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Mutations in the EGLN1 (also known as PHD2) gene are asso-
ciated with erythrocytosis.1 The encoded protein, PHD2, is a
central cellular oxygen sensor that hydroxylates the a subunit of
the hypoxia inducible factor (HIF) transcription factor complex,
marking it for degradation.2-4 HIF controls red cell mass prin-
cipally through upregulation of the ERYTHROPOIETIN (EPO)
gene.5 All functionally characterized erythrocytosis-associated
mutations in the EGLN1 gene described to date are heterozy-
gous loss-of-function mutations that reside near or within the
prolyl hydroxylase domain.6-11 However, PHD2 also contains a
MYND-type zinc finger.12,13 Differing functions of this domain
have been characterized, and it has been proposed to have either a
positive or a negative regulatory function.14-16 The importance of
the zinc finger in humans is not known. Here, we report a human
PHD2 zinc fingermutation associatedwith congenital erythrocytosis
and its functional characterization. We find that this mutation
produces a loss of function. This therefore supports the notion
that the zinc finger ordinarily has a positive regulatory function
and plays a role in the oxygen-sensing pathway that regulates
erythropoiesis in humans.

The index case is a 14-year-old daughter of healthy consan-
guineous parents (first cousins) referred to a pediatrician because
of persistent abdominal pain and fatigue. A general screening
blood test revealed a hemoglobin (Hb) level of 18 g/dL (reference
value 11.4-14.5 g/dL) (Table 1). Additional blood tests by a pe-
diatric hematologist showed an elevated hematocrit Hct of
0.54 (reference value 0.37-0.45), RBC of 6.46 million/mL, WBC
of 7.13 109/L, platelets of 2173 109/L, and a low EPOof 6.0mU/mL
(reference value 9-28 mU/mL). Subsequent evaluation by a

clinical geneticist led to whole exome sequencing as a first-tier
routine diagnostic test (parent‐offspring trio approach). Whole
exome sequencing was performed as described before17 and
revealed a homozygous missense variant in the EGLN1 gene:
EGLN1;Chr1(GRCh37):g.231557511A.G; NM_022051.2: c.124T.C
(p.Cys42Arg). The mutated site shows strong amino-acid con-
servation (Grantham score: 180).

Both parents were heterozygous for the variant. The brother of
the index case was subsequently tested and found to be ho-
mozygous for the variant. His blood tests showed evidence
of erythrocytosis with an Hb of 17.9 g/dL (reference value 10.5-
16.1 g/dL), Hct of 0.52 (reference: 0.35-0.50), RBC of 6.4 million/mL
(reference 3.8-5.6 million/mL), and an inappropriately normal EPO
value. It may be noted that other EGLN1-linked erythrocytoses
can be associated with normal, high, or even low EPO levels.18

The mother had normal Hb, Hct, RBC, and EPO levels, while
the father had normal Hb, Hct, and EPO values, and a mildly
elevated RBC at 5.8 million/mL (reference: 4.5-5.5 million/mL).
All procedures followed were in accordance with the ethical
standards of the institutional and national responsible commit-
tees on human experimentation and that, where relevant, in-
formed consent was obtained.

The residue affected by the EGLN1 mutation, Cys-42, resides
within the MYND-type zinc finger of PHD2 and is 1 of 8 evo-
lutionarily conserved zinc-chelating residues (Figure 1A).12 We
have previously reported that this zinc finger binds to a Pro-Xaa-
Leu-Glu motif that is found within components of the HSP90
pathway, such as p23 and FKBP38.16 HIF-a is a client protein of

Table 1. RBC measurements in a family with EGLN1-associated erythrocytosis

Index Brother Father Mother

Hb, g/dL 18 17.9 15.9 13.9
(ref 11.4-14.5) (ref 10.5-16.1) (ref 13.7-17.7) (ref 12.1-16.1)

Hct 0.54 0.52 0.48 0.44
(ref 0.37-0.45) (ref 0.35-0.50) (ref 0.40-0.50) (ref 0.40-0.50)

