
Regular Article

LYMPHOID NEOPLASIA

North American ATLL has a distinct mutational and
transcriptional profile and responds to epigenetic therapies
Urvi A. Shah,1-3 Elaine Y. Chung,2 Orsi Giricz,3 Kith Pradhan,3 Keisuke Kataoka,4 Shanisha Gordon-Mitchell,3 Tushar D. Bhagat,3 Yun Mai,2

Yongqiang Wei,2,5 Elise Ishida,2 Gaurav S. Choudhary,3 Ancy Joseph,6 Ronald Rice,7 Nadege Gitego,3 Crystall Parrish,3 Matthias Bartenstein,3

Swati Goel,1 Ioannis Mantzaris,1 Aditi Shastri,1,3 Olga Derman,1 Adam Binder,1 Kira Gritsman,1,2 Noah Kornblum,1 Ira Braunschweig,1

Chirag Bhagat,8 Jeff Hall,8 Armin Graber,8 Lee Ratner,6 Yanhua Wang,9 Seishi Ogawa,4 Amit Verma,1,3 B. Hilda Ye,2 and Murali Janakiram1

1Department of Oncology, Montefiore Medical Center, Bronx, NY; 2Department of Cell Biology and 3Department of Developmental and Molecular Biology,
Albert Einstein College of Medicine, Bronx, NY; 4Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan;
5Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; 6Division of Oncology, Washington University School
of Medicine, St Louis, MO; 7Department of Pathology, Phelps Hospital, Northwell Health, Sleepy Hollow, NY; 8Genoptix, Carlsbad, CA; and 9Department of
Pathology, Montefiore Medical Center, Bronx, NY

KEY PO INT S

l North American ATLL
has a distinct genomic
landscape with a
high frequency of
prognostic epigenetic
mutations, including
EP300 mutations.

l ATLL samples with
mutated EP300 have
compromised p53
function and are
selectively sensitive to
decitabine treatment.

Adult T-cell leukemia lymphoma (ATLL) is a rare T cell neoplasm that is endemic in Japanese,
Caribbean, and Latin American populations. Most North American ATLL patients are of
Caribbean descent and are characterized by high rates of chemo-refractory disease and
worse prognosis compared with Japanese ATLL. To determine genomic differences be-
tween these 2 cohorts, we performed targeted exon sequencing on 30 North American
ATLL patients and compared the results with the Japanese ATLL cases. Although the
frequency of TP53 mutations was comparable, the mutation frequency in epigenetic and
histone modifying genes (57%) was significantly higher, whereas the mutation frequency
in JAK/STAT and T-cell receptor/NF-kB pathway genes was significantly lower. The most
common type of epigenetic mutation is that affecting EP300 (20%). As a category, epi-
genetic mutations were associated with adverse prognosis. Dissimilarities with the
Japanese cases were also revealed by RNA sequencing analysis of 9 primary patient
samples. ATLL samples with a mutated EP300 gene have decreased total and acetyl p53
protein and a transcriptional signature reminiscent of p53-mutated cancers. Most im-

portantly, decitabine has highly selective single-agent activity in the EP300-mutated ATLL samples, suggesting that
decitabine treatment induces a synthetic lethal phenotype in EP300-mutated ATLL cells. In conclusion, we demonstrate
that North American ATLL has a distinct genomic landscape that is characterized by frequent epigenetic mutations
that are targetable preclinically with DNA methyltransferase inhibitors. (Blood. 2018;132(14):1507-1518)

Introduction
Adult T-cell leukemia lymphoma (ATLL) is a rare aggressive T-cell
neoplasm, which is caused by a retrovirus (human T-cell lym-
photropic virus [HTLV]-1), and carries a dismal prognosis. HTLV-1
has low sequence variability, enabling its sequence to be used
as a molecular tool to follow migrations. The most common
subtype of HTLV-1 is the cosmopolitan subtype A, which is
endemic to Japan, the Caribbean, Central and South America,
north and west Africa, and parts of the Middle East.1 Conse-
quently, ATLL is diagnosed most frequently in the Japanese and
Caribbean populations2,3 but is likely underreported in Africa,
Latin America,4 and the Middle East.5

Despite similar viral subtypes, the prognosis of ATLL is worse in
the Caribbean and American populations than in the Japanese
population. In our retrospective analysis of a single-center cohort

of Caribbean/American ATLL (n 5 53), the median overall sur-
vival (OS) was only 6.9 months,3,6 similar to other reported North
American studies.2,7 The outcomes in Japanese cohorts of ATLL
are more favorable, with median survival times for acute, lym-
phomatous, chronic, and smoldering subtypes of 8.3, 10.6,
31.5, and 55.0 months, respectively.8 The percentage of pa-
tients with aggressive subtypes (acute and lymphomatous) in the
American cohorts is ;91%,2,3,7 compared with 78% in the Japa-
nese population.8 Thus, despite a younger age at diagnosis,
North American ATLL patients appear to present with sig-
nificantly more aggressive subtypes of the disease than their
Japanese counterparts. The majority of research on this disease
is from Japan, where it is endemic, and most preclinical models
used in published ATLL studies are Japanese-derived cell lines
and xenografts. It is not known whether North American ATLL is
genotypically distinct from the Japanese cases and whether such
differences, if present, can be correlated with clinical outcomes.
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Subtype: Acute Lymphomatous Chronic/Smoldering

