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PLATELETS AND THROMBOPOIESIS

AMPK-ACC signaling modulates platelet phospholipids
and potentiates thrombus formation
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KEY PO INT S

l AMPK-ACC signaling
in platelets is a key
mechanism regulating
primary hemostasis
and arterial
thrombosis.

l AMPK-ACC signaling
controls collagen-
induced TXA2

generation and dense
granule release by
modulating platelet
phospholipid content.

AMP-activated protein kinase (AMPK) a1 is activated in platelets on thrombin or collagen
stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase
(ACC). BecauseACC is crucial for the synthesis of fatty acids, which are essential for platelet
activation, we hypothesized that this enzyme plays a central regulatory role in platelet
function. To investigate this, we used a double knock-in (DKI) mouse model in which the
AMPKphosphorylation sites Ser79 onACC1 and Ser212 onACC2weremutated to prevent
AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced
arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated
surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated
with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had
increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In con-
clusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modu-
lating thromboxane and granule release in response to collagen. It appears to achieve this by
increasing platelet phospholipid content required for the generation of arachidonic acid, a
key mediator of platelet activation. (Blood. 2018;132(11):1180-1192)

Introduction
A growing body of evidence shows that lipids are essential in
regulating platelet functions. Indeed, the platelet exhibits
a complex array of more than 5000 distinct lipid species, with
more than 700 responding to thrombin activation.1 Given this in-
creased focus on the role of lipid species in platelet function, it is
imperative to understand the molecular basis of their regulation
during platelet activation. Acetyl-CoA carboxylase (ACC) is a
good candidate because of its established role as a central
regulator of fatty acid metabolism.2 ACC catalyzes acetyl-CoA
carboxylation to form malonyl-CoA. Its 2 isoforms, ACC1 and
ACC2, have distinct cellular distributions.3 ACC1 is present in the
cytosol and synthesizes malonyl-CoA for de novo lipogenesis,4

whereas ACC2 is localized on the outer mitochondrial membrane
and generates malonyl-CoA, which inhibits fatty acid transport

intomitochondria for oxidation.5,6 ACC is a bona fide substrate of
AMP-activated protein kinase (AMPK), and its phosphorylation
is typically used as a marker of AMPK activation in cells and tis-
sues, including platelets.7-9 AMPK phosphorylates ACC1/2 on
serine residues (Ser79/212), leading to suppression of ACC
activity.10,11 We have previously reported that AMPKa1 is activated
in platelets upon thrombin stimulation, and increases the phos-
phorylation of myosin regulatory light chains, cofilin, and vasodilator-
stimulated phosphoprotein.7 These cytoskeletal proteins are critical
for triggering platelet shape change and the centralization of se-
cretory granules during platelet activation.12 However, the effect
of AMPK-mediated ACC phosphorylation on platelet function
has never been investigated.

Fatty acids fulfill at least 3 main roles: structural, signaling, and
energy storage. Phospholipids (PL) are the major structural lipids
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in platelets. Upon platelet activation, reorganization of the
plasma membrane PL facilitates shape change and filopodia
and lamellipodia formation,13 as well as granule secretion14 or
microvesicle formation. In addition to this structural role, PL
provide substrates for phospholipases A (PLA) or C (PLC) to
generate bioactive species, including phosphatidylinositides,
1,2-diacylglycerol (DAG), inositol 1,4,5-trisphosphate, and eicosa-
noids/prostaglandins.1 These secondary mediators are crucial for
the tight regulation of platelet activation.15-17

Finally, lipids contribute to platelet energy metabolism. In the
basal state, platelets are more oxidative than glycolytic,18,19 and
lipid oxidation contributes to at least one-third of the total
oxygen consumed by mitochondria.18,20,21 Mitochondrial lipid
oxidation increases on thrombin stimulation to cope with the
energetic demands of platelet activation,20,22 a process that is
supported by the enhanced availability of eicosanoids released
from the membrane PL through the action of Ca21-dependent
cytosolic phospholipase A2 (cPLA2).1

Clearly, the signaling needed to coordinate these diverse
functions of PL metabolism is important to define. In the current
study, we hypothesized that ACC controls key aspects of platelet
function using mice with alanine knock-in mutations in both
ACC1 (at Ser79) and ACC2 (at Ser212; ACC double knock-in
[ACC DKI] mice). These mice harbor functional ACC and AMPK,
but express a mutant form of ACC that can no longer be
inhibited by AMPK phosphorylation, resulting in a persistent
active form of the enzyme.2

Here, we report that blood from ACC DKI mice have increased
thrombus formation on collagen-coated surfaces or after vas-
cular injury. The underlying mechanisms involve elevated levels
of arachidonic acid (AA)-containing phosphatidylethanolamine
plasmalogen (PEP) lipids in ACC DKI platelets compared with
wild-type (WT), increasing thromboxane A2 (TXA2) generation
and granule secretion after platelet stimulation with collagen.
Although mitochondrial fatty acid oxidation is important in
thrombin-dependent platelet activation, we found that AMPK-
ACC signaling had no effect on platelet bioenergetics.