RBC, million/mL 6.46 6.4 5.8 4.4
(ref 4.0-5.4) (ref 3.8-5.6) (ref 4.5-5.5) (ref 4.0-5.0)

EPO, mU/mL 6 6.3 10 6.7
(ref 9-28) (ref 4.3-29) (ref 4.3-29) (ref 4.3-29)

Hct, hematocrit; RBC, red blood cell; WBC, white blood cell.
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the HSP90 pathway.19,20 Therefore, we have proposed that the
zinc finger allows recruitment of PHD2 to the HSP90 pathway to
facilitate prolyl hydroxylation of HIF-a.16

To examine whether the C42R PHD2 mutation affects PHD2
interaction with p23, we coexpressed wild-type or C42R
PHD2 (residues 1-196) in HEK293FT cells, immunoprecipitated
the p23, and examined the immunoprecipitates for the absence
or presence of PHD2 using previously reported methods.16

As expected, wild-type PHD2 coimmunoprecipitates with p23

(Figure 1B left, top panel, lane 2). Importantly, the C42R mutation
abolishes this interaction (Figure 1B left, top panel, lane 4). Similar
results were obtained for the interaction between PHD2 and
FKBP38 (Figure 1B right, top panel, lanes 2 and 4).

To examine whether these defective protein:protein interactions
produce a functional defect, we employed an in vitro assay for
PHD2 zinc finger function.21 In brief, we synthesized a fusion protein
consisting of the PHD2 zinc finger fused to the birA biotin ligase
from Escherichia coli. We added this protein to reactions in which
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Figure 1. Functional studies on the effect of the C42Rmutation on PHD2 activity. (A) Diagramof PHD2, showing locations of zinc finger (ZF) andprolyl hydroxylase (PH) domains.
Sequence of the zinc finger across various metazoan species is shown at top. Shaded residues denote zinc-chelating residues. Arrow 5 Cys-42; 1 5 Tyr-41; # 5 His-46. Previously
reported erythrocytosis-associatedmutations in PHD2 reside within or near the prolyl hydroxylase domain and comprisemissense (circles), nonsense (diamond), and frameshift (triangle)
mutations as shown. Numbers at top and bottom indicate residue number. (B) HEK293FT cells were transfected with constructs for the indicated proteins. Constructs were prepared by
standardmolecular biology techniques. Cells were lysed; the Flag-tagged proteins were immunoprecipitated, and the immunoprecipitates were examined for the absence or presence
of hemagglutinin (HA)-tagged PHD2 (1-196) by anti-HA western blotting. Anti-HA and anti-Flag western blots of lysates are also shown. (C) In vitro transcription and translation reactions
were performed for HA-HIF-1a BAP in the absence or presence of in vitro translated Flag-tagged BirA or BirA fusion proteins, as indicated. Biotinylation of HA-HIF-1a BAP was
assessed by far-western (FW) blotting using streptavidin-alkaline phosphatase conjugates. Anti-HA and anti-Flag western blots (WB) are also shown. (D) HEK293FT cells in 96-well plates
were transfected with 8 ng of (eHRE)3-Luc, 8 ng of RL-TK, and either 0.8 or 2.5 ng of either pcDNA3-Flag-PHD2 or pcDNA3-Flag-PHD2 C42R. DNA doses were held constant by the
addition of pcDNA3. Eight hours after transfection, cells were exposed to 1% O2 (HX) or maintained under normoxia (NX) for an additional 16 hours. All cells were lysed, and luciferase
activities were measured and normalized to that of the Renilla luciferase internal transfection control. Shown are means6 standard deviation, n5 3. *P, .05 by Student t test. Anti-Flag
western blot of lysates of HEK293FT cells transfected with expression constructs for WT or C42R PHD2 is also shown. (E-F left panels) HEK293FT cells were transfected with constructs
for the indicated proteins. Cells were lysed; the Flag-p23 was immunoprecipitated, and the immunoprecipitates were examined for the absence or presence of HA-tagged PHD2 (1-196)
by anti-HA western blotting. Anti-HA and anti-Flag western blots of lysates are also shown. (E-F right panels) HEK293FT cells in 96-well plates were transfected with 8 ng of (eHRE)3-Luc,
8 ng of RL-TK, and 2.5 ng of either pcDNA3 or the indicated PHD2 expression constructs. Eight hours after transfection, cells were exposed to 1%O2 (HX) ormaintained under normoxia
(NX) for an additional 16 hours. All cells were lysed, and luciferase activities were measured and normalized to that of the Renilla luciferase internal transfection control. Shown are
means 6 standard deviation, n 5 3-4. *P , .05 by Student t test. Western blots of lysates of HEK293FT cells transfected with PHD2 expression constructs are also shown.
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we translated a HIF-a construct in which the primary site of prolyl
hydroxylation is replaced by a biotin acceptor peptide (BAP) motif
that can serve as a substrate for birA. BirA-catalyzed biotinylation
of the BAP motif can be detected by far-western blotting using
streptavidin (Figure 1C, top panel). The PHD2 zinc finger promotes
recruitment of birA to the HSP90 pathway, which is present in the
reticulocyte lysates employed in these assays. As reported pre-
viously,21 the level of biotinylation induced by the PHD2 zinc
finger–birA fusion protein is significantly higher than that observed
with birA alone (Figure 1C, top panel, lanes 4 and 5). Importantly,
the C42R mutation abolishes this zinc finger–dependent enhance-
ment of HIF-a biotinylation (Figure 1C, top panel, lane 6).

