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Progressive white matter disease, especially silent cerebral in-
farction (SCI), is a major problem in sickle cell disease (SCD).1,2

Although the risk of symptomatic ischemic stroke has been reduced
by chronic transfusion therapy and hydroxyurea, the prevalence of
SCI in SCD patients continues to be 1% to 2% per age year with no
plateau.2 Many studies have focused on the structural and he-
modynamic aspects of SCI,3-5 but few have examined brain iron
accumulation6,7 and its possible role in reinforcing white matter
injury. Brain iron has been shown to increase with recurrent
ischemia-reperfusion injuries,8,9 chronic hypoxia,10,11 and micro-
vasculaturedamage,12 which are common conditions in SCD.13,14 As
a consequence, excessive brain iron could potentially aggravate
white matter damage15,16 and accelerate neurodegeneration.12

To test the hypothesis that brain iron is increased in SCD
patients, we compared quantitative susceptibility mapping

(QSM)17,18 and R2*-based brain iron quantification in SCD pa-
tients and healthy controls. Both magnetic susceptibility (in units
of parts per billion [ppb]) and R2* (1/T2*, in units of per second)
increase with elevated iron concentration. We also investigated
the factors of age, hematological markers, and SCI presence on
brain iron deposition.

Three-dimensional magnetic resonance imaging (MRI) images
and blood samples were collected from 26 clinically asymptom-
atic SCD patients (mean age, 24 years; age range, 14-42 years;
11 female; genotype, SS:Sb0:SC 5 19:3:4) and 25 age- and race-
matched healthy controls (mean age, 26 years; age range, 14-45
years; 15 female; genotype, AA:AS 5 16:9). Five SCD patients
were receiving chronic blood transfusions, 2 patients had his-
tory of chronic transfusion, and the other 19 were nontransfused
patients prescribed hydroxyurea. Comprehensive subject
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Susceptibility
(ppb)

Caudate nucleus 57.7 (14.4) 60.4 (17.5) 0.17 0.55
Putamen 29.7 (13.7) 40.7 (15.3) 0.76 0.009**
Globus pallidus 150.9 (29.1) 164.9 (30.8) 0.47 0.10
Substantia nigra 110.4 (30.9) 134.3 (36.9) 0.70 0.017*
Red nucleus 67.4 (30.2) 92.4 (28.3) 0.86 0.005**
Dentate nucleus 48.0 (24.5) 63.5 (25.7) 0.62 0.057

Caudate nucleus
Putamen
Globus pallidus
Substantia nigra
Red nucleus
Dentate nucleus

R2*
(s-1)

18.0 (3.1) 18.4 (3.7) 0.12 0.64
21.5 (3.2) 21.9 (2.7) 0.13 0.59
35.9 (4.4) 37.5 (5.7) 0.31 0.27
31.8 (4.5) 35.0 (5.8) 0.62 0.034*
29.7 (4.4) 32.1 (6.2) 0.44 0.14
29.0 (4.6) 31.9 (4.8) 0.62 0.048*

Figure 1. SCD patients exhibit higher susceptibility and
R2* in multiple subcortical nuclei, compared with age-
matched controls. (A) Average susceptibility (ppb) and R2*
(per second) of deep gray matter ROIs in SCD patients and
healthy controls. Values are reported as mean (standard
deviation). All values were corrected for age and sex; d is
Cohen’s effect size, which is defined as the difference be-
tween group means divided by the pooled standard de-
viation. **P, .01; *P, .05. (B) Examples of susceptibility and
R2* maps in the regions of substantia nigra and red nucleus.
Susceptibility maps (top), R2* maps (middle), and T2*-
weighted images at an echo time of 20 ms (bottom) are
shown. Blue and pink dashed boxes highlight the regions of
substantia nigra and red nucleus, respectively. The left
2 columns compare an SCD patient with a control, both
of whom are 29 years old, and the right 2 columns compare
2 subjects who are both 25 years old.
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demographics, including transfusion history and somatic iron
burdens, are included in supplemental Methods (available on
the Blood Web site). MRI scans were performed on a 3T Philips
Achieva scanner. Data acquisition included the following: (1) T1-
weighted images for anatomical referencing; (2) T2-weighted fluid-
attenuated inversion recovery images for the identification of
white matter hyperintensities3; (3) magnetic resonance an-
giography for the assessment of vasculopathy; and (4) multiecho
gradient echo images for QSM and R2* mapping. All T1, T2, and
angiographic images were interpreted by a board-certified
neuroradiologist (B.T.) blinded to the disease status. QSM
and R2* maps were measured using standard MRI methods
detailed in the supplemental Methods. Regions of interest
(ROIs) referenced to the splenium of the corpus callosum in-
cluded bilateral caudate nucleus, putamen, globus pallidus,
substantia nigra, red nucleus, and dentate nucleus (supple-
mental Figure 1).