UnknownCytogenetics: Normal Complex

ATL 1-30: North American ATLL Patients

ATL55T(+) to ED41214(-) are 8 Japanese derived cell lines 

Japanese: Mutations also seen in Japanese patients 

Overall Survival:  Number of days from diagnosis to death *: Alive
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Figure 1. North American ATLL has a distinct mutational landscape. (A) North American ATLL samples (n 5 30) and Japanese ATLL cell lines (n 5 8) were sequenced by
targeted deep next-generation sequencing. Identified mutations are grouped into various functional categories. Corresponding mutations reported in Japanese ATLL are
marked in the last row. (B) Location of point mutations in the p53 protein structure. (C) Location of point mutations in the p300 protein structure. Green, blue, and black circles
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Furthermore, understanding the mutational landscape of North
American ATLL is critical in an effort to develop new targeted
therapies for these patients.

Epidemiology of ATLL in the United States reflects emigration
patterns from endemic areas, especially the Caribbean region,
and is characterized by an increasing incidence in New York City
and Miami.9,10 Montefiore Medical Center treats a significant
proportion of ATLL patients in the United States as a result of
the large number of Caribbean immigrants in the Bronx, NY.3,6

Here, we present the mutational and transcriptional landscape of
CaribbeanATLL anddemonstrate that it is characterizedby adistinct
mutation pattern that targets epigenetic pathways more frequently
than that reported for Japanese ATLL. We also demonstrate that,
although ATLL samples with EP300mutations have compromised
p53 function, they are hypersensitive to DNA methyltransferase
inhibitors (DNMTIs) and, thus, provide a preclinical rationale for
treating North American ATLL with epigenetic therapies.

Patients, materials, and methods
Patient samples and cell lines
Specimens were obtained from patients diagnosed with ATLL
after Institutional Review Board approval by the Albert Einstein
College of Medicine, in accordance with the Declaration of
Helsinki. Patient characteristics, including demographics, labo-
ratory parameters, cytogenetics and treatment course, and
survival, were collected using retrospective chart review (sup-
plemental Table 1). To establish long-term cultures, CD4 T cells
were sorted from patient peripheral blood mononuclear cells
using fluorescence-activated cell sorting (FACS) and expanded
in Iscove modified Dulbecco medium supplemented with 20%
human serum and 100 unit/mL interleukin-2 (IL-2). All short-term
and long-term ATLL cultures have been characterized by mul-
tiparameter immunophenotyping with a panel of 17 markers,
including CD3, CD4, CD25, CD44, FoxP3, CTLA-4, ICOS, and
CCR4. The Japanese patient–derived ATLL cell lines ATL43Tb2,
Su9T01, ED405152, and ED412142 were maintained in RPMI
1640 supplemented with 10% fetal bovine serum, whereas the
IL-2–dependent cell lines AT55T1, ED405151, ED412141, and
AT43T1 were maintained in RPMI 1640 plus 10% fetal bovine
serum supplemented with IL-2.

Genetic sequencing and clinical characteristics
Genomic DNA was extracted from peripheral blood, bone
marrow, or formalin-fixed paraffin-embedded solid tumor
samples from 30 ATLL patients and used to identify single nu-
cleotide variants (SNVs), insertion/deletions, copy number var-
iations, and translocation fusion genomic alterations in a panel
of up to 173 reportable genes (patients 1-23) and up to 236
genes (patients 24-30) (supplemental Table 2). We also se-
quenced 8 cell lines (ATL43T1, ATL43Tb2, Su9T01, ATL55T1,
ED405152, ED405151, ED412142, and ED412141) derived from
Japanese ATLL patients. Targeted genomic regions were
sequenced using next-generation sequencing by Genoptix
(https://genoptix.com/test-menu/nexcourse-complete/). The
presence or absence of genomic alterations within each of the

genes is determined through bioinformatic analysis and com-
parison with databases (eg, COSMIC and dbSNP). Quality-control
metrics included a minimum of 200 ng of genomic DNA and
averagemean sequencing depth of 5003 coverage to give a limit
of detection of 5% for SNVs, 10% for insertions/deletions
and translocation fusions, gene amplifications $ 6 copies, and
homozygous gene deletions, 0.3 copies. These mutational data
were compared with clinical characteristics and patient out-
comes to determine the prognostic impact of particularmutations.

