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Chronic innate immune signaling in hematopoietic cells is widely described in myelodysplastic syndromes (MDS), and
innate immune pathway activation, predominantly via pattern recognition receptors, increases the risk of developing
MDS. An inflammatory component toMDS has been reported formany years, but only recently has evidence supported
a more direct role of chronic innate immune signaling and associated inflammatory pathways in the pathogenesis of
MDS. Here we review recent findings and discuss relevant questions related to chronic immune response dysregula-
tion in MDS. (Blood. 2018;132(15):1553-1560)

Introduction
Myelodysplastic syndromes (MDSs) are hematopoietic stem cell
(HSC) disorders defined by somatic mutations, myeloid cell
dysplasia, and ineffective hematopoiesis. Chronic inflammatory
diseases associated with activated innate immune signaling
pathways often precede MDS; thus a role for chronic innate
immune signaling in hematopoietic cells is suspected in MDS.
The innate immune system recognizes pathogens and host
cellular by-products by pattern recognition receptors. Among
the first pattern recognition receptors to be identified were the
Toll-like receptors (TLRs). Upon ligand binding, TLRs recruit
intracellular adaptors, kinases, and effector molecules. When
TLR signaling is chronically activated, normal hematopoiesis is
impaired and prolonged inflammation alters the bone marrow
(BM) microenvironment.1 Herein, we will highlight the recent
data that implicate innate immune pathway activation in the
abnormal function of MDS HSCs and propose new directions for
study and therapeutic intervention that are supported by this
evidence.

Evidence of cell intrinsic dysregulation of
innate immune signaling in MDS HSC
Expression of immune-related genes in MDS
hematopoietic stem/progenitor cells (HSPCs)
Overexpression of immune-related genes in HSPCs is reported
in .50% of MDS patients (Figure 1).2,3 In MDS HSPCs, TLRs
are either mutated or overexpressed compared with healthy
counterparts.4,5 Downstream effectors such as MyD88 or IRAK1
and IRAK4 kinases are also overexpressed and/or constitutively
activated.5-7 Hyperactivation of TLRs, MyD88, or IRAKs is func-
tionally relevant in MDS cells as suppression of TLR-mediated
signaling inMDS CD341 cells with an inhibitor of TLR2 or MyD88
restored the hematopoietic function of MDS HSPCs, and MDS
HSPCs exhibiting activation of IRAK1 or IRAK4 are preferentially

sensitive to IRAK1/4-inhibitors.5-7 Aberrant expression of TRAF6,
a ubiquitin ligase that mediates signaling from several innate
immune receptors, is observed in MDS HSPCs.2 TRAF6 mes-
senger RNA is overexpressed in ;40% of MDS CD341 cells as
compared with healthy individuals. However, downregulation of
TRAF6 is also observed in a subset of MDS patients.8 The innate
immune signaling pathway is tightly regulated by negative
feedback mechanisms. Therefore, it is not surprising that neg-
ative regulators of innate immune signaling, such as miR-145,
miR-146a, and TIFAB are deleted and/or repressed in MDS
HSPCs (Figure 1).9-13 These findings indicate that dysregulation
of innate immune-related genes is common in MDS HSPCs.

Functional evidence of innate immune signaling
dysregulation in MDS
Del(5q) as a paradigm for chronic innate immune signaling in
MDS Although there is plenty of evidence that innate immune-
related genes are dysregulated in MDS HSPCs, the first hint at
a link between chronic innate immune signaling and MDS
emerged from population-based studies that revealed an in-
creased risk of MDS in patients with chronic inflammatory and
autoimmune diseases.14 However, initial evidence that innate
immune pathway activation is causal in MDS came from work
related to the del(5q) MDS genes, miR-146a and TIFAB
(Figure 1). Deletion of miR-146a increases TRAF6 messenger
RNA levels and translation, while loss of TIFAB increases TRAF6
protein stability, thus resulting in overexpression and activation
of TRAF6 in MDS HSCs.9,11 miR-146a resides on 5q33.3 and is
deleted in 80% of all del(5q) MDS.15 Low expression of miR-146a
also occurs in .25% of MDS patients independent of cytoge-
netic status9,16,17 and is part of an MDS diagnostic miRNA
signature.16 Deletion of miR-146a in mouse hematopoietic cells
results in myeloid expansion, and then in BM failure, MDS, and/
or leukemia.18-20 TIFAB resides within 5q31.1, which is deleted in
nearly all cases of del(5q) MDS. In an independent study, TIFAB
was identified by a retroviral insertional mutagenesis screen as
a target in del(5q) myeloid neoplasms.21 Tifab-deficient mice