These findings highlight a novel metabolic regulatory pathway in
platelets that influences thrombus formation by modulating the
content of specific PL, which generates key mediators of platelet
activation.

Methods
Mice
ACC1/2 DKI mice have been described previously.2 WT mice
served as controls. Eight- to 16-week-old male mice were
studied. Animal procedures and protocols were approved by
local authorities (Comité d’éthique facultaire pour l’expérimen-
tation animale, 2012/UCL/MD/003 and 2016/UCL/MD/027) and
performed in accordance with the Guide for the Care and Use
of Laboratory Animals, published by the National Institutes of
Health (NIH Publication No. 85-23, revised 1996).

Platelet preparation
Mice were bled under ketamine and xylazine anesthesia
from the retro-orbital plexus. Blood was collected in 1/6

citrate-dextrose solution with apyrase 1 U/mL. Platelet-rich plasma
was obtained by centrifugation at 800g for 5 seconds, followed
by 5 minutes at 100g. It was washed by adding 2 volumes
of citrate-dextrose with apyrase 1 U/mL. The platelets were pel-
leted by centrifugation at 400g for 5 minutes and resuspended
to a density of 2.5 3 105/mL (unless stated otherwise) in modi-
fied Tyrode’s buffer. Platelets were counted with Cell-Dyn
Emerald. They were stimulated with agonists in the presence
of 2 mM CaCl2.

Flow chamber assay
Blood was collected from the retro-orbital plexus into 48 mM
D-Phenylalanyl-prolyl-arginyl Chloromethyl Ketone, 5 U/mL hep-
arin, and 40 U/mL fragmin. Samples of 400 mL were flowed over
type I collagen-coated (100 mg/mL), von Willebrand factor (VWF)–
binding protein (12.5 mg/mL) and laminin (50 mg/mL)-coated
or VWF-binding protein (12.5 mg/mL), laminin (50 mg/mL), and
rhodocytin (250 mg/mL)-coated coverslips mounted on a trans-
parent, parallel plate flow chamber (50mmdepth, 3mmwidth, and
20 mm length), at a shear rate of 1000 s21 for 3.5 minutes, as
described.23 Alternatively, samples were preincubated with 20 mM
ticagrelor for 10 minutes or the corresponding vehicle (dimethyl
sulfoxide) and flowed over type I collagen-coated coverslips, as
described earlier. Activated platelets in thrombi were poststained
with fluorescein isothiocyanate-labeled anti-P-selectin antibody
(Ab; 1:40), PE-labeled JON/A Ab against the active conformation
of aIIbb3 (1:20), or Alexa Fluor 647-annexin A5 (1:200), all diluted
in Tyrode’s buffer. Labeling was undertaken for 2 minutes (stasis),
after which unboundAbswere removedbyperfusionwith Tyrode’s
buffer. Brightfield phase-contrast and fluorescence images were
recorded by a nonconfocal 2-camera system. Surface coverage
was analyzed by ImagePro software (Media Cybernetics).24

Ferric chloride-induced thrombosis
Carotid arteries were injured in anesthetized mice by topical
application of 10% ferric chloride (FeCl3) for 5 minutes, as
described previously.25 Briefly, exogenous carboxyfluorescein
succinimidyl ester-labeled platelets were injected into the jug-
ular vein of anesthetized mice, and fluorescence was recorded
by BX61WI microscope (Olympus). Digital images were cap-
tured every 2 minutes for a total of 24 minutes.

Untargeted lipidomics
Lipidomics analysis was carried out on the commercial Lipidyzer
platform, according to the manufacturer’s instructions (Sciex).26

The amount of platelets needed to obtain consistent results
was evaluated before application of the commercial platform.
Lipid analysis was performed in flow-injection mode, separating
lipid classes by differential mobility spectroscopy,26 followed by
tandem mass spectrometry of lipid species with QTrap 5500 in
multiple reaction monitoring mode. Lipid species were identified
and quantified on the basis of characteristic mass spectrometric
transitions. Commercial Lipidyzer software automatically calcu-
lated lipid species concentrations. All samples were analyzed in a
randomized fashion. Control plasma samples, as well as fortified
plasma samples, were assessed daily as quality controls. Relative
standard deviations of quality control samples were below 15% for
all lipid classes, except for sphingomyelin, for which a relative stan-
dard deviation of 25% was noted.

