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KEY PO INT S

l Meta-analysis of 3
randomized clinical
trials shows a
statistically significant
relationship between
treatment effects on
PFS and MRD.

l Meta-regression
model supports use of
MRD as a primary end
point in clinical trials of
chemoimmunotherapy
in CLL.

Our objective was to evaluate minimal residual disease (MRD) at the end of induction
treatment with chemoimmunotherapy as a surrogate end point for progression-free sur-
vival (PFS) in chronic lymphocytic leukemia (CLL) basedon3 randomized, phase3 clinical trials
(ClinicalTrials.gov identifiers NCT00281918, NCT00769522, and NCT02053610). MRD was
measured in peripheral blood (PB) from treatment-naı̈ve patients in the CLL8, CLL10, and
CLL11 clinical trials, and quantified by 4-color flow cytometry or allele-specific oligonucle-
otide real-time quantitative polymerase chain reaction. A meta-regression model was de-
veloped to predict treatment effect on PFS using treatment effect on PB-MRD. PB-MRD
levels were measured in 393, 337, and 474 patients from CLL8, CLL10, and CLL11, re-
spectively. The model demonstrated a statistically significant relationship between
treatment effect on PB-MRD and treatment effect on PFS. As the difference between
treatment arms in PB-MRD response rates increased, a reduction in the risk of pro-
gression or death was observed; for each unit increase in the (log) ratio of MRD2 rates
between arms, the log of the PFS hazard ratio decreased by 20.188 (95% confidence

interval, 20.321 to20.055; P5 .008). External model validation on the REACH trial and sensitivity analyses confirm
the robustness and applicability of the surrogacy model. Our surrogacy model supports use of PB-MRD as a primary
end point in randomized clinical trials of chemoimmunotherapy in CLL. Additional CLL trial data are required to
establish a more precise quantitative relationship between MRD and PFS, and to support general applicability
of MRD surrogacy for PFS across diverse patient characteristics, treatment regimens, and different treatment
mechanisms of action. (Blood. 2018;131(9):955-962)

Introduction
In recent years, there has been considerable progress in the
treatment of chronic lymphocytic leukemia (CLL), with median
progression-free survival (PFS) now approaching 5 years in first-line
CLL studies.1 Because PFS is the standard primary end point used
in phase 3 CLL clinical trials, this improvement in outcome requires
long-term follow-up in trials of new experimental therapies.

To facilitate the development of novel treatments and ensure timely
patient access to more efficacious therapies, shorter-term end points
are desired for future CLL clinical trials. A potential surrogate for PFS
in this setting is the measurement of minimal residual disease (MRD)
response at the end of treatment. Although not formally included

in the International Workshop on Chronic Lymphocytic Leukemia
(iwCLL) 2008 definition of response,2 MRD has been shown to be
an independent prognostic factor of efficacy in both single-arm/
patient series and randomized phase 3 trials of chemotherapy and
chemoimmunotherapy agents3-9 and monoclonal antibodies.8

MRD is a sensitive measure of the remaining tumor load after
treatment, and therefore is an indicator of the depth of response to
treatment. The vast improvement in MRD detection technology
over the last 2 decades now allows a robust and reliable quanti-
fication ofMRD in peripheral blood (PB) and/or bonemarrow (BM),
and therefore facilitates an objective measurement of response to
therapy. Polymerase chain reaction (PCR)–based and 4-color flow
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cytometric (MRD flow) techniques have reliably established
an MRD detection level of ,1 leukemic cell per 10 000 leuko-
cytes (1024). Both methods are widely used to assess MRD.10-14