© 2018 by The American Society of Hematology blood® 11 OCTOBER 2018 | VOLUME 132, NUMBER 15 1553

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/132/15/1553/1406922/blood784116.pdf by guest on 02 June 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2018-03-784116&domain=pdf&date_stamp=2018-10-11


develop mild hematopoietic defects and occasionally BM fail-
ure.11 However, hematopoietic-specific deletion of Tifab and
miR-146a together results in a highly penetrant BM failure, which
better recapitulates human del(5q) MDS.10 Changes in gene
expression of other 5q genes are also associated with innate
immune signaling. For instance, loss of another 5q gene, miR-
145, results in derepression of Mal/TIRAP, a protein adaptor that
lies in the TLR-MyD88 pathway (Figure 1).9,12 DIAPH1, which
encodes mDia1, is located on 5q31.3. mDia1-deficient mice
either alone or when codeleted with miR-146a exhibit an age-
dependent granulocytopenia and myeloid dysplasia through
increased TLR4 signaling (Figure 1).22 Codeletion of mDia and
miR-146a results in anemia and ineffective erythropoiesis me-
diated by elevated tumor necrosis factor a and IL-6, linking a
clinical aspect of MDS with chronic inflammation.22 On the other
hand, a gene overexpressed from the intact 5q allele, SQSTM1/
p62, that activates TRAF6, is essential for the proliferation and
viability of miR-146a-deficient HSPC.23 As an indirect mechanism
of innate immune activation in del(5q) MDS, loss of RPS14, a 5q
gene encoding for a ribosomal protein, contributes to a p53-
dependent increase of the endogenous TLR ligands S100A8/A9
(Figure 2).24 These findings underscore the intricate signaling
mechanisms that support innate immune signaling in del(5q)

MDS through dysregulation of neighboring innate immune-
related genes.

TRAF6 signaling hub underlies aberrant hematopoiesis in
MDS In addition to its role in del(5q) MDS, TRAF6 expression is
dysregulated in non-del(5q) MDS HSPCs. Overexpression of
TRAF6 at disease-relevant levels in hematopoietic cells is suf-
ficient to induce HSC defects in mice that are cell-intrinsic and
associated with myeloid-biased differentiation.8 Although NF-kB
is associated with TRAF6 function in immune effector cells,
classic inflammatory genes are not preferentially upregulated in
TRAF6-overexpressing HSPCs, suggesting that the hemato-
poietic phenotype following TRAF6 overexpression is not ex-
clusively associated with activation of canonical NF-kB and
inflammation. TRAF6 ubiquitinates the RNA binding protein
hnRNPA1, and consequently, ubiquitinated hnRNPA1 induces
aberrant splicing of Arhgap1, a negative regulator of Cdc42
whose activation mediates hematopoietic defects in TRAF6-
overexpressing HSCs and MDS (Figure 1).8,25 According to
genetic studies, the TRAF6 dosage impacts HSC function in-
dependent of overt infection.8,26,27 Multiple independent
mechanisms contribute to hyperactivation of TLR signaling in
MDS, many of which converge on TRAF6. Nevertheless, deeper
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Figure 1. Cell intrinsic dysregulation of innate immune
signaling in MDS HSCs. TLRs and interleukin-1 receptor (IL-
1R)/IL1RAP recruit MyD88 and IRAK4/2 (Myddosome com-
plex) upon ligand binding (lipopolysaccharide [LPS], S100A
alarmins, and IL-1). CD14 functions as a coreceptor of TLR4
in response to LPS. Toll-interleukin 1 receptor (TIR) domain
containing adaptor protein (TIRAP) can also increase the
efficiency of Myddosome assembly by binding MyD88.
IRAK4, a serine/threonine kinase, activates IRAK2 and/or
IRAK1 through IRAK4-dependent phosphorylation. IRAK1
activates the ubiquitin (Ub) ligase, TRAF6, which mediates
signaling to NF-kB, MAPK, and RNA binding proteins (ie,
hnRNPA1) through K63-linked Ub chains, leading to ex-
pression of proinflammatory cytokines andNLRP3 or splicing
of the Rho guanosine triphosphatase–activating protein
Arhgap. microRNA-146a (miR-146a) suppresses IRAK1 and
TRAF6 protein expression. miR-145 suppresses TIRAP pro-
tein expression. TIFAB suppresses TRAF6 protein stability.
Inflammosome activation results in caspase 1–dependent
IL-1b processing and pyroptosis. Proteins and genes in green
are downregulated and/or deleted in MDS. Proteins and
genes in red are overexpressed and/or activated in MDS.
Steps of the signaling pathway that have been pharmaco-
logically inhibited are indicated. Adapted from Varney et al.112
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insight is needed to identify the molecular consequences of
TRAF6 activation in HSCs that contribute to MDS.