Patient records were queried using Clinical Looking Glass soft-
ware to identify all cases of HTLV positivity and ATLL by searching
pathology and laboratory reports of patients who presented
to Montefiore Medical Center between 2003 and 2017.6 The
diagnosis of ATLL was confirmed based on clinical history,
pathological findings, and HTLV-1 antibody positivity.6 Cases
were classified by subtype using Shimoyama criteria.11 The index
date was defined as the date on which a diagnosis of ATLL was
made.Mortality data includeddeath recordswithin our institution,
as well as those reported in Social Security records. For patients
who were discharged to hospice with confirmed documentation
of refractory disease and unknown date of death (n5 5), the date
of discharge to palliative care was used as the date of death.

Statistical analysis
Data generated by Clinical Looking Glass software and com-
plemented with individual chart review were transferred to a
computer spreadsheet (Microsoft Excel; Microsoft, Redmond,
WA). For the analysis of categorical variables, we reported propor-
tions and P values calculated using the Pearson x2 test or Fisher
exact test, as appropriate. Kaplan-Meier curves were used to
compare survival, and statistical significance was examined using
the Wilcoxon rank-sum test. Statistical analyses were performed
with Stata v12 (StataCorp, College Station, TX), and a 2-tailed a of
0.05 was used to denote significance.

Detailed procedures on in vitro cell cytotoxicity assays, RNA
sequencing (RNA-seq), bioinformatics analysis, analysis of drug
interaction, mass spectrometry, Western blot, and proviral
load analysis are described in supplemental Methods, which
are available on the Blood Web site.

Results
Mutational landscape of North American ATLL
patients reveals a high frequency of prognostic
epigenetic gene alterations
Targeted exon sequencing was performed on samples from
30 North American ATLL patients. They were diagnosed according
to the World Health Organization classification12 and sub-
classified using Shimoyama criteria.11 Of these, 43.3% (n 5 13)
were acute, 43.3% (n 5 13) were lymphomatous, and 13.4%
(n 5 4) were chronic/smoldering ATLL. Baseline demographic
characteristics are shown in supplemental Table 1. For the
173 cancer-related genes analyzed in the assay format, 152 mu-
tations in 80 genes were detected, with an average of 5 identified

Figure 1 (continued) depict missense single nucleotide polymorphisms, splice site single nucleotide polymorphisms, and truncating mutations, respectively. (D) Frequency
of mutations in North American and Japanese ATLL. (E) Frequency of epigenetic mutations in North American ATLL and whole-exome sequenced Japanese ATLL cases.
*P , .05, North American vs Japanese.
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Table 1. Subtype, OS, and mutational profile of North American ATLL

