
patients with CH and mutations in DDR
genes at the time of cytotoxic therapy
might represent a high-risk population.
These findings suggest several conclu-
sions to help guide treatment decisions.
(1) Patients who are supposed to receive
cytotoxic therapy should be screened
for CH. Patients with mutations in DDR
genes could be treated, if feasible, with
alternative approaches (eg, immuno-
therapy or inhibitors). (2) In case cyto-
toxic therapy is unavoidable, patients
should be closely monitored for the
development of treatment-related hema-
tologic neoplasms. (3) With the increasing
availability of specific inhibitors, it might
be interesting to target and eliminate
the clonal HSC before the onset of dis-
ease. However, each treatment strat-
egy will likely also cause side effects
in otherwise asymptomatic individuals.
For example, Ppm1d knockout mice
display defects in B- and T-cell differ-
entiation resulting in immunodeficiency,
severe neutrophilia causing inflamma-
tory disease phenotypes, and dimin-
ished self-renewal capacity of HSC.12

The latter is specifically relevant in elderly
patients, who may rely on oligoclonal
hematopoiesis to ensure proper blood
production.

In summary, the work by Kahn et al
provides important mechanistic insights
into the function of DDR genes in clonal
hematopoiesis and the first experimental
evidence for successful targeting driver
mutations in CHIP. As a next step, pro-
spective clinical trials are warranted
to address the questions of whether
early treatment of CHIP can reduce all-
cause mortality and the risk of sub-
sequent treatment-related hematologic
neoplasms.
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The incomparable
platelet: holy alveoli!
Mark R. Looney | University of California, San Francisco

In this issue of Blood, Tsukiji et al report on the consequences of platelet–
lymphatic interactions in the lung, namely the influence of platelet activation
with release of platelet transforming growth factor-b (TGF-b) on lung de-
velopment.1 The small but mighty platelet continues to amaze as functions
beyond canonical roles in hemostasis and thrombosis are being discovered at
a rapid rate. Key roles in inflammation, autoimmunity, and metastasis have
recently been elucidated. One wonders how many more tricks the platelet
has up its sleeve.

As with any biologic process, there is a
balance of effects on the host system.
With platelets, we have to consider the
good (plugging holes, antimicrobial func-
tion)with thepotentially harmful (thrombotic
organ injury, exaggerating inflammation).
There is a growing amount of literature on
the role of platelets as biologic packages
that deliver key signals to tissues, including
the lung. For example, in apneumonectomy
modelof lung regeneration,plateletsdeliver
stromal cell–derived factor-1 to the lung
endothelium,whichdrives alveolar epithelial
cell expansion via membrane-type metallo-
proteinase MMP14.2 Platelet-rich plasma,
increasingly used in sports medicine to ac-
celerate recovery, also accelerates lung re-
generation after pneumonectomy through
angiogenic factors such as angiopoietin-1.3

There is a well-established literature field
on the role of platelet–lymphatic inter-
actions in maintaining the separation of
vascular and lymphatic channels. It may
seem surprising that platelets and lymphatic
channels would be in contact, and indeed,
the exact sites of contact during organ
development are unclear. C-type lectin-like
receptor-2 (CLEC-2) on platelets, originally
discovered as a receptor-mediating platelet
aggregation in venomous snake bites,4 and
podoplanin in the lymphatic endothelium,
constitute the major receptor–ligand pairs.5

At the junction between the thoracic duct
and the subclavian vein, the CLEC-2–
podoplanin interaction amazingly is in
continuous operation to prevent the en-
try of blood into the lymphatic system.6

Other described interactions include platelet
aggregation via CLEC-2 on metastatic
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tumor cells that ectopically express
podoplanin.7

Here, the authors studied CLEC-2 and
podoplanin interactions during lung em-
bryonic development. It has previously
been observed that global deletion of
CLEC-2 or podoplanin is lethal,5,8 and the
authors confirmed that these mice have
defects in late embryonic lung develop-
ment (primary septum formation). When
CLEC-2was completely deleted inplatelets
and megakaryocytes (using Cre-lox plus
antibody-mediated deletion of residual
CLEC-2), the fatal neonatal defects in-
cluded lung developmental defects. Previ-
ous studies using mice with platelet-specific
CLEC-2 deficiency have not reported lung
developmental defects,9 but the authors
found mild defects that were worse when
residual platelet CLEC-2 was completely
deleted or if platelets in these mice were
depleted by 90%. CLEC-2 signals through
the spleen tyrosine kinase to activate plate-
lets, and the authors determined that
TGF-b released from activated platelets
drives the development of alveolar duct
myofibroblasts that are critical to primary
septum formation andelastogenesis during
late embryogenesis. Curiously, lung de-
velopmental defects have not been de-
scribed in thrombocytopenic mousemodels,
but it appears that platelet counts must
be severely decreased and combined
with other defects in platelet activation,
such as the absence of CLEC-2 signaling,
to produce the lung phenotype.

Why would platelets be important in
lung development and regeneration? The
strong phenotypes observed in this study
may derive from the large vascular surface
area where platelets are in continuous
circulation and where large numbers of
megakaryocytes embolize to produce
platelets.10 Additionally, megakaryocytes
may live in the lung interstitium, where
they could theoretically interact with
lymphatic channels to influence lung de-
velopment. Future studies are needed to
determine if the phenotypes observed
in the lung are present in other tissues.
Investigators in this field should also focus
on the mediator(s) released from platelets
that have biological influence on the de-
veloping lung. Platelet-derived TGF-b is
unlikely to be the sole mediator involved
because the TGF-b knockout mouse does
not have apparent lung developmental
defects. Platelets and megakaryocytes
are rich sources of other mediators that
could influence the tissue matrix during

organogenesis and potentially also in
disease states characterized by tissue
fibrosis.
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Platelet metabolism
meets thrombosis
Yiliang Chen1 and Roy L. Silverstein1,2 | 1Blood Center of Wisconsin; 2Medical
College of Wisconsin

Metabolic pathways intersect with many processes important in hematology,
including thrombosis, innate and adaptive immunity, malignant transformation,
and stem cell function. These pathways are increasingly recognized as poten-
tially targetable for therapeutic intervention. In this issue of Blood, Lepropre
et al identify the energy sensor AMP-activated protein kinase (AMPK) in
platelets as a regulator of thrombosis.1

Platelet hyperreactivity is a key factor that
promotes arterial thrombosis, and our
laboratory and others have described
how exogenous factors, including dys-
lipidemia and hyperglycemia, influence
platelet activation. However, the impact
of endogenous lipid metabolism on plate-
let function remains largely unexplored.
Lepropre et al demonstrated that platelet
AMPK, by phosphorylating acetyl coen-
zyme A (acetyl-CoA) carboxylase (ACC), reg-
ulates endogenous lipid synthesis, including
the arachidonic acid–derived eicosanoid
thromboxane A2 (TXA2), thereby contrib-
uting to thrombus formation (see figure).

AMPK is a ubiquitously expressed serine/
threonine kinase normally activated by
low cellular energy state due to its unique
ability to sense intracellular AMP levels;
as ATP becomes depleted, AMP levels
rise and AMPK is activated.2 On acti-
vation, it has multiple targets, and the
fundamental effect is to suppress meta-
bolic processes that consume energy,
such as lipogenesis, while stimulating
pathways for energy production, such as
fatty acid oxidation and mitochondrial
oxidative phosphorylation. The major
substrate for AMPK to achieve these ef-
fects is ACC, which converts acetyl-CoA to
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