Inflammasome signaling as a driver of MDS The inflamma-
some consists of a family of Nod-like receptors (NLRs), which can
lead to inflammatory-mediated cell death called pyroptosis.28

Of the NLR family, NLRP3 has been implicated in pyroptosis
in MDS.29 Interestingly, NLRP3 is activated by diverse damage
associated molecular pattern (DAMP) signals, including S100A8
and S100A9 (Figure 1). S100A9 and reactive oxygen species
(ROS) generated in response to NLRP3 activation mediate
pyroptosis and b-catenin activation in MDS. In addition to ac-
tivation by DAMPs, inflammasome signaling is associated with
common mutations in MDS, including U2AF1, SRSF2, SF3B1,
ASXL1, and TET2, which all contribute to activation of NLRP3-
dependent pyroptosis.29 Importantly, inhibiting the inflamma-
some restores normal hematopoiesis29 and protects against the
development of cardiovascular disease in TET2-deficient mice.30

TRAF6 is involved in TLR-mediated priming of the NLRP3
inflammasome in BM-derived macrophages,31 suggesting that
TLR signaling via TRAF6 is also linked to inflammasome acti-
vation in MDS.

Activation of immune receptors inMDS The best-studied TLR
in MDS is TLR4 and its ligands LPS and S100A8/A9. Adminis-
tration of low concentration levels of LPS in mice, meant to
model chronic infection, results in myeloid-biased differentiation
and loss of HSC fidelity.32 Sustained activation of TLR4 correlates
with ROS-mediated DNA damage, suggesting that chronic TLR4
signaling can directly result in accumulation of genotoxicity and
contribute to malignant transformation.33 Indeed, LPS was
shown to induce MDS in mice with loss of the del(5q) gene
mDia1, which corresponds with increased expression of the
TLR4 cofactor, CD14 (Figure 1).34 TLR2 is also implicated broadly
in MDS. Activation of TLR2 leads to proliferation of HSCs in
mice35 and increased apoptosis and impaired erythroid differ-
entiation of human CD341 BM cells.5,36, Moreover, a somatic
mutation of TLR2 is associated with enhanced innate immune