ATL no. Sex
Age at

diagnosis, y Subtype OS, d Mutations Mutations, n Treatment

1 Male 83 A 33 KIT, APC, MYC, TP53, DDX3X,
TSC1

5 Unknown

2 Male 59 L 382 NRAS, POT1,CEBPA, KEAP1,AR,
NOTCH1, MCL1

5 Etoposide, cyclophosphamide,
cytarabine, cisplatin

3 Female 28 A 543 ALK, BCL6, RIPK1, GATA3,
IGF1R, TP53, CEBPA

7 CHOP, cytarabine, denileukin
diftitox, IT MTX

4 Female 66 L 363 NOTCH2, DDR2, GATA3 3 EPOCH

5 Female 74 L 160 KDR, FAT1, FGFR2, AKT1, TP53,
ERBB2, MED12

7 EPOCH

6 Male 53 A 88 XPO1, TBL1XR1, PDGFRA, KIT,
FGFR4, EP300, RICTOR

6 EPOCH (died after cycle 1)

7 Female 48 L 225 KDR, CARD11, NKX2-1 (2) 4 Cyclophosphamide,
doxorubicin, etoposide, MTX

8 Female 64 L 215 TNFAIP3, TSC1, BRCA2,
NOTCH1

3 Cyclophosphamide,
doxorubicin, etoposide

9 Female 63 L 739 CARD11, NOTCH1, KRAS, POT1 3 EPOCH

10 Male 36 L 52 CEBPA, RHOA, PBRM1, CD79A,
STAG2

5 Bortezomib, cytarabine,
doxorubicin, etoposide

11 Female 70 L 451 NRAS, VHL, APC, EGFR, PTCH1,
ASXL1, KMT2A

6 DA EPOCH bortezomib
raltegravir

12 Female 54 L 23 FAT1, HIST1H1E, PLCG2 3 CHOP died after cycle 1

13 Female 37 A 17 FGFR4, APC, FAT1, SPEN 3 EPOCH

14 Male 41 L 771* EZH2, DDX3X, FAT1, PTCH1 4 EPOCH 1 allogeneic transplant

15 Male 51 L 312 TP53, EP300, PALB2, PTCH1,
TRAF3

5 EPOCH

16 Female 57 C 2554* APC, PDGFRB, TET2, DNMT3A 3 IFN-AZT

17 Male 36 A 75 KDR, NOTCH1, TP53, SPOP 3 HyperCVAD, CHOP, EPOCH
(1 cycle each)

18 Female 67 A 175 AKT2, CDKN2A, EP300, FAT1,
FBXW7, FLT3, PBRM1, SPEN

7 EPOCH 1 raltegravir 1
bortezomib 1 IFN

19 Male 65 A 392 SETBP1, EP300 2 EPOCH

20 Male 74 A 1191* FGFR3, FAT1 2 EPOCH 1 cycle, IFN

21 Female 37 C/S 6345* CDH1, EP300 2 Treated initially as mycosis
fungoides, followed by
brentuximab

22 Male 60 C/S 126 AKT2, ALK, CD79A, EP300,
ZMYM3, AR

6 None, due to poor performance
status and comorbidities

23 Female 54 A 503* DDR2, IDH1, TBL1XR1, TP53,
ZMYM3

5 ESHAP 1 cycle, followed by
EPOCH

A, acute; AZT, azidothymidine; CHOP, cyclophosphamide, doxorubicin hydrochloride (hydroxydaunorubicin hydrochloride), vincristine (oncovin), and prednisone; DA EPOCH, dose-adjusted
etoposide, prednisone, vincristine, cyclophopshamide, doxorubicin; EPOCH, etoposide, prednisone, vincristine (oncovin), cyclophosphamide, and doxorubicin hydrochloride (hydroxydaunorubicin
hydrochloride); ESHAP, etoposide, methylprednisone, cytarabine, cisplatin; ICE, ifosfamide, carboplatin, etoposide; IFN, interferon; IT, intrathecal; L, lymphomatous; MTX, methotrexate.

*Alive.

†Genes that were identified as part of the extended spectrum of 236 genes in patients ATL24 to ATL30.
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mutations per patient (Figure 1; Table 1; supplemental Table 2).
The acute/lymphomatous cases and the chronic/smoldering cases
had an average of 5.2 and 3.75 identified mutations per sample,
respectively. Genes most commonly mutated in North American
ATLL were TP53 (7/30, 23%), FAT1 (7/30, 23%), EP300 (6/30, 20%),
NOTCH1 (6/30, 20%), APC (5/30, 17%), TBL1XR1 (4/30, 13%), and
KDR,ALK, and PTCH1 (3/30, 10%each) (Figure 1A; supplemental
Tables 3 and 4). In addition to inactivatingmutations in the histone
acetyltransferase EP300 (Figure 1C-D; supplemental Table 5),
mutations were detected in other epigenetic and histone-
modifying genes (TET2, EZH2,MED12, PBRM1, DNMT3A, KMT2A,
HIST1H1E, SPEN, IDH1, SMARCB1, and ASXL1), resulting in a
combined mutational frequency of 57% (17/30).

The cadherin-related tumor suppressor FAT1, mutated in other
malignancies,13 including T acute lymphoblastic leukemia,14 showed
SNVs in 7 of 30 (23%) of our patients. Nevertheless, germline
sequencing revealed that the FAT1 variants in 2 of the samples
(ATL14 and ATL18) were of germline origin. On the other hand,
comparison with the germline profiles demonstrated that the
majority of epigenetic and TP53mutations were somatic in nature
(Figure 1B,D; supplemental Tables 6-8).

North American ATLL is characterized by
significantly more epigenetic mutations and fewer
JAK/STAT and T-cell receptor/NF-kB pathway
mutations compared with Japanese ATLL
Wenext comparedmutation patterns of North AmericanATLLwith a
Japanese cohort of 370 patients who underwent targeted capture
sequencing of 88 candidate genes selected from a discovery co-
hort of 83 patient samples that were studied with whole-genome
or whole-exome sequencing.15 There were 17 genes that were

common to these2 sequencingpanels (173genes inNorthAmerican
and 88 genes in Japanese) (Figure 1D; supplemental Tables 9-11).

Although many of the mutations identified in this study have
been previously reported for Japanese ATLL, several differences
were apparent. Because the large Japanese cohort of 370 cases
was sequenced for some, but not all, epigenetic genes in our
panel, we also compared our findings with their whole-exome
data from 81 Japanese cases. More than half of our patients
(17/30, 57%) had mutations in epigenetic or histone modifier
genes, most notably inactivating mutations in the histone
acetyltransferase EP300 (Figure 1C; supplemental Table 5);
mutations were also detected in other epigenetic and histone
modifyinggenes (TET2,EZH2,MED12,PBRM1,DNMT3A,KMT2A,
HIST1H1E, SPEN, IDH1, SMARCB1, and ASXL1) (Figure 2C).
In comparison, these mutations were seen at much lower fre-
quencies in the Japanese cohort (18/81, 22.2%) (Figure 1E; sup-
plemental Table 11). Of note, the frequency of EP300 mutations
in the North American cohort (20%) was about 3 times greater
than that seen in the Japanese cohort (5.7%; P 5 .01) (Figure 1E).