Results from 3 randomized phase 3 studies of front-line chemo-
immunotherapy in CLL conducted by the German CLL Study
Group (GCLLSG) provide the rationale for assessing the value of
MRD response as a potential surrogate end point for long-term
outcome. Data from the CLL8 study support the hypothesis of
MRD response as a surrogate end point for both overall survival
(OS) and PFS.3,15 MRDmeasured in PB at 3months posttherapy as
per iwCLL 2008 guidelines for response assessment in CLL2 were
categorized according to low- (MRD , 1024, ie, ,1 leukemic cell
per 104 leukocytes), intermediate- ($1024 to ,1022), and high-
level ($1022) thresholds, and were associated with median PFS
estimates of 68.7, 40.5, and 15.4 months, respectively.3 Median
OS was 48.4months in patients with high MRD levels, but was not
reached for patients with low or medium MRD levels.3 In CLL10,4

median PFS was 23.9 months in PB-MRD1 (MRD$ 1024) patients
and 65.2 months in PB-MRD2 patients (MRD , 1024; Roche data
on file). In CLL11,5,16 median PFS by PB-MRD yielded similar
results; median PFSwas 19.4months in PB-MRD1patients andnot
reached in PB-MRD2 patients.5

Correlation of a short-term end point (MRD) with a long-term end
point (PFS) is insufficient to establish surrogacy.17 Assessment of a
potential surrogate end point requires demonstration of the prog-
nostic value of the surrogate for long-term outcome, and evidence
that treatment effect on the surrogate reliably predicts treatment
effect on the long-term outcome.18 Here, we evaluate MRD
response (negative [MRD, 1024] vs positive [MRD$ 1024]) as a
potential surrogate end point for PFS in CLL by developing a
meta-regression model for predicting the treatment effect on
PFS from the treatment effect on MRD. For improved precision,
this analysis is based on a combined analysis of the CLL8,
CLL10, and CLL11 trials.

Methods
Patients
MRD was prospectively assessed in patients participating in the
3 multicenter, randomized, open-label, phase 3 clinical trials
(ClinicalTrials.gov identifiers NCT00281918, NCT00769522,
and NCT02053610). In all 3 studies, MRD was assessed in PB in
all patients and in BM only in patients with complete response (CR).
In CLL8, only patients enrolled in Germany and Austria had MRD
assessments conducted. Trial protocols were approved by the
relevant institutional review board and ethics committee of each
participating center. Patients provided written informed consent
to participate in the trials and to undergoMRD testing. The designs
of the 3 trials have been previously reported.4,5,15 Key results
are summarized in Table 1. The primary end point of each trial was
investigator-assessed PFS. In this analysis, for the noninferiority
CLL10 trial, FCR was considered the experimental arm to be
consistent with the CLL8 experimental arm. Patients were included
in the MRD analysis (MRD-evaluable population) if they have
MRD-PBmeasured at the time of the final response assessment,
within 75 to 195 (CLL8 and CLL10) or 56 to 190 (CLL11) days
after the last day of treatment. If multipleMRD results within this
time window were available, the earliest dated result was used.
Patients with no MRD result but death/progressive disease

shortly after last dose (within 90 [CLL8 and CLL10] or 56 [CLL11]
days of last dose) were counted as MRD1.

MRD assessment
MRD was quantified using an international standardized ap-
proach by flow cytometry analysis in CLL8 and CLL1012,19 and
by allele-specific oligonucleotide real-time quantitative PCR in
CLL11 according to the EuroMRD guidelines13 (supplemental
Methods, available on the Blood Web site). Concordance be-
tween flow-based vs PCR-basedMRD assessment has previously
been demonstrated and quantitative MRD levels assessed by
both techniques were closely correlated, irrespective of therapy.
The sensitivity and specificity of MRD flow was not influenced
by the presence of rituximab in the PB.11 PB samples were taken
at baseline in each trial, and at predefined postbaseline time
points.3-5 See supplemental Methods for further details on MRD
assessment methodology.

BM-MRD samples were taken at final disease staging in patients
achieving CR or CR with incomplete BM recovery (CRi) in each of
the trials. Due to this small and potentially biased subset of patients
with available BM-MRD results, BM-MRD was not included in the
present analysis. A summary of BM-MRD results can be found in
supplemental Table 1, with cross-tabulation comparing PB-MRD
and BM-MRD results in supplemental Table 2.