A detailed description of the reagents and themethods is provided
in supplemental Methods, available on the Blood Web site.
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Figure 1. Lack of AMPK-ACCphosphorylation does not affect AMPK signaling or phosphorylation of cytoskeletal proteins. (A)Washedmurine and human platelets were
lysed and subjected to western blotting for ACC1 or ACC2 isoform expression analysis. Isolated rat cardiomyocytes (CM) and mouse liver extracts served as positive controls for
the detection of ACC2 and ACC1, respectively. (B-E) ACC WT and ACC DKI platelets were stimulated with 0.2 U/mL thrombin (B,D) or 5 mg/mL collagen (C,E) for the indicated
times. Whole-platelet lysates were subjected to western blotting and probed with Ser79 phosphorylated ACC Ab (B-C), Thr172 phosphorylated AMPK, Ser19 phosphorylated
myosin light chain (MLC), Ser3 phosphorylated cofilin and Thr278 phosphorylated vasodilator-stimulated phosphoprotein (VASP) Abs (D-E). Gelsolin and b-actin were used as
loading controls. Quantification and representative western blotting are systematically shown. The solid lines on the western blots indicate that samples were run on the same gel
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Results
Lack of AMPK-ACC phosphorylation does not
affect AMPK signaling or cytoskeletal
protein phosphorylation
ACC WT and ACC DKI mice have comparable erythrocyte, leu-
kocyte, and platelet counts in whole blood (supplemental Table 1).
Expression levels of the major platelet surface receptors, aIIbb3,
GPIba, the collagen receptor GPVI, and the protease-activated
receptor-3 and protease-activated receptor-4, were equivalent in
ACC WT and ACC DKI platelets (supplemental Figure 1A-B).

ACC1, but not ACC2, was detected in both human and murine
platelets (Figure 1A). Consistent with previous observations,7

0.2 U/mL thrombin (Figure 1B) or 5 mg/mL collagen (Figure 1C)
induced phosphorylation on Ser79 of ACC in platelets from
WT mice with maximal effects after 1 and 5 minutes, respectively.
As expected, no Ser79 ACC phosphorylation was detected in
either basal or thrombin- or collagen-treated ACC DKI platelets
(Figure 1B-C). ACC1 mutation did not influence AMPK activation,
reflected by Thr172 phosphorylation (Figure 1D-E). In addition,
thrombin- or collagen-induced phosphorylation of known AMPK
cytoskeletal targets, myosin light chain, cofilin, and vasodilator-
stimulated phosphoprotein were similar between ACC DKI and
ACCWT platelets (Figure 1D-E), as well as platelet-spreading and
lamellipodia/filopodia formation after platelet immobilization on
fibrinogen-coated coverslips (supplemental Figure 1C-H). These
data confirm that although ACC phosphorylation was impaired,
AMPK signaling was unaltered in ACC DKI platelets.

ACC DKI mice display enhanced primary
hemostasis and thrombosis
The effect of AMPK-mediated ACC phosphorylation on he-
mostasis and thrombosis was evaluated in vivo. No spontaneous
bleeding or thrombotic event was observed in 91 ACC DKI
young mice (up to 4 months) or 19 ACC DKI older mice (at least
9 months old). However, median tail bleeding time was signif-
icantly shorter in ACC DKI mice than in their WT counterparts
(ACC DKI: 82 6 42 seconds vs ACC WT: 188 6 51 seconds;
P , .05; Figure 2A). We then investigated the role of ACC
phosphorylation on arterial thrombosis in vivo, in the collagen-
dependent carotid artery thrombosis model, in response to a
10% FeCl3 application. Arterial thrombus formation was moni-
tored in real time by intravital fluorescencemicroscopy (Figure 2B-C).
The rate of thrombus growth was significantly increased in
ACC DKI mice compared with the WT animals. The fold change
increase in thrombus growth during a 20-minute period after
arterial injury was 62.4 6 17.4 for ACC DKI mice vs 31.3 6 8.2
for ACC WT mice relative to baseline (Figure 2B). These data dem-
onstrate that AMPK-ACC signaling is a key mechanism regulating
primary hemostasis and arterial thrombosis in vivo.

Lack of AMPK-ACC signaling favors thrombus
formation during perfusion on collagen in
flow conditions
We next examined thrombus formation ex vivo, using a flow
chamber system. Whole blood from ACC WT and DKI mice was

perfused at an intermediate shear rate of 1000 s21, on 3 different
coated surfaces containing collagen, laminin, or VWF-binding
protein in the absence or presence of rhodocytin.24 Brightfield
images were captured to assess overall platelet adhesion and
thrombus formation. Platelet activation was simultaneously
monitored by infusing fluorescently labeled anti-CD62P Ab as a
marker of a-granule secretion, JON/A Ab to measure aIIbb3
activation, and annexin V to analyze phosphatidylserine exter-
nalization, reflecting platelet procoagulant activity.