Integrated molecular analysis of the Japanese patients showed
alterations that are highly enriched for T-cell receptor–NF-kB
signaling (including JAK/STAT signaling), T-cell trafficking, and
other T-cell–related pathways, as well as immunosurveillance
genes.15 These trends were not seen in the North American ATLL
cohort. For example, mutations in CARD11 were significantly less
common in the North American cohort compared with Japanese
cases (6.6% vs 23.8%). In addition, 21.4%, 2.2%, and 1.4% of
Japanese patients had mutations in STAT3, JAK3, and JAK1,
respectively, whereas in the North American cohort there was no

Table 1. (continued)

ATL no. Sex
Age at

diagnosis, y Subtype OS, d Mutations Mutations, n Treatment

24 Female 59 L 176 FGFR3, FLT1, KRAS, P2RY8, TET2 5 EPOCH 1 raltegravir 1
bortezomib, palliative after
cycle

25 Male 64 A 73 AR, JAK3, PDGFRA, SETBP1,
TP53, XPO1, ZFHX4†

7 EPOCH 1 raltegravir 1
bortezomib, died after cycle 2

26 Female 61 S 102 AKT1, AXL,† PALB2 2 None

27 Female 40 L 351* BCL6, MDM4† 2 EPOCH 1 raltegravir 1
bortezomib

28 Male 40 A 322 CDH1, HIST1H1E, NOTCH1 3 EPOCH 1 raltegravir 1
bortezomib

29 Female 63 A 192 NOTCH1, APC, APC, GATA2,
KLF2,† NTRK1, SMARCB1,
SPEN, TBL1XR1, TCF3

10 IFN-AZT, followed by 2 cycles
ESHAP, followed by ICE 1
bortezomib, followed by a
clinical trial

30 Female 70 A 153* ALK, ALK, CDKN2A, ERBB3,
FAS,† FAT1, HRAS, KLF2,†
PIK3CD, PIK3CD, TBL1XR1

11 EPOCH

A, acute; AZT, azidothymidine; CHOP, cyclophosphamide, doxorubicin hydrochloride (hydroxydaunorubicin hydrochloride), vincristine (oncovin), and prednisone; DA EPOCH, dose-adjusted
etoposide, prednisone, vincristine, cyclophopshamide, doxorubicin; EPOCH, etoposide, prednisone, vincristine (oncovin), cyclophosphamide, and doxorubicin hydrochloride (hydroxydaunorubicin
hydrochloride); ESHAP, etoposide, methylprednisone, cytarabine, cisplatin; ICE, ifosfamide, carboplatin, etoposide; IFN, interferon; IT, intrathecal; L, lymphomatous; MTX, methotrexate.

*Alive.

†Genes that were identified as part of the extended spectrum of 236 genes in patients ATL24 to ATL30.
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STAT3 or JAK1 mutation, and only 1 patient showed a JAK3
(3.3%) alteration (Figure 1D; supplemental Tables 9 and 11).

Other mutations detected in both groups at comparable fre-
quencies were TP53, NOTCH1, TBL1XR1, TET2, GATA3, POT1,
TNFAIP3, DNMT3A, CDKN2A, and JAK3 (Figure 1D). Of note,
TP53 was mutated at similar frequencies in these 2 patient
cohorts. In the Japanese discovery cohort, 13.6% (11/81) of
patients had TP53 mutations, among which acute, lymphoma-
tous, and chronic cases accounted for 55%, 27%, and 18%,
respectively. We also performed targeted exon sequencing
on 8 Japanese-derived cell lines, because they are frequently
used by ATLL investigators. Six of them had mutations in JAK3,
STAT3, or STAT5B, consistent with the higher frequency reported
for the Japanese cohort (Figure 1A; supplemental Table 14).
Mutations identified in these cell lines, but not detected in
Japanese or North American patients, include BRCA1, BCOR,
FGFR1, RET, SYK, STAT5B, ITPKB,MAP2K2,MAP3K9, and ESR1.

Because the North American cohort has a higher percentage of ag-
gressive cases compared with the Japanese cohort, we performed
a subtype-specific comparison after separating the cases into ag-
gressive (acute/lymphomatous) and indolent (chronic/smoldering)
subtypes. The result showed that, even when the comparison was
restricted to the aggressive cases, epigenetic and EP300 mutations

were still detected at higher frequencies in the North American
cohort relative to the Japanese cohort (supplemental Table 12).