signaling in MDS.5 Somewhat unexpectedly, a recent study
suggests that TLR2 signaling has a protective role against leu-
kemic transformation in a mouse model of MDS.37 Mice ex-
pressing NUP98-HOXD13 (NHD13 mice) developed leukemia
more rapidly when crossed with Tlr2- or MyD88-deficient mice.
In the NHD13model, TLR2 appears to be important for the MDS
phase of the disease, but its loss may accelerate transformation
to acute myeloid leukemia (AML). Studies of TLR2 deficiency in
additional models of MDS are warranted. Of note, murine
models exhibit expression patterns for several TLRs that are
distinct from humans, and species-specific differences in rec-
ognition of TLR ligands have been reported.38-40 Moreover, TLR
signaling is sensitive to the origin, purity, and concentration
of the ligand; as such, careful interpretation of experiments
using TLR ligands to model chronic inflammation is necessary.
Despite these caveats, human HSPCs also respond to TLR
stimulation resulting in increased proliferation and myeloid
differentiation,41,42 suggesting that the overall effects of innate
immune signaling in human HSPCs resemble those observed in
mice.

Alterations in epigenetic genes and their effects on innate
immune signaling EZH2, a catalytic component of polycomb
repressive complex 2 (PRC2) that adds repressive methyl marks
to H3K27, is mutated or downregulated in MDS.43 On the other
hand, KDM6B (JMJD3), which demethylates H3K27, is overex-
pressed in MDS CD341 cells,44 and its expression can be in-
duced with TLR2 ligands.5 In certain contexts, EZH2 is implicated
as a negative regulator of innate immune signaling associated
with viral sensing in part through inhibition of RIG-I or with
degradation of TRAF6.45,46 KDM6B regulates several transcrip-
tion factors of the innate immune response, and its expression is
increased by NF-kB in response to microbial stimuli.47 In MDS
patients, KDM6B mediates transcription of multiple genes in-
volved in NF-kB activation, suggesting that KDM6B is a feed-
forward activation node of innate immune signaling in HSPCs.44

The connections between these 2 epigenetic regulators and
immunity were recently reviewed.48
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Figure 2. Model of innate immune signaling dysregu-
lation in the pathogenesis of MDS. Certain diseases and
conditions, such as aging, autoimmune disorders, chronic
infections, and/or clonal hematopoiesis of indeterminate
potential (CHIP), can induce innate immune signaling
dysregulation in HSCs in part by creating an inflammatory
BMmicroenvironment characterized by increased alarmins
and/or cytokines. Development of MDS may occur by
at least 2 independent mechanisms. (1) CHIP-associated
mutations (ie, DNMT3a or TET2) occur in HSCs by innate
immune independent mechanisms and drive the expan-
sion of myeloid-biased HSC leading to altered innate
immune signaling and development ofMDS. (2) Prolonged
innate immune signaling caused by clonally expanded
myeloid-biased HSCs directly increases the risk of ac-
quiring mutations (ie, CHIP mutations) contributing to
MDS. Innate immune signaling dysregulation at the MDS
stage occurs through cell-intrinsic (ie, increased cell death
via pyroptosis) and cell-extrinsic mechanisms (ie, cytokines
and alarmins stimulation from macrophage and myeloid
derived suppressor cells [MDSCs]). As a result of altered
innate immune signaling, MDSCs also promote regulatory
T cell (Treg) activation to limit T-cell surveillance.
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Innate immune signaling and clonal
hematopoiesis (CH)
HSCs represent a functionally heterogeneous cell population49-52;
however, myeloid-biased differentiation is observed in chronic
inflammation, autoimmune diseases, and aging,53,54 coinciding
with diminished HSPC heterogeneity.55 The expansion of HSC
clones at a rate disproportionately greater than other clones is
known as CH (Figure 2). Increasing evidence suggests that innate
immune signaling inHSPCs acts as a selective pressure contributing
to CH. Throughout the life of an organism, HSCs encounter and
respond to pathogens,56,57 resulting in rewiring of transcriptional
networks driving myelopoiesis1,58-61 and “trained” innate immune
memory.62,63 The expanded myeloid-biased long-term HSCs
following an immune challenge exhibit enrichment of innate
immune-relatedgenes at the expenseof geneexpression related to
lymphopoiesis.62 These observations suggest that clonal expansion
of myeloid-biased HSCs with “trained” innate immune memory
preceding MDS might be driven by continuous innate immune
signaling. Indeed, myeloid-biased hematopoiesis is observed in
immune-related diseases that often lead to MDS, such as arterio-
sclerosis and rheumatoid arthritis, as a result of TLR4-mediated
signaling in HSPCs.53,64-66 Although the clonally expandedmyeloid-
biased HSCs might not be malignant per se, they might serve as a
conduit for the development of myeloid neoplasms. We envision
development of MDS by at least 2 independent mechanisms: (1)
prolonged innate immune signaling caused by clonally expanded
myeloid-biased HSCs directly increases the risk of acquiring mu-
tations contributing toMDS; or (2) somatic mutations occur in HSCs
by innate immune independent mechanisms and drive the ex-
pansion of myeloid-biased HSCs leading to altered innate immune
signaling and development of MDS (Figure 2).