On collagen-coated coverslips, the surface area covered by
adherent platelets and their activation state (Figure 2D-F) were
similar between the 2 genotypes. However, buildup of multi-
layered platelet thrombi was increased with ACC DKI blood
compared with WT (Figure 2G), indicating that AMPK-ACC
signaling affects mechanisms involved in the secondary for-
mation of platelet aggregates on collagen. Of note, no dif-
ferences in platelet adhesion and activation processes were
observed between ACC DKI and WT blood perfused on
laminin and VWF-binding protein in the absence or presence of
rhodocytin (data not shown).

ACC DKI platelets display increased dense granule
secretion and thromboxane generation on
collagen stimulation
To further decipher the mechanisms responsible for the gain-of-
function phenotype of ACC DKI mice on thrombus formation,
we studied the effect of a lack of AMPK-mediated ACC phos-
phorylation on washed platelet reactivity. First, we investigated
the effect of thrombin or collagen on aIIbb3 inside-out activation
by analyzing platelet aggregation. ACC DKI platelets aggre-
gated normally at low and high concentrations of thrombin
or collagen (Figure 3A; supplemental Figure 2A). Accordingly,
thrombin- or collagen-induced activation of aIIbb3, detected by
JON/A Ab, was normal (Figure 3B). Integrin aIIbb3-mediated
clot retraction consistently showed no differences between ACC
WT and ACC DKI platelets after thrombin stimulation (supple-
mental Figure 2B-C).

In addition to aIIbb3 activation, TXA2 generation and ADP re-
leased from dense granules are important players in collagen-
induced platelet aggregate formation under flow27,28 and in
thrombus formation in vivo.29,30 Interestingly, the lack of AMPK-
ACC signaling amplified dense granule release, specifically in
response to collagen. Indeed, a significant 30% increase of ATP
(Figure 3C-D) and serotonin secretion (Figure 3E) was detected
after collagen stimulation in ACC DKI platelets compared with
WT, but not in response to thrombin (Figure 3C,E). To further
conclude that this increase was related to secretion rather
than to augmented packaging of dense granules, we measured
total ADP, ATP, and serotonin content in platelet extracts and
found no difference between genotypes (Figure 3F-G). Re-
garding a-granule secretion, P-selectin surface exposure was
similar between ACC WT and ACC DKI platelets (supplemental
Figure 3A). However, platelet factor 4 (PF4) secretion was po-
tentiated on collagen stimulation in ACC DKI platelets (sup-
plemental Figure 3B), although total PF4 levels in a-granules

Figure 1 (continued) but were not contiguous. The results are expressed as means 6 standard error of the mean (SEM; at least 3 experiments for each condition). *Values
statistically different from respective untreated platelets; P # .05. Analysis was performed by 2-way analysis of variance (ANOVA). See also supplemental Figure 1 and
supplemental Table 1.
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showed no change (supplemental Figure 3C), indicating that
the ACC DKI phenotype seems also associated with increased
a-granule secretion, at least those a-granules containing PF4.

Lack of AMPK-ACC signaling potentiated TXA2 generation in
response to collagen (Figure 3H), independent of any change
in basal cyclooxygenase 1 expression or activity (supplemental
Figure 4A-B). To evaluate the connection between ACC DKI-
related increased TXA2 generation and dense granule secretion,
collagen-stimulated ACC DKI platelets were pretreated with
1 mM aspirin before assessment of serotonin secretion. As
expected, cyclooxygenase 1 inhibition by aspirin almost com-
pletely abolished collagen-induced TXA2 generation (Figure 3H).
In this condition, collagen failed to further enhance serotonin
secretion in ACC DKI compared with WT platelets (Figure 3I),
demonstrating that the increase in dense granule secretion
observed in ACC DKI platelets depends on TXA2 synthesis. The
increased TXA2 generation in ACC DKI platelets did not result
from the enhanced dense granule release induced by collagen,
as ticagrelor, a P2Y12 inhibitor, preserved TXA2 potentiation in
ACC DKI platelets (Figure 3J). More interestingly, whole-blood
flow perfusion experiments over type I collagen showed that
ticagrelor completely abolished the increased thrombus buildup
in ACC DKI blood compared with WT, demonstrating the key
implication of dense granule secretion in the enhanced thrombus
formation (Figure 4A-B).