EP300 mutations correlate with adverse prognosis
and are associated with reduced p300 and
p53 expression
Next, we evaluated the prognostic significance of the major mu-
tation groups in North American ATLL. TP53 mutations are gen-
erally accepted as a marker of adverse prognosis in ATLL, and all
7 TP53 mutations were seen in acute (n 5 5) or lymphomatous
disease (n5 2) andwere absent in patients with chronic/smoldering
ATLL (Figure 1B; Table 2; supplemental Table 8). Even though
patients with TP53mutations presented with features of aggressive
disease (higher white blood cell [WBC] count and serum calcium)
(Tables 2 and 3), TP53 mutation was associated with a nonsignifi-
cant trend toward worse OS (P 5 .07, log-rank test; Figure 2B).
Interestingly, as a group, epigenetic mutations did correlate
with a significantly worse prognosis (P 5 .01, log-rank test;
Figure 2A). The median survival of patients with and without
any epigenetic mutations was 176 and 382 days, respectively.

Among the epigenetic alterations detected in our cohort, mu-
tations in the EP300 gene are the most common. Therefore,
we examined functional consequences of these mutations in
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cultured leukemic cells isolated from our patients. As shown in
Figure 2C, among the 7 samples examined, the 3 samples with
a mutated EP300 status (ATL18, ATL19, and ATL21) expressed
notably lower levels of p300 protein, as well as total p53 protein,
compared with the 4 EP300 wild-type (WT) samples (ATL13,
ATL29a, ATL29d, and ATL30). Because p53 is a protein substrate
of p300 lysine acetyltransferase activity,16,17 we also measured
acetyl p53 and found reduced acetyl p53 signals in EP300-
mutated samples, as predicted. Because acetylation of p53 is in-
dispensable for its in vivo function,18 these results suggest impaired
p53 tumor-suppressive activity as a result of EP300 mutation. To
substantiate this notion, we performed RNA-seq analysis of 2 pairs
of EP300-mutated and WT samples. Gene set enrichment analysis
of the differentially expressed genes (supplemental Figure 1)
revealed enrichment of genes typically associated with a mutated
TP53 status in the NCI-60 tumor cell line panel (Figure 2D), con-
firming attenuated p53 activity in the EP300-mutated samples.

North American ATLL has a distinct transcriptomic
profile and differs from Japanese ATLL
Todetermine the transcriptomic characteristics of NorthAmerican
ATLL, we performed RNA-seq on primary North American ATLL
samples (n 5 9), as well as CD4 T cells and peripheral blood

mononuclear cells from healthy controls (n 5 4) (Figure 3; sup-
plemental Figure 2). Unsupervised clustering analysis of the
whole transcriptomes revealed that the ATLL samples had a
distinct gene-expression profile compared with normal CD4 T
cells (Figure 3A). The overexpressed and underexpressed genes
in ATLL (Figure 3B) were enriched in many functionally important
pathways (Figure 3C-D), including those associated with cancer,
apoptosis, and immune cell–related functions (Figure 3D).

Given the differences in mutational patterns between the North
American and Japanese ATLL cohorts, we also compared the
transcriptional profiles. Unsupervised hierarchical clustering
revealed that all North American samples clustered in a dis-
tinct group that is well separated from the Japanese cohort,
suggesting significant differences in transcriptomic features
between these 2 patient populations (Figure 3E).

Treatment with the DNMTI decitabine leads to
reduced proliferation and increased apoptosis
in ATLL
To evaluate the therapeutic usefulness of targeting such epi-
genetic marks, we tested the sensitivity of North American and

Table 2. Clinical presentation by ATLL subtype

Patient characteristics Acute (n 5 13) Lymphomatous (n 5 13) Chronic/smoldering (n 5 4)

Age, y 63 59 58

WBC, 109/ L 23.1 6.4 12.25

Corrected calcium, mg/dl 13.88 11.52 9.88

Albumin, g/dl 3.6 3.5 3.9

Lactate dehydrogenase, U/L 676 561 280

TP53 mutation, % (n)
Mutated 38 (5) 15 (2) 0 (0)
Unmutated 62 (8) 85 (11) 100 (4)

Any epigenetic mutation, % (n)
Mutated 54 (7) 54 (7) 75 (3)
Unmutated 46 (6) 46 (6) 25 (1)

Table 3. Clinical presentation based on mutational status in acute/lymphomatous ATLL

TP53 (n 5 7) EPI (n 5 11) None (n 5 8) P

Age, y 54 54 63 .51 (between groups)

WBC 19.2 14.9 5.2 .04 (TP53 vs none)

Albumin 3.4 4.1 3.5 .13 (between groups)

Corrected calcium 13.8 11.5 11.8 .02 (TP53 vs none)

Lactate dehydrogenase 2022 579 586 .20 (between groups)

Median OS, d 160 176 382

Progression-free survival, d 98 128 240.5

EPI, any epigenetic mutation.
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Japanese ATLL samples to a DNMTI (decitabine). Among the
6 Japanese-derived cell lines tested, the cell line with mutated
EP300 (ATL43Tb2) was highly sensitive (50% inhibitory con-
centration [IC50] , 1 mM), showing a pronounced decrease
in viability after 5 days, whereas IC50 was not reached in the
5 resistant samples with a WT EP300 status (Figure 4A,C).