Prediction model and analysis
To construct a prediction model for PFS, a weighted linear re-
gression model was applied, using the logarithmic PFS HR as the
predicted variable. The (log) relative risk of MRD, that is the (log)
ratio of the MRD2 rate in the experimental vs the control arm, was
used to quantify treatment effect on MRD and was the only pre-
dictor in the model. To obtain sufficient data points to fit a re-
gression model, patients were grouped according to region (6
regions in Germany according to the location of the trial site; CLL8,
CLL10) or country (7 groups; countries with ,45 patients were
grouped according to geographic region of the trial site; CLL11).20

Subgroups were weighted according to the number of PFS
events observed (using the inverse of the square of the standard
error of the logarithmic HR of PFS).

A relative measure of treatment effect on MRD was used to
reflect that different trials may have different proportions of MRD
response, dependent on treatment and patient population. The
fitted model includes an intercept parameter to represent the
expected PFS (log) HR when no difference in MRD2 rates is ob-
served. The “slope” parameter describes how the (log) HR is im-
pacted through changes in the MRD response relative risk. The
model was evaluated using the coefficient of determination (R2),
quantifying the proportion of variability in PFS HR that can be
explainedbyMRD, and 95%confidence limits (CLs) andP values for
the regression coefficients were calculated. A threshold of 5% was
used to conclude statistical significance of model parameters.

As a sensitivity analysis, a regression model based on data from
CLL8 and CLL10 only was also constructed. Furthermore, a model
with the intercept term fixed at a value of 0 was constructed, such
that the predicted HR for PFS is restricted to take a value of 1 (no
difference) when there is no observed treatment effect on MRD.
A further sensitivity analysis was conducted to create a regression
model from CLL8, CLL10 and CLL11 when MRD negativity was
defined taking into account the result in BM. In this model, patients
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were considered asMRD2 if they were negative in both PB and BM,
and all other patients were considered as MRD1. As an out-of-
sample validation measure, the complete model was used to
predict PFS HR in a non-GCLLSG CLL trial (REACH).21

Results
Patient population
Baseline demographics of the intention-to-treat (ITT) population
(supplemental Table3)were similar across the3 trials, acknowledging
the increased age expected in patients with comorbidities in CLL11.

Of 2162 patients randomized in the trials, data for PB-MRD or
early progressive disease or death were available for 393, 337,
and 474 patients in CLL8, CLL10, and CLL11, respectively (MRD-
evaluable population) (Table 1). Demographic characteristics
between the ITT and MRD-evaluable populations (supplemental
Table 4) did not differ substantially across trials, indicating that
the MRD-evaluable population is representative of the ITT popu-
lation. Efficacy end point results were also comparable between
MRD-evaluable and ITT populations in all studies.

Prediction of PFS
The proportion of patients with a PFS event and with MRD2

status is shown in Table 1. Across the trials, PFS was longer and
a larger proportion of patients achieved MRD negativity in the
experimental arm vs the control arm. To assess the association
between MRD and PFS within each trial, a Kaplan-Meier plot for
PFS was provided for MRD2 vsMRD1 patients (Figure 1) and Cox
regression models for PFS, accounting for MRD status with and
without treatment, were fit to the data (supplemental Table 5).
These models indicate a strong association between MRD and
PFS and indicate howmuch of the effect of treatment on PFS can
be captured by MRD. In the CLL8 study, there was no difference
in PFS observed between the arms once PB-MRDwas accounted
for. In the CLL10 and CLL11 studies, PB-MRD captured some,

but not all, of the treatment effect in PFS as indicated by the low
P values for the MRD-adjusted PFS.