In addition to thrombin and collagen, ACC WT and ACC DKI
platelets were also treated with increasing concentrations of
ADP, U46619, rhodocytin, an agonist of the C-type lectin such as
receptor-2, or collagen-related peptide, a specific GPVI agonist.
For all agonists and concentrations tested, ACC DKI platelets ag-
gregated normally (supplemental Figure 5A-B), and there was no
difference in ATP released from dense granules (supplemental
Figure 5C). These data reinforce the conclusion that the effect of
AMPK-ACC signaling on TXA2 generation and dense granule se-
cretion is specific to platelet response to collagen. Moreover,
these results reveal that collagen increases TXA2 generation in
ACC DKI platelets, most likely through a mechanism involving
the a2b1 integrin, which is compatible with the enhancing role
of this integrin in GPVI-dependent thrombus stability via TXA2

production.31

Taken together, these results indicate that the absence of
AMPK-ACC signaling in collagen-stimulated platelets elicits
increased TXA2 generation and, subsequently, enhanced granule
secretion. These events might contribute to exacerbated thrombus
growth via a mechanism that is independent of an altered aIIbb3
activation.

Lack of AMPK-ACC signaling does not affect lipid
oxidation, but results in an increased AA-containing
PL pool
To test whether persistent activation of ACC in platelets may
affect platelet bioenergetics, we measured the thrombin- or
collagen-dependent increase in mitochondrial function in ACC
WT and ACC DKI platelets. As illustrated in Figure 5A-F, ex-
tracellular flux analysis showed that platelet basal oxygen con-
sumption rate (OCR) was similar between ACCWT andDKImice,
and similar to reported studies in the literature.1,20 As expected,
thrombin stimulated OCR (Figure 5A-B), which has been shown
to be a result of increased mitochondrial lipid oxidation.1,20

The oxidative phosphorylation component was further assessed
by injecting oligomycin, a complex V inhibitor, which led to
an expected decrease in OCR. ATP-linked respiration was
not different in ACC DKI platelets compared with WT plate-
lets. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone,
a proton-ionophore, then induced maximal OCR and a correspond-
ing decrease in maximal respiration and reserve capacity on thrombin
stimulation, as a result of the mobilization of endogenous met-
abolic substrates to cope with increased energetic demands.
This occurred to a similar extent in platelets from both genotypes
(Figure 5A-B). Finally, antimycin A and rotenone, complex III/I in-
hibitors, totally inhibited mitochondrial-induced OCR. Proton leak
was unchanged in all groups (Figure 5A-B). It has not been pre-
viously reported that collagen also stimulates mitochondrial func-
tion using this approach. As shown in Figure 5C-D, collagen
stimulates OCR with similar characteristics to thrombin. Taken to-
gether, these data indicate that in platelets, AMPK-ACC signaling
is not playing a major role in mitochondrial respiration, both basally
and in the presence of thrombin or collagen. The comparable
impact of Etomoxir, a carnitine palmitoyltransferase-1 inhibitor,
on the ACC WT and ACC DKI platelet mitochondrial bioen-
ergetics further supports the conclusion that platelets from
both genotypes similarly rely on fatty acids to produce ATP
(Figure 5E-F).

To investigate whether the gain-of-function of ACC DKI platelets
relies on a modified lipid content, we undertook a quantitative
lipidomic analysis of resting and stimulated platelets. Isolated ACC
DKI and ACCWT platelets were either left unstimulated or activated
with 25 mg/mL collagen, 0.3 U/mL thrombin, or a mix of both. The
lipids classes analyzed included different PL (PE, PEP, plasmenyl
phosphatidylethanolamine, phosphatidylcholine [PC], lysophos-
phatidylethanolamine, lysophosphatidylcholine), sphingomyelin,
cholesteryl esters, free fatty acids, DAG, and triglycerides.32

In agreement with previous data,33 class enrichment anal-
ysis indicated that collagen significantly upregulated lipid