Because there are no established cell lines forNorthAmericanATLL,
we derived short- and long-term CD4 cultures from circulating
ATLL cells of our patients and tested their decitabine sensitivity.
Six patient-derived ATLL cultures with known EP300mutational and
protein status were treated with decitabine in vitro. Two samples
with EP300mutations (ATL18 andATL21) were found to be sensitive
to decitabine treatment, whereas 4 EP300 WT samples were re-
sistant to decitabine treatment (Figure 4B-C). Annexin V/propidium
iodide–based staining confirmed that decitabine triggered apo-
ptosis in the sensitive samples (Figure 4F).

Because the majority of North American ATLL cases present
in the aggressive stages2,3,7 and eventually require cytotoxic
chemotherapy, we also tested the efficacy of combining deci-
tabine and doxorubicin, a major component of the combination
chemotherapy for lymphoid malignancies. In Japanese and
North American ATLL samples, this combination synergistically
reduced total cell viability (Figure 4D-E). Decitabine treat-
ment led to on-target decreases in total cytosine methylation, as
measured by sensitive mass spectrometry analysis (Figure 4G).
RNA-seq analysis of 4 pairs of decitabine-treated North Amer-
ican ATLL cells (ATL18, ATL21 ATL29, and ATL30) demonstrated
286 probes (red dots) that passed both thresholds (absolute
log 2-fold change . 1.0 and adjusted P value , .05) and
were upregulated following decitabine treatment (Figure 4H).
Among the decitabine-induced genes was CDKN1A, a p53
target gene that encodes the cell cycle inhibitor p21/WAF.Other
re-expressed genes mapped to important pathways, such as
cellular development and growth, cell death and survival, cell
cycle, cancer, organismal injury and abnormalities, tissue devel-
opment, and cell morphology (supplemental Table 13).

Discussion
North American patients have a more aggressive clinical course
and present at a younger age compared with Japanese
patients.3,8 The differences in aggressiveness, despite the same
HTLV-1 serotype, may be accounted for by different genetic al-
terations. Our study examines the mutational landscape and
transcriptomics of North American ATLL. We report that, com-
pared with Japanese ATLL patients, North American ATLL is
characterized by a higher frequency of prognostic epigenetic
mutations and fewer T-cell receptor/NF-kB and JAK/STAT mu-
tations.15We also characterized functional consequences of EP300
mutations, the most common epigenetic alteration identified in
our patient cohort. Our results suggest that ATLLs with a mutated
EP300gene have compromised p53 activity, which could account,
at least in part, for their therapy-resistant characteristics, and
are hypersensitive to DNMTIs, such as decitabine.

This is the first North American cohort studied using a next-
generation sequencing approach. The JAK/STAT signaling path-
way is constitutively active in ATLL and has been documented in
in vitro19,20 and in vivo studies.21 IL-2 is an autocrine growth factor
for activated T cells. In vitro, HTLV-1–infected cultures become IL-2
independent with time, and demonstrate constitutive activation of
the JAK/STAT signaling pathway.19,20 As such, it is not surprising that
23.8% of the Japanese cases carry activating mutations in STAT3,
JAK3, or JAK1. However, these mutations were rarely detected in
North American ATLL (Figure 1D). This may be accounted for by
the lower numbers of chronic/smoldering cases in our cohort, be-
cause STAT3 mutations are preferentially detected among in-
dolent cases in the Japanese cohort.22 The gene encoding
CARD11, a cytoplasmic scaffolding protein required for T-cell
receptor– and B-cell receptor–mediated activation of the NF-kB
signaling pathway,23 was also mutated much more frequently in
Japanese patients compared with North American cases (Figure
1D). It is possible that these differences in mutational profile re-
flect different pathogenic mechanisms, including the relative im-
portance of dysregulated epigenetic vs cell signaling programs.

We identified a high number of epigenetic mutations in our
patients. Epigenetic mutations in TET2,DNMT3A, and IDH have
been well described in T-cell lymphomas.24,25 Mutations in TET2
(10/31, 32%) and MLL3 have also been described in ATLL.26