Innate immune signaling as a driver of
CHIP mutations
HSCs accumulate somatic mutations with age in otherwise
healthy individuals.67 Although most of these mutations are
inconsequential, HSCs can acquire mutations providing a clonal
advantage leading to CHIP.68,69 Although individuals with CHIP
might never develop hematopoietic malignancies, they are at
risk for atherosclerotic cardiovascular disease and MDS. The
most common mutations identified in CHIP occur in DNMT3A,
TET2, and ASXL1,70,71 which are also prevalent in MDS. The
mechanisms by which CHIP mutations are acquired are not
clearly discerned. Bacterial genotoxins and ROS resulting from
chronic innate immune signaling are known to induce geno-
mic mutations in hematopoietic cells.33,72-74 Despite evidence
demonstrating that chronic innate immune signaling can induce
genomic instability, acquisition of CHIP mutations because of
inflammatory stressors has not been reported.

CHIP mutations as drivers of innate
immune signaling
Mutations of DNMT3A, TET2, and ASXL1 alter innate immune
signaling through various mechanisms. TET2 negatively regu-
lates expression of proinflammatory cytokines and interferons in
immune cells,75-77 thus indicating that inactivation of TET2 in-
creases innate immune signaling. In support of these observa-
tions, TET2 mutations in macrophages are associated with
elevated IL-1b-NLRP3 signaling,30,76,78,79 a driver of MDS. Pre-
leukemic myeloproliferation following Tet2 deficiency depends

on IL-6 signaling and occurs only in a subset of mice that ex-
perienced bacterial infection from barrier dysfunction in the
small intestine, indicating that infection-associated innate im-
mune activation is required for myeloproliferation in cells
bearing a CHIP-associated mutation.80 DNMT3Amutations have
also been implicated in regulating innate immune signaling.
DNMT3A-deficient mice exhibit increased interferon a/b and
higher mortality rates after challenge with RNA viruses81; how-
ever, the mechanism by which DNMT3A regulates innate
immune signaling remains unknown. Evidence for ASXL1 mu-
tations regulating innate immune signaling is scarce. One study
reported that mutant ASXL1 induces a myeloid differentiation
block by reducing CLEC5 expression,82 a C-type lectin receptor
activated by glycans present in microorganisms that is down-
regulated in MDS patients.82 Further studies are needed to
determine if ASXL1 plays a role in regulating innate immunity.

HSPC-extrinsic mechanisms associated
with innate immune signaling in MDS
Ineffective hematopoiesis and clonal dominance are not limited
to cell-intrinsic mechanisms of the MDS clone. Recent evidence
has revealed that age- and disease-related microenvironment
changes within the MDS BM niche contribute to ineffective
hematopoiesis. In this section, we summarize the recent per-
spectives on the role of aberrant innate immune signaling
emerging from HSPC-extrinsic mechanisms in MDS.

