor being transported to the surface or
increased proteolysis (Figure 2A). Patient III:5 also showed a
complete abolition of CD62P (P-selectin) expression and a very
weak increase in binding of fibrinogen to ADP, collagen-related
peptide (CRP), and protease-activated receptor 1 (PAR-1)
(Figure 2B-C). Patient III:3 showed a slightly greater increase
in fibrinogen binding to most agonists than patient III:5 and a
recovery of CD62P expression to high concentrations of CRP and
PAR-1 peptide, although this was below the range of responses
to healthy controls in all cases. Electron microscopy of patient
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Figure 2. Flow cytometry and transmission electron microscopy assessment of platelet function in patients III:3 and III:5. Flow cytometry assessment of platelet function
in patients III:3 and III:5 assessed on an Accuri C6 flow cytometer. (A) Platelet glycoprotein receptors. (B-C) CD62P expression (B) and fluorescent fibrinogen binding (C) following
platelet stimulation by various agonists for 2 minutes. The PRP from healthy controls was diluted 1:10 with phosphate-buffered saline and served as a control range. Data for
healthy volunteers are shown as mean6 1 SD (n5 9; except for GPVI, where n 5 2). (D) Transmission electron microscopy image of the platelets from patient III:5 and healthy
control platelets. Arrow indicates an a-granule, and the graph shows the number of a-granules per surface area. Scale bar, 2 mm. ADP, adenosine 59-diphosphate.
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platelets revealed that these are enlarged, but with a similar
number of a-granules per surface area compared with controls
(Figure 2D).

The exome of both patients was sequenced, and alignment of
the sequencing reads revealed 23 943 and 24 293 variations
in patients III:3 and III:5, respectively. Comparisons within the
exome variant server, 1000G, and our in-house GAPP database
of over 1200 exomes identified 2 homozygous nonsynonymous
variants and 1 nonframeshift deletion that were present in both
patients (supplemental Tables 1 and 2, available on the Blood
Web site), with all variations mapping to a tightly linked
homozygous region on chromosome 9p13.3 (supplemental
Table 2). The 2 nonsynonymous variants were in genes GNE
(p.G416R) and FRMPD1 (p.A509V) and the nonframeshift deletion
in ANKRD18A (p.Glu801del). Family studies using Sanger se-
quencing confirmed that all 3 variants segregated with disease
status (Figure 1B). Pathogenicity was predicted using 4 separate
in silico–based pathogenicity prediction software programs
(MutationTaster, SIFT, PROVEAN, and PolyPhen-2), and con-
servation at the site of variation was determined using PhyloP
and PhastCons. Together, all 3 variants were classified as “un-
known significance” when considering the American College
of Medical Genetics and Genomics consensus guidelines.
Upon further analysis within the ExAC database, only the variants
within ANKRD18A andGNEwere novel. Data fromRNA sequencing
of hematopoietic progenitors (blueprint.haem.cam.ac.uk)
suggested that there was very low expression of ANKRD18A
messenger RNA (mRNA) in hematopoietic progenitors. This is in
contrast to GNE mRNA, which is expressed widely in hemato-
poietic progenitors.

In previous studies, 2 compound heterozygous variations in
the gene encoding GNE have been noted to cause a disorder
of progressive muscle weakness with a secondary symptom of
thrombocytopenia.7,8 Previous dominant mutations in GNE have
been associated with sialuria.9,10 It is important to note that re-
cessive patients presented with severe body myopathy as a pri-
mary symptom, whereas the patients in our study did not display
signs of myopathy, although this is possibly because of their age.
Furthermore, a previous study involving whole-exome sequenc-
ing of a single pedigree with severe thrombocytopenia and
bleeding identified an apparent PRKACG variant, but a strong
candidate variant in this family was also a homozygous missense
variant in the kinase domain of GNE (p.G559R), as shown in
Figure 1C.11

GNE encodes glucosamine (UDP-N-acetyl)-2-epimerase/
N-acetylmannosamine kinase, a bifunctional enzyme involved in
the sialic acid biosynthesis pathway and is expressed within all
cells of the hematopoietic lineage. Thrombocytopenia is known
to be associated with increased platelet desialylation in septic
patients due to altered platelet production/survival.12 Further,
platelet counts were increased in a cohort of influenza patients
treated with the sialidase inhibitor oseltamivir (Tamiflu).13 A
platelet clearance system has been shown to exist for desialylated
platelets containing macrophages and hepatocytes.14 The
Ashwell-Morell receptor binds platelets with reduced sialic acid
expression,15 and removal of just 8% to 10% of sialic acid residues
by neuraminidase treatment leads to increased platelet clearance
rates in vivo.16

In summary, our results indicate that the homozygous GNE
mutation described here leads to macrothrombocytopenia,
possibly due to a reduction in sialic acid biosynthesis, which is
expected to cause increased removal of platelets and altered
platelet formation.
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