EP300, a histone acetyltransferase, had a significantly higher rate
of mutation in North American ATLL patients. This gene has
been characterized as a tumor suppressor and plays an impor-
tant role in cell proliferation and differentiation via transcriptional
regulation by chromatin remodeling.27 Mutations in EP300 have
been identified in diffuse large B cell lymphoma,28,29 epithelial
cancers,27 and ATLL.15 In our patient cohort, 6 (20%) of the cases
carry inactivatingmutations in EP300, the functional loss of which
has been shown to be associated with a gain of repressive his-
tone marks and gene silencing.30 Additionally, 2 (6.7%) of our
cases harbor inactivating mutations in TET2. Such mutations are
associated with increased DNA methylation and aberrant gene
silencing in myeloid leukemias.31 Recently, it was also reported
that p300-dependent acetylation stabilizes TET2, which, in turn,
inhibits cancer-associated CpG island hypermethylation.32 If
this p300–Tet2–CpG island methylation connection functions
in ATLL as well, TET2 inactivation and reduced p300 activity
(due to p300 mutation/underexpression) are expected to impair
this regulatory pathway, leading to the CpG island hyper-
methylation phenotype, a hallmark of ATLL.15

TP53 mutations are known to be associated with worse prog-
noses; however, the prognostic impact of epigenetic mutations
has not been described before for ATLL. In our cohort of
30 cases, mutations in TP53 and EP300 were mutually exclusive
with 1 exception. Although TP53 mutations alone did not reach
statistical significance due to cohort size (Figure 2B), cases carry-
ing mutations in any of the epigenetic modifier genes had
adverse survival relative to those with WT genes (Figure 2A).

Figure 3. Distinct transcriptomic features are seen in North American ATLL. (A) Unsupervised clustering analysis of RNA-seq profiles of healthy CD4 controls and ATLL
samples. (B) Volcano plot shows aberrantly expressed genes in North American ATLL compared with healthy controls. (C) Supervised clustering analysis reveals genes that are
aberrantly expressed in North American ATLL. (D) Functional pathways enriched in differentially expressed genes. (E) Unsupervised clustering based on RNA-seq profiles shows
transcriptomic differences between Japanese (blue, n 5 57) and North American (orange, n 5 9) ATLL samples.
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Our observation of reduced p300 and acetylated p53 in EP300-
mutated primary samples (Figure 2C) is consistent with a pub-
lished study in diffuse large B-cell lymphoma, in which mutated
EP300/CREBBP was found to cause defective p53 acetylation,33

as well as with the fact that acetylated p53 is more active as a
transcription activator that can upregulate its own expression.17

Other evidence supporting the biological significance of EP300

mutations is our RNA-seq analysis, which shows enrichment of
a mutated p53 transcriptional signature in the EP300-mutated
samples (Figure 2D).

Prior reports have shown that belinostat, a histone deacetylase
inhibitor, along with azidothymidine, can trigger apoptosis of
ATLL cell lines derived from North American patients.34 Previous
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studies have shown that ATLL has a polycomb repressive
complex 2–mediated trimethylation at histone H3Lys27 in about
half of the genes in ATLL cells; these global alterations involved
ATLL-specific gene-expression changes that included several
tumor suppressors, transcription factors, epigenetic modifiers,
microRNAs, and developmental genes.35 Combined with these
previous reports, our findings strengthen the notion that the dys-
regulated epigenetic program plays an important role in ATLL
pathogenesis, as well as the therapeutic response.

Aberrant DNA hypermethylation is associated with inappropri-
ate transcriptional silencing of many important genes, including
tumor suppressors; thus, it leads to unregulated cell growth and
development of malignancies.36 It has been implicated in the
pathogenesis of ATLL,15 as well as many other malignancies.37

Hypermethylation of numerous genes has been described in the
pathogenesis of ATLL. PDLIM2 (a potent suppressor of Tax),38

CDKN2A (a cell cycle regulatory gene),39,40 C2H2 zinc-finger
genes and MHC class I genes,15 BMP-6 (a regulator of cell
growth),41 SHP1, HCAD, and DAPK,42 and APC43 have been
found to be hypermethylated in ATLL, with increasing incidence
as the disease progresses. Because most chemotherapeutic
agents depend on the same apoptosis and differentiation
pathways of cells for their action, hypermethylation and in-
activation of tumor suppressors are often associated with
marked chemoresistance, resulting in failure of chemotherapy.36

Chemosensitization with DNMTIs has been successfully dem-
onstrated in patients with diffuse large B cell lymphoma,36

ovarian cancer,44 and breast cancer.45 It was noted that deme-
thylation, followed by reprogramming at cancer-critical loci, is
key to chemosensitization. In this regard, we also observed
a significant synergy between doxorubicin and decitabine in
North American ATLL cells. Of note, decitabine used as single
agent caused significant cytotoxicity, as well as demethylation,
which is infrequently seen in acute myeloid leukemia. Most
importantly, the close correlation between EP300mutation status
and decitabine sensitivity suggests that decitabine treat-
ment induced a synthetic lethal phenotype in EP300-mutated
cases. Taken together, our findings show that North American
ATLL has a distinct set of genetic alterations that may cause the
chemorefractoriness seen in these patients. This study also pro-
vides a preclinical rationale for the use of epigenetic therapies in
the treatment of North AmericanATLLwith epigenetic alterations.
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