We next assessed the functional effect of the C42R PHD2mutation
in Hypoxia Response Element (HRE) reporter gene activity assays.
We cotransfected HEK293FT cells with an HRE luciferase reporter
gene and constructs for either wild-type or C42R PHD2. We ex-
posed some cells to hypoxia (1% O2) and then measured reporter
gene activity. As shown in Figure 1D, hypoxia activates the reporter
gene, and this activity is decreased in a dose-dependent manner
by wild-type PHD2 (columns 7 and 8). The mutant C42R PHD2
is significantly weaker than wild-type PHD2 in suppressing this
hypoxia-induced reporter gene activity (columns 9 and 10).

To examine whether the functional defects observed are unique
to Cys-42 in the zinc finger domain, we mutated a different zinc
chelating residue, His-46 (Figure 1A). As with the C42Rmutation,
we find that the H46A mutation abolishes PHD2 binding to
p23 and impairs its capacity to downregulate hypoxia-induced
HRE activity (Figure 1E). Very recently, additional erythrocytosis-
associated mutations in the zinc finger domain of PHD2 have
been reported.22 Because these mutations were not function-
ally characterized, they were considered variants of unknown
significance. We examined 1 of these, a Y41C mutation that changes
a highly conserved residue (Figure 1A). As with the C42R and
H46A mutations, the Y41C mutation abrogates PHD2 binding
to p23 and produces a defect in its capacity to downregulate
hypoxia-induced HRE activity (Figure 1F).

Collectively, the genetic and functional studies support the
contention that the homozygous C42R mutation in the EGLN1
gene is the cause of erythrocytosis in the 2 affected siblings.
We recently reported on the characterization of knock-in mice
bearing a C36S/C42S mutation in the Egln1 allele that targets
2 of the predicted zinc chelating residues.21 One of these res-
idues is, in fact, identical to that affected by the mutation
reported here (Cys-42). As with the mice, the patients who are
homozygous, but not heterozygous, for the C42R mutation display
elevated Hb concentrations and Hcts. The requirement for
2 mutant alleles here could account for the rarity of this particular
zinc finger mutation as opposed to catalytic domain mutations,
the latter of which are sufficient to produce a phenotype in the
heterozygous state.1 Importantly, the phenotype of the affected
individuals reported here provides genetic evidence that the zinc
finger of PHD2normally plays a positive regulatory role in humans.
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