Immune cells
MDSCs secrete immunosuppressive cytokines to reduce effector
T-cell proliferation. MDSCs are increased in MDS BM, and the
magnitude ofMDSCabundance is an indicator of poor prognosis in
MDS.83 Interestingly, MDSCs in MDS patients do not harbor the
same somatic mutations as the MDS clone, indicating that the
MDSCs arise from distinct hematopoietic clones.84 MDSCs are
activated by binding of CD33 to S100A9, a DAMP abundantly
expressed by MDSCs.85 In support of a model in which MDSC-
derivedS100A9expression contributes toMDS, S100A9 transgenic
mice develop an MDS-like disease that coincides with in-
creased activation of MDSCs.84 In contrast, blocking S100A9
signaling restored normal hematopoiesis, thus implicatingMDSCs
as initiators of the MDS phenotype.84 Nevertheless, it remains
unknown how MDSCs and MDSC-secreted DAMPs affect HSPCs
and contribute to clonal selection.

The role of granulocytes, macrophages, and dendritic cells is less
clear in MDS.86-88 As indicated previously, deletion of mDia1 or
TET2 results in increased innate immune signaling in mature
myeloid cells. The contribution of the adaptive immune system,
specifically T-cell surveillance, in MDS BM has not been as ex-
tensively documented. In low-risk MDS, the decreased number
of Treg’s is associated with T effector cell targeting of HSPCs,
whereas the increased number of Treg’s in high-risk MDS results
in immunosuppression.89,90 This switch in immune surveillance
correlates with changes in the cytokine milieu from a proin-
flammatory state in low-risk patients to anti-inflammatory state in
high-risk MDS and AML patients.91

Mesenchymal stroma
The nonhematopoietic cells of the BM are composed of blood
vessels and the mesenchymal stroma derived from mesenchymal
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stem cells (MSCs). Endothelial cells and mesenchymal cells func-
tion to form a niche that is required for HSPC function. Although
still somewhat inconclusive, a few studies point to a role of
mesenchymal cells in MDS. For example, engraftment of human
MDS HSPCs in immune-deficient mice is enhanced by cotrans-
plantation with patient-derived mesenchymal cells.92-94 The role of
innate immune signaling in MSC-mediated support for MDS
HSPCs is reinforced by the findings that patient-derived MSCs
exhibit higher inflammatory signaling compared with healthy
controls and that MDS HSPC function is enhanced by coculture
with LPS-stimulated stromal cells.66,93 Another study found that a
mousemodel ofMDS could be engrafted into aged recipient mice
more efficiently than in young mice, indicating that aged BM
stroma is more conducive to MDS.22 Although these studies
support a role for the mesenchyme in sustaining MDS, other
studies suggest that the mesenchyme is important for the initiation
of MDS. Mice bearing mesenchymal-specific deletion of Dicer1 or
Sbds have increased inflammation in their BM, correlating with
elevated secretion of S100A9, and development of MDS-like
defects.66,95 Interestingly, DICER1 and SBDS are downregulated
in mesenchymal cells of MDS patients,96 and DICER1 down-
regulation was implicated in increased senescence of MDS
mesenchymal progenitor cells.97 Patients with Schwachman-
Diamond syndrome have inherited mutations in SBDS and an
elevated incidence of MDS; however, hematopoietic-specific
deletion of Sbds failed to induce hematologic malignancies in
mice. In contrast, mesenchymal-specific Sbds deletion resulted in
MDS-like phenotypes, suggesting that the mesenchymal com-
partment is responsible for disease initiation in some MDS pa-
tients.98 A recent report described elevated WNT/b-catenin
signaling in mesenchymal cells from MDS patients, and consti-
tutive b-catenin activation in MSC-derived osteoblasts caused
AML in a mouse model,99,100 suggesting that WNT signaling from
the stroma also promotes disease progression. b-catenin sig-
naling has known roles in transcriptional activation of innate
immune and inflammation-associated signaling pathways, in-
cluding transforming growth factor b and Notch.101 The
mechanisms by which Dicer and Sbds deletion or constitutive
b-catenin activation in mesenchymal cells cause increased innate
immune signaling in hematopoietic cells may not be direct, but
these studies collectively point to a role for abnormal mesen-
chymal cells as a source of innate immune signals in the BM
microenvironment that may drive MDS development.