Figure 2. ACC DKI mice display enhanced primary hemostasis and thrombosis. (A) Tail bleeding times of ACCWT and ACC DKI mice in saline at 37°C. Individual values are
plotted on the graph (n5 14 in each group). Bars indicatemeans. #P# .05. Data were analyzed by theMann-WhitneyU test. (B-C) ACCWT and ACCDKI mice were subjected to
in vivo FeCl3-induced thrombosis of carotid arteries (10% FeCl3, 5 min). Thrombus formation was monitored by analyzing exogenous carboxyfluorescein succinimidyl ester-
labeled platelet accumulation by intravital microscopy and recording videos (fluorescence) of microscopic images every 2 minutes. (B) Thrombus growth kinetics was evaluated
by dividing the area of the thrombus at time (t) by the area of the same thrombus at time 0, defined as the time at which the thrombus first reaches 100 mm. Thrombus growth is
expressed as means6 SEM per group at different times with fitted regression lines (at least 6 mice/group). Slopes are statistically different on the basis of significant interaction
(#P # .05) between slope and group in a linear model, with group, time, and their interaction as covariates. (C) Representative fluorescence microscopy images at 0, 6, 12, and
18 minute after FeCl3 application (original magnification310). (D-G) Whole blood from ACCWT and ACC DKI mice was perfused over collagen-coated surfaces (100 mg/mL) at
a shear rate of 1000 s21. Exposure of P-selectin was evaluated by staining with CD62P Ab (D), aIIbb3 integrin activation by JON/A Ab (E) and phosphatidylserine externalization
by Annexin V (F). Thrombus formation was assessed on brightfield images taken 3.5 minutes after initial blood perfusion (G). Representative images appear on the left. Scale
bars represent 20 mm. Histograms indicate quantification of surface area covered (SAC) by P-selectin (D), activated aIIbb3 (E), Annexin V (F)–positive platelets or multilayered
platelet thrombi (G). The results are expressed as means 6 SEM (at least 4 mice/group). #P # .05. Data were analyzed by the Mann-Whitney U test.
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Figure 3. ACC DKI platelets display increased dense granule secretion and thromboxane generation on collagen stimulation. (A) Washed platelets were stimulated with
thrombin or collagen at the indicated concentrations, and light transmission was measured (Chrono-Log). Aggregation is expressed as the maximal percentage of light
transmitted. The dashed line represents separate analyses. The results are expressed asmeans6 SEM (at least 4 experiments for each condition). (B) aIIbb3 activation (binding of
JON/A) was analyzed by flow cytometry in washed ACCWT and DKI platelets stimulated with thrombin for 8 minutes or collagen for 30 minutes at the indicated concentrations.
The dashed line represents separate analyses. The results are expressed as mean fluorescence intensity (MFI)6 SEM (at least 4 experiments for each condition). (C-D) Washed
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species among free fatty acids (31%), lysophosphatidylcholine
(57%), lysophosphatidylethanolamine (38%), and DAG (21%)
lipid classes, in both ACC WT and ACC DKI platelets
(Figure 6A; supplemental Table 2). Enrichment of free fatty
acids and DAG was also observed in response to thrombin
alone (supplemental Figure 6A) and to a combination of
thrombin and collagen (supplemental Figure 6B). More
important, loss of AMPK-ACC signaling resulted in enrich-
ment of upregulated lipid species among PEP lipid classes
(28%), independent of the basal or simulated condition
(Figure 6B; supplemental Table 3). Indeed, an increase in
lipid species among PEP was strongly associated with lack of
ACC phosphorylation (odds ratio, 48 [CI, 14-217]; Figure 6B).
ACC DKI also displayed an increment of downregulated
lipid species among cholesteryl esters (38%) and PC (14%;
Figure 6B). Given that ACC DKI platelets show increased
TXA2 generation, we specifically focused our data analysis

on AA-containing PEP and PC, the 2 PL classes particularly
containing differentially regulated lipids. Relevant PEP
species with side-chains 16:0/20:4 and 18:1/20:4 were
significantly increased in ACC DKI platelets (Figure 6C). We
showed that they, respectively, contributed 18.9% and 7.3%
to the total reservoir of AA-containing PL (Figure 6D). In
contrast, PC species with side-chains 18:2/20:4 and 14:0/20:
4 were decreased (Figure 6C) and marginally accounted
for 0.8% and 0.4%, respectively, of all AA-containing PL
(Figure 6D). Taken together, upregulated AA-containing
PEP in ACC DKI platelets clearly supports the enhanced
TXA2 formation observed in this condition. Of note, the AMPK-
ACC signaling did not influence platelet palmitate uptake
(supplemental Figure 7A). Moreover, collagen-induced TXA2

production was not modulated by extracellular fatty acid
availability in ACC WT or ACC DKI platelets (supplemental
Figure 7B).
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Figure 4. Increased thrombus formation in ACC DKI mice is prevented by P2Y12 inhibition. (A-B) Whole-blood flow perfusion experiments were performed with collagen
type I as platelet-adhesive substrate. Where indicated, autocrine effects were blocked by preincubation with 20 mM ticagrelor (TICA) or vehicle (dimethyl sulfoxide) for
10 minutes. Microscopic images were analyzed for indicated parameters, and per parameter normalized on scale from 0 to 10.24 (A) Heat map of normalized parameters.
(B) Subtraction heat map of normalized differences compared with WT mice, filtered for changes with P # .05.