The meta-regression model (Figure 2) showed a significant re-
lationship between treatment effects on MRD and PFS; the log
of PFS HR decreased by20.188 (95% CI,20.321 to20.055) for
each unit increase in the log relative risk of MRD (P 5 .008) as
depicted by the regression line. This statistically significant slope
parameter indicates that an increase in MRD response relative
risk between trial arms is associated with improved PFS out-
comes. The negative intercept parameter (20.398; 95%CI,20.617
to20.179), representing the difference in PFS between arms when
there is no difference in PB-MRD response rates, was also signifi-
cantly different from zero (P5 .001) indicating that some treatment
effect remains in PFS when there is no difference in PB-MRD. The
coefficient of determination of the model was R2 5 0.33 indicating
that approximately one-third of variability in the PFS HR can be
explained through the observed MRD results.

Based on this model, predictions of PFS HR using a range of
differences in MRD2 rates are summarized in Table 2. These
predictions suggest that risk of progression or death decreases
as the ratio of MRD response rates increases (ie, a larger relative
difference in MRD response rates is associated with a lower PFS
HR). Because the model is based on subgroups of the 3 studies,
the prediction intervals around future HRs are wide as a result of
the low number of events within each subgroup. The prediction
intervals were also calculated for a hypothetical phase 3 study
with a larger number (170) of observed PFS events, to reflect an
HR of 0.65, showing that the prediction is more precise with
narrower prediction intervals, as shown in Table 2. When de-
signing a future clinical trial based on MRD as a primary end
point, the final column of this table illustrates the prediction
interval that would be expected for the unobserved PFS HR
based on the observed difference in MRD response rates.

Table 1. PFS and MRD in CLL8, CLL10, and CLL11

CLL8 CLL10 CLL11

FC, n 5 184 FCR, n 5 209 BR, n 5 158 FCR,* n 5 179 R-Clb, n 5 245 G-Clb, n 5 229

Patients Previously untreated, physically fit Previously untreated, physically fit;
excluding patients with del(17p)

Previously untreated,
with comorbidities

Median observation time, mo 55 61 41

PFS events, n (%) 119 (65) 107 (51) 104 (66) 87 (49) 220 (90) 163 (71)

PFS HR (95% CI) 0.63 (0.48-0.82) 0.63 (0.47-0.84) 0.44 (0.36-0.54)

MRD negativity,† n (%) 57 (31) 143 (68) 99 (63) 128 (72) 8 (3) 82 (36)

MRD absolute difference, % 37 9 33

MRD relative risk‡ 2.20 1.14 10.38

BR, bendamustine and rituximab; CI, confidence interval; FC, fludarabine and cyclophosphamide; FCR, fludarabine, cyclophosphamide, and rituximab; G-Clb, obinutuzumab plus
chlorambucil; HR, hazard ratio; R-Clb, rituximab plus chlorambucil.

*For the purpose of the model, FCR was considered the experimental arm (noninferiority trial).

†PB at final response assessment within 75 to 195 (CLL8 and CLL10) or 56 to 190 (CLL11) days after the last day of treatment; if multiple values within this time window were available,
the earliest dated result was used; patients with no MRD result but death/progressive disease shortly after last dose (within 90 [CLL8 and CLL10] or 56 [CLL11] days) are included as MRD1

(MRD-evaluable population).