The effects of age (log transformed) and sex were removed from
the entire cohort by linear regression prior to group comparisons
with unpaired Student t tests. Complete step-wise multivariate
regression was performed for each brain region using the
following independent variables: age, sex, peripheral oxygen

saturation, hemoglobin, the product of oxygen saturation and
hemoglobin, hematocrit, hemoglobin S (HbS)–containing cells
(%), fetal hemoglobin, cell-free hemoglobin, mean corpuscular
volume, white blood cell count, reticulocytes, and lactate de-
hydrogenase. Additional details on statistical analysis are pre-
sented in the supplemental Methods. The study was approved
by the Institutional Review Board at Children’s Hospital Los
Angeles (CCI#11-00083).

Susceptibility values increased significantly with age in all deep
gray matter ROIs (supplemental Figure 2). R2* measurements
exhibited a similar pattern in all ROIs except the caudate nucleus
(supplemental Figure 3). No effect of sex was observed on the
susceptibility or R2* measurement of any ROI. Susceptibility
measurements were found to be significantly higher in the SCD
patient group in the regions of putamen, substantia nigra, and
red nucleus after controlling for age and sex (Figure 1A). Effect
sizes of the disease on susceptibility measurements, represented
by Cohen’s d value, ranged from 0.70 to 0.86. R2* values were
significantly higher in the substantia nigra and the dentate nu-
cleus (Figure 1A). No group difference was observed in the other
nuclei. Qualitative comparison of susceptibility and R2* maps is
illustrated in Figure 1B.
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Figure 2. Susceptibility values of multiple subcortical nuclei correlate with hemoglobin and white matter damage. (A) Age corrected susceptibility measurements
present significant negative correlation with hemoglobin in substantia nigra (P 5 .008, r2 5 0.14), red nucleus (P 5 .028, r2 5 0.10), and dentate nucleus (P 5 .023, r2 5 0.13).
Dotted lines show the linear regression of the data, and shaded areas delimit the 95% confidence interval. (B) Susceptibility of the globus pallidus and substantia nigra
(after correction for age and sex) is higher in SCD patients with silent infarcts (SCI1), compared with patients with normal appearing white matter (SCI2). Mean and standard
deviation of globus pallidus susceptibility are 180.5 6 29.8 ppb in the SCI1 group and 149.3 6 23.7 ppb in the SCI2 group. **P 5 .007. Mean and standard deviation of
substantia nigra susceptibility are 151.7 6 35.5 ppb in the SCI1 group and 115.3 6 29.1 ppb in the SCI2 group. **P 5 .010
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In the multivariate analysis, log-transformed age was the stron-
gest predictor for the susceptibility and R2* measurements.
Besides age, significant negative correlation with hemoglo-
bin was found in the susceptibility measurements of sub-
stantia nigra, red nucleus, and dentate nucleus (Figure 2A).
The product of hemoglobin and peripheral oxygen saturation
(as a surrogate for oxygen content) did not strengthen the
association of susceptibility with hemoglobin. Susceptibility and
R2* values of the substantia nigra and red nucleus also showed
negative correlation with hematocrit and positive correlation
with HbS-containing cells, but they are not shown because these
variables were highly correlated with hemoglobin. Susceptibility
of the caudate nucleus, putamen, or globus pallidus did not
correlate with any laboratory measurement.

Compared with patients with normal appearing white matter
(SCI2), patients with silent infarcts (SCI1) exhibited higher sus-
ceptibility in all gray matter nuclei, but only the globus pallidus and
substantia nigra reached statistical significance (Figure 2B). R2*
measurement of the substantia nigra also had higher values in the
SCI1 group (SCI1: 37.5 6 5.5/s; SCI2: 32.5 6 5.0/s; P 5 .022,
not shown). There was no significant difference of R2* between
the 2 patient subgroups in the other gray matter structures.