Cytokines
Elevated expression of cytokines, chemokines, and growth factors
is a hallmark of MDS (Figure 2). The source of these secreted
factors inMDS has been demonstrated in various cell populations.
As indicated previously, MDSCs secrete a host of immune-
inhibitory cytokines in response to S100A9-mediated activation.
Additionally, myeloid cells derived from the MDS clone secrete
higher levels of cytokines.86 Cytokine profiling across large MDS
cohorts has yielded conflicting reports on which cytokines are
most relevant to MDS. Nevertheless, tumor necrosis factor a,
transforming growth factor b, interferon g, IL-6, IL-8, IL-1b, and
granulocyte-macrophage colony-stimulating factor are commonly
increased in MDS patients, and in certain cases their expression
correlates with disease outcome.102-105 One of the clinical features
of MDS is anemia. Proinflammatory cytokines were shown to
mediate hepcidin expression in the liver, which negatively reg-
ulates iron availability in erythroblasts.106 However, a direct
link between hepcidin expression and MDS has not been

determined. Recent reviews have described the multifaceted
roles of the aforementioned cytokines in MDS and ineffective
hematopoiesis.107,108

Targeting innate immune pathways
in MDS
Chronic innate immune signaling in MDS HSCs and in the mi-
croenvironment provides a rationale for the development of
therapies that target oncogenic innate immune pathways. There
are preclinical studies demonstrating the potential of inhibiting
IL-1R/TLR-IRAK-TRAF6 signaling in MDS by targeting IRAK1
and/or IRAK4 with small molecules, or IL1RAP with antibodies
(Figure 1).7,109 Targeting of the S100A9-CD33-TLR4 axis restores
hematopoiesis inMDS-likemousemodels, in part by dampening
the activity of MDSCs. As such, monoclonal antibodies to CD33
are being investigated in lower-risk MDS patients.110 A phase 1/2
trial of low-riskMDS is underway testing the efficacy ofOPN-305,
an antagonistic monoclonal antibody to TLR2 (#NCT02363491).
Although, the initial results showed an overall response rate of
50%, completion of the trial is necessary to assess the full po-
tential of targeting TLR2 in MDS. CX-01, which disrupts TLR4
activation by blocking 1 of its endogenous ligands, HMGB1, is
also under investigation inMDS (#NCT02995655). A rationale for
targeting innate immune pathways is supported by the efficacy
of lenalidomide in del(5q) MDS. Lenalidomide, an immuno-
modulatory drug derived from the chemical structure of tha-
lidomide, exhibits multiple effects on the immune system.111

Given that innate immune signaling is activated not only in the
MDS clone but also in the microenvironment, there is a growing
enthusiasm to target these pathways in MDS. Although these
therapies may or may not eliminate the neoplastic clone directly,
the simultaneous attenuation of both MDS clonal expansion and
microenvironmental innate immune signaling, which is likely
essential for MDS clonal selection, may provide a clinical re-
sponse through the outgrowth of healthy HSCs and restoration
of normal hematopoiesis.

Conclusions
An inflammatory component to MDS has been reported for
more than a decade, but only recently has evidence supported a
more direct role of chronic innate immune signaling and asso-
ciated inflammatory pathways in the pathogenesis of MDS.
Despite the mounting data demonstrating that innate immune
pathways have been co-opted in MDS HSPCs and activated in
the microenvironmental cells, there remain many unanswered
questions. Of most importance, is chronic immune signaling an
initiating and/or a modifying event in MDS? How does dysre-
gulation of innate immune signaling cooperate with other ge-
netic and/or molecular defects observed in MDS? Given that
innate immune pathways typically activate NF-kB and MAPK
signaling, it is imperative to determine the role of these path-
ways in MDS clonal dominance vs dyshematopoiesis. Finally, it is
important to distinguish between the effects of innate immune
signaling on HSCs vs immune cells in MDS.
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