‡Relative risk5MRD2 rate on experimental arm/MRD2 rate on control arm. A value of 0.5 was added to all counts of MRD responders and nonresponders to avoid division by zero.23 For all
trials, PFS results are shown for the MRD-evaluable population. Data as of July 2010 (CLL8), May 2015 (CLL11), September 2016 (CLL10).
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Figure 1. PFS by treatment and MRD response in the
CLL8, CLL10, and CLL11 trials. Panels show (A) the
CLL8 trial, (B) the CLL10 trial (2016 update), and (C)
the CLL11 trial. MRD-evaluable populations in each trial.
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Sensitivity analyses
Model including CLL8 and CLL10 only Both CLL8 and CLL10
trials included patients who were considered physically fit
(Eastern Cooperative Oncology Group performance status 0-1
in CLL8, Cumulative Illness Rating Scale [CIRS] # 6 and creati-
nine clearance $ 70 mL per minute in both CLL8 and CLL10),
whereas CLL11 enrolled only patients with comorbidities (clin-
ically meaningful burden of concomitant illnesses scoring .6
on the CIRS or a creatinine clearance of 30–69 mL per minute).
To assess the potential impact of the heterogeneity of the pa-
tient population on the predictive value of MRD, the meta-
regression model was also developed using data from CLL8
and CLL10 only. Results of this model demonstrate a consistent
relationship between treatment effects onMRD and PFS, with an
intercept of 20.322 and a slope parameter of 20.296 (P 5 .025
and .161, respectively, R25 0.17). Although the slope parameter

is no longer statistically significant, the negative value indicates
that the difference in PFS increases as the relative difference in
MRD2 rates increases.

Model without intercept The meta-regression model de-
veloped herein enforces no restriction on the intercept term,
such that the PFS HR is not constrained to take a value of 1
when there is no difference in MRD response rates. A further
sensitivity analysis applied this constraint, to reflect that
perfect surrogacy of MRD would mean that a lack of dif-
ference in MRD response rates would predict no difference
in PFS. This model further demonstrates a strong relation-
ship between treatment effects on MRD response rate and
PFS, with a slope parameter of 20.381 (P , .0001 and R2 5
0.75, Figure 3), further supporting the findings of the primary
model.

Model based on MRD-BM To assess the impact of the use of
PB in the primary model, a regression model was also con-
structed incorporating data from BM. In this model, patients
were consideredMRD2 if they had negativeMRD status based in
both PB and BM. Results demonstrate a consistent relationship
between treatment effects onMRD and PFS, with an intercept of
20.252 and a slope parameter of 20.379 (P 5 .05 and .0015,
respectively, R2 5 0.44). This model is provided in supplemental
Figure 1.

Model validation
Validation case study on non-GCLLSG data: REACH trial
The REACH trial, which assessed FCR vs fludarabine and cy-
clophosphamide (FC)21 in patients with previously treated CLL,
was used to independently assess the reliability of the model
predictions. MRD was tested in a subset of patients and neg-
ativity was observed in 43% and 31% of patients in the FCR and
FC arms, respectively, giving a relative risk of 1.39. The model
predicted a PFS HR of 0.63, which is consistent with the PFS HR
of 0.65 for the REACH trial, thus supporting the reliability of
model predictions.

2

1.4

0.8

0.4

0.2

32

log (HR) = –0.40 to 0.19x
R2 = 0.33

10

0.6

1.6

1.2
1

PF
S 

ha
za

rd
 ra

tio

MRD log relative risk

Prediction 95% CL mean 95% CL predicted

CLL8 CLL10 CLL11

Figure 2. Meta-regression based on combined CLL8, CLL10, and CLL11 patient
populations (MRD-evaluable populations). Orange circles, CLL8; blue circles,
CLL10; red circles, CLL11. Circle size in the figure reflects weighting of each subgroup
to the overall model; those with least variability in PFS HR have the largest circle.
Clustering of circles by trial reflects overall treatment effect for MRD and PFS in
the trials.

Table 2. Predictions based on the combined CLL8, CLL10, and CLL11 meta-regression model

Ratio of MRD2 rates,
relative risk*

Log of
relative risk

Predicted
PFS HR

Individual
prediction,† 95% CL

Mean prediction,‡
95% CL

Prediction in a phase 3
study,§ 95% CL

2 0.69 0.59 0.32, 1.09 0.50, 0.69 0.43, 0.81

1.75 0.56 0.60 0.33, 1.12 0.51, 0.71 0.44, 0.83

1.5 0.41 0.62 0.33, 1.16 0.52, 0.74 0.45, 0.86

1.37 0.31 0.63 0.34, 1.18 0.52, 0.76 0.45, 0.88

1.25 0.22 0.64 0.34, 1.20 0.53, 0.78 0.46, 0.90

1.2 0.18 0.65 0.35, 1.21 0.53, 0.79 0.46, 0.91

1 0 0.67 0.36, 1.26 0.54, 0.84 0.47, 0.95

*MRD2 rate in experimental arm/MRD2 rate in control arm.