Figure 3 (continued) ACCWT and DKI platelets were stimulated with thrombin or collagen at the indicated concentrations in the presence of Luciferase-Luciferin reagent, and
ATP release was measured in a Lumi-aggregometer. (C) The dashed line represents separate analyses. The results are expressed as mean amount of ATP released (nmoles) 6
SEM (at least 4 experiments for each condition). #P# .05 betweenACCWT andDKI platelets. The data underwent 2-way ANOVA. (D) Representative traces of ATP secretion after
0.5 mg/mL, 1.5 mg/mL, and 2.5 mg/mL collagen stimulation. (E) Washed platelets (303 103/mL) were stimulated with 30 mU/mL thrombin or 5 mg/mL collagen for 5 minutes, and
serotonin (5-HT) wasmeasured in the supernatant by ELISA kit. The dashed line represents separate analyses. The results are normalized to ACCWT-stimulated platelets and are
expressed as means6 SEM (at least 3 experiments for each condition). #P# .05 between ACCWT and DKI platelets. The data underwent 2-way ANOVA. (F) Washed platelets
(7.53 103/mL) were centrifuged, the pellet was lysed, and serotonin (5-HT) was assayed in the lysate. The results are expressed asmeans6 SEM (n5 3). (G)Washed platelets were
centrifuged, the pellet was lysed, and ADP and ATP content assayed in the lysate by reverse-phase high-performance liquid chromatography. Results are expressed as means6
SEM (n5 3). (H) Washed platelets were stimulated with 100 mU/mL thrombin alone or preincubated or not for 45 minutes with 1 mM aspirin (ASA), and stimulated with 5 mg/mL
collagen. TXA2 was measured in the supernatant by ELISA. The dashed line represents separate analyses. The results are expressed as means6 SEM (at least 3 experiments for
each condition). #P# .05 between ACCWT and DKI platelets. The data underwent 2-way ANOVA. (I) Washed platelets were preincubated or not for 45 minutes with 1 mM ASA
and stimulated with 5 mg/mL collagen. Serotonin (5-HT) was measured in the supernatant by ELISA. The results are expressed as means6 SEM (at least 3 experiments for each
condition). #P # .05 between ACC WT and DKI platelets. The data were assessed by 2-way ANOVA. (J) Washed platelets were preincubated with 30 mM ticagrelor or the
corresponding vehicle (dimethyl sulfoxide) for 30 minutes and stimulated with 5 mg/mL collagen for 5 minutes. TXA2 was measured in the supernatant by ELISA. The results are
expressed as means6 SEM (n5 4). *P # .05 relative to respective untreated platelets, #P # .05 between ACCWT and ACC DKI platelets. The data underwent 2-way ANOVA.
See also supplemental Figures 1-5.
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Figure 5. Lack of ACC phosphorylation does not affect oxidative metabolism. (A-F) Oxygen consumption rate (OCR) was measured in washed platelets pretreated or not
with Etomoxir (25 mM) (E-F) for 1 hour before bioenergetic measurements. OCR was assessed under basal conditions, after injection of media alone or 1 U/mL thrombin (A,B) or
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Discussion
Lipids play fundamental roles in platelets, but little is known
about the effect of endogenous lipid metabolism on platelet
functions and subsequent thrombosis. To assess the importance
of endogenous lipid synthesis on platelet function, we charac-
terized a mousemodel carrying a genetic mutation that prevents
the AMPK-induced phosphorylation of ACC, the first rate-
limiting enzyme of lipid synthesis.2 We have shown that ACC1
is the predominant isoform in murine and human platelets.
These data are consistent with transcriptomic and proteomic
analyses that demonstrate ACC1 but not ACC2 transcript and
protein expression in platelets.34,35 In accordance with the primary

role of ACC1 in lipogenesis, ACC DKI platelets display modified
PL content rather than altered lipid oxidation. Indeed, no differ-
ence in oxygen consumption, which relies on endogenous lipid
oxidation,20 is observed between ACCWT and ACCDKI platelets
under both basal conditions and on thrombin or collagen treat-
ment. Consistent with our results, liver-specific inactivation of
ACC1 resulted in reduced de novo fatty acid synthesis without
alteration of fatty acid oxidation.36

In the first series of experiments, we demonstrated that bleeding
time is shorter in ACC DKI mice and thrombosis is increased in
vivo and ex vivo under flow on collagen. Second, platelet
functions were analyzed and the results indicate that ACC DKI
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Figure 6. Lack of AMPK-ACC signaling results in an increased AA-containing PL pool. (A,B) The percentage (dark gray bar) of down- or upregulated lipid species relative to
the whole lipid class was calculated in collagen-stimulated platelets relative to unstimulated platelets (A) or ACC DKI relative to ACC WT platelets (B). The different lipid
classes are arranged from top down in order of increasing adjusted P values. (A) *Adjusted P# .05 between collagen-stimulated platelets and unstimulated platelets (n5 3). (B) #P# .05
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platelets exhibit enhanced dense granule secretion in response
to collagen, attributed to exacerbated TXA2 generation. Finally,
untargeted lipidomics revealed that lack of AMPK-ACC signal-
ing was associated with an increase in some AA-containing
PEP, leading to TXA2 enrichment. Our findings highlight the
critical role of platelet endogenous lipid synthesis in thrombosis
and hemostasis, a concept that is supported by a recent study
showing that a genetic deletion of acid sphingomyelinase, which
converts sphingomyelin to ceramide, leads to an alteration of
platelet lipidome, which in turn causes dysregulated granule
secretion and in vitro thrombus formation.37