This study is the first systematic assessment of brain iron de-
position in patients with SCD across a broad range of ages. We
did not observe increased brain iron in children, consistent with
prior abstracts,6,7 but differences became apparent in middle
age. Although no effect of sex was observed, we might be
underpowered to detect sex differences because of the small
sample size. Although 5 out of 26 patients had significant
transfusional iron overload, brain iron levels were independent
of somatic iron burden.

Low hemoglobin and presence of SCI are associated with small-
vessel disease and regional cerebral hypoxia5,19 in SCD patients.
Hypoxia is a well-known stimulus for brain iron uptake.9-11 The
correlation between brain iron with hemoglobin and with SCI
suggests that brain iron may be a biomarker of cerebral hypoxic
exposure. However, we could not completely exclude the
possibility that the relationship between susceptibility mea-
surements and hemoglobin levels represented a group effect. In
the present study, anemia and SCD severity were inexorably
linked; future studies using non-SCD anemia patients are
needed to determine whether anemia, itself, is associated with
elevated brain iron.

In such an early stage of investigation, it is impossible to know
whether the increased brain iron deposition represents an in-
cidental biomarker of SCD severity or reinforces cerebral damage
or neurocognitive dysfunction. To place our observations in
context, the amounts of increased substantia nigra suscepti-
bility and R2* in the SCI1 patient group are comparable to
those observed in patients with symptomatic Parkinson
disease.20,21 In Parkinson disease and other brain iron disor-
ders, iron accelerates neurological degeneration by exacer-
bating ischemia-reperfusion injury and neural inflammation,
even though irondysregulation is not the primary diseaseprocess.
Iron-chelation therapy using deferiprone has been shown to
improve neurological function in Parkinson disease,22 Friedreich
ataxia,23 and pantothenate kinase deficiency.24 Thus, we believe it
is critical to determine the functional role of brain iron in SCD and

other anemia syndromes, because it is potentially treatable if it
contributes to the progressive neurological complications ob-
served in these patients.

In summary, SCD patients demonstrated increased brain iron
accumulation in multiple subcortical nuclei compared with age-
and ethnicity-matched control subjects. Iron concentrations in
the substantia nigra, red nucleus, and dentate nucleus
negatively correlated with hemoglobin, suggesting potential
interaction between iron metabolism and chronic hypoxia in
the brain. Substantia nigra and globus pallidus iron was el-
evated in patients with SCI, consistent with an ischemic
etiology. Future studies will focus on the functional correlates
of brain iron in SCD patients as well as additional clinical
predictors.
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The pathophysiologic mechanisms, genetic predictors, and long-
term consequences of acute kidney injury (AKI) on kidney function
in sickle cell anemia (SCA) are not clear.1-5 In the general pop-
ulation, AKI is associated with the subsequent development and
progression of chronic kidney disease (CKD).6,7 Animal models
have demonstrated that AKI results in capillary loss and tissue
hypoxia, dysregulated apoptosis, and sustained proinflammatory
and profibrotic signaling.7 We investigated clinical and laboratory
predictors for AKI in a cohort of hospitalized adults with SCA at
the University of Illinois at Chicago. We also examined whether
genetic variants implicated in sickle cell nephropathy8-10 predicted
AKI risk and whether AKI is associated with a more rapid decline
in kidney function on longitudinal follow-up.

We analyzed 137 SCA (HbSS/Sb0-thalassemia) patients enrolled
betweenAugust of 2010 and Juneof 2012 into a prospective registry
and followed until December of 2017. These patients were selected
from a cohort of 267 SCA patients based on genotyping availabil-
ity and hospitalization during the observation period. Patients
included in this analysis were similar to those not included with re-
spect to age, sex, hydroxyurea use, estimated glomerular filtration
rate (eGFR), and albuminuria at enrolment (P $ .2). The protocol
was approved by the Institutional Review Board before initiating
the study, and all subjects provided written informed consent.

Clinical and laboratory data were collected at the time of hos-
pitalization for the first AKI event or the first vaso-occlusive crisis
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