Thrombosis induced by FeCl3 in the carotid artery is a widely
used model that can provide valuable information about the
effect of genetic modifications on platelet functions. However,
it has a number of limitations regarding the underlying mech-
anisms that induce thrombus formation, notably about the
relative roles of tissue factor and thrombin.38-41 Recently, several
studies reported that plasma proteins and blood cells, including
platelets, aggregate because their negatively charged proteins
bind to positively charged iron species.42,43 Altogether, these
results indicate that FeCl3-induced thrombosis relies on complex
multifaceted, incompletely elucidated, mechanisms.

Collectively, the data presented here demonstrate that AMPK-
induced ACC1 phosphorylation in platelets does not control lipid
oxidation but, rather, regulates cellular lipid content. Intriguingly,
we expect that an increase in AA-containing PL, as observed inACC
DKI platelets, would provide more substrates for mitochondrial
respiration in response to thrombin.1 However, we could not find
any modifications of platelet mitochondrial oxygen consumption,
indicating some degree of compartmentalization and suggesting
that increased PEP16:0/20:4 and 18:1/20:4 in ACCDKI platelets do
not significantly contribute to overall platelet bioenergetics.

The view that TXA2 and dense granules are of central importance
in triggering thrombus formation but not platelet activation on
collagen surfaces has been advanced in previous studies.27,28

In addition, the relationship between TXA2 and dense granule
secretion has been clearly established.15,44,45 Our work not only
confirms this link in ACC DKI platelets but also underlines that
excessive thrombus formation is not systematically associated with
an alteration of aIIbb3-dependent platelet aggregation. This dis-
connection has been recently reported37 and supports the notion
that additional cell surface molecules participate in platelet/platelet
interactions and support thrombus growth.46,47 Therefore, based
on the core-shell thrombosis model,48,49 we postulate that lack
of AMPK-ACC signaling might potentiate platelet recruitment to
the shell structure through increased TXA2 and ADP secretion, aug-
menting thrombosis through mechanisms independent of aIIbb3.
In addition, increased PF4 secretion might possibly contribute to a
rise in thrombus growth in ACC DKI mice.

Interestingly, the effect of AMPK-ACC signaling on TXA2 gen-
eration and platelet dense granule secretion is collagen-specific.
This is in agreement with previous data showing that different
mechanisms of AA-containing PL breakdown are operating in
response to collagen or thrombin. Indeed, although AA release
by thrombin is dependent on cPLA2,1,50 collagen-induced AA
generation involves cPLA2, the low-molecular-weight secreted
PLA2 (sPLA2) and the Ca21-independent cytosolic PLA2 (iPLA2).51

In line with these observations, thrombin and collagendifferentially

degrade AA-containing PL, depending on the nature of the PL.37,52

For instance, thrombin is more potent at cleaving AA-containing PI
and phosphatidylserine than collagen, whereas the latter is 2 times
more efficient toward AA-containing PEP.52 These data reinforce
our observations and help us to understand the specific response or
responses of ACC DKI platelets to collagen.

Importantly, ACC phosphorylation could be detected, even in
the absence of any agonist stimulation, in platelets from both
healthy mice and volunteers.7 This has been confirmed by
comparing ACC phosphorylation between ACC WT and ACC
DKI platelets under basal conditions. A sustained change in
basal ACC phosphorylation was sufficient to induce a decrease
in PL, suggesting that ACC phosphorylation already affects lipid
composition in resting platelets before activation.

In conclusion, our work provides new insights into the contribution
of endogenous lipid synthesis to platelet functions. It reveals that
sustained modulation of ACC phosphorylation in platelets can
modify specific AA-containing PL content and influence platelet
reactivity to collagen. This finding might have far-reaching clinical
relevance in the pathological context of diseases such as athero-
sclerosis. Indeed, this is now being tested in a clinical trial dem-
onstrating that basal ACC phosphorylation dramatically increases
in platelets of patients with coronary artery disease (ACCTHEROMA
Clinical Trial identifier: NCT03034148). How and whether such a
pathway is involved in regulating platelet function in this context
remain to be determined.

Acknowledgments
The authors thank Pierre Sonveaux (Pole of Pharmacology, Institut de
Recherche Expérimentale et Clinique, Université catholique de Louvain,
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