†Prediction for observation of PFS HR in a single trial.

‡Prediction for PFS HR underlying mean value.

§Prediction for observation of PFS HR in a new study with 170 PFS events (reflects a target HR of 0.65).
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Discussion
The present analysis was conducted to determine whether the
treatment effect on MRD response in PB at the end of induction
treatment with chemoimmunotherapy can predict treatment
effect on PFS in patients with CLL. To this end, we used PB-MRD
data from 3 randomized, phase 3 trials to determine the strength
of association between treatment effects using a meta-regression
model. A statistically significant relationship between treatment
effect on MRD and treatment effect on PFS was observed. The
R2 value measures how close the observed data are to the lin-
ear regression model, providing an estimate of how much of
the variability in PFS HR can be explained through knowledge
of the MRD response rate ratio. The value of 33% indicates
that approximately one-third of the variability of the observed
PFS HRs can be explained by the model. There are 2 factors to
consider in the interpretation of this R2 value: the variability in
the data available for analysis and the significance of model
parameters. The model includes data from 3 studies with very
different treatment comparisons that are further split into smaller
subgroups to enable fitting of the model, an approach discussed
by Renfro et al.22 The variability in observed treatment effects
among the small subgroups is therefore apparent and reflected
in the wide CIs for future predictions. However, when the model
is used to predict treatment effect in a new phase 3 trial, it is
expected that there will be a larger number of PFS events ob-
served leading to more precise prediction of the PFS HR.22

Additionally, the significance of model parameters indicates
that even with the observed variability the relationship between
the treatment effects on MRD response and PFS is very strong.
The significant intercept term of the model indicates that some
treatment effect in PFS remains when there is no difference in
PB-MRD response rates between treatment arms. As can be
seen from Figure 2, such a value lies at the extreme of the
observed data and should therefore be interpreted with caution.
Sensitivity analysis constraining the intercept term of the model
to be zero, such that no difference in MRD response rates
predicts no difference in PFS, supports the relationship between

treatment effects on MRD and PFS. However, because such a
constraint is artificial, further data are required to better quantify
the remaining treatment effect in PFS when there is no observed
difference in MRD response rates. Successful out-of-sample vali-
dation of the model was achieved in the REACH trial with close
prediction of the PFS HR.

Data from the CLL8 study also support the hypothesis of MRD
response as a surrogate end point for OS.3 Meta-analysis of OS
within the 3 studies included herein was thought to be limited
by the shorter follow-up period in studies CLL10 and CLL11,
with low numbers of deaths preventing meaningful conclusions.
Therefore, OS was not explored.

Although BM is potentially more sensitive to MRD detection
compared with PB,3,5,9,12 BM assessment is limited by the patient
burden of obtaining a sample and therefore less practical. Within
each of the 3 trials, assessment of BM-MRD was performed at
the time of final response staging only in patients achieving
suspected CR/CRi, representing a biased subset of patients and
preventing clear interpretation. Additionally, low proportions
of patients achieving BM-MRD negativity implies that the pos-
sibility of meta-regression modeling of such small samples is
unlikely. Therefore, BM-MRD data were not considered a more
reliable assessment of surrogacy and were not included in
the current analysis. Nonetheless, when each of the 3 studies
was analyzed using Cox regression analyses, BM-MRD status was
also found to be a significant independent prognostic factor for
PFS (supplemental Table 5). Furthermore, a sensitivity model using
BM-MRD status was consistent with the primary model based on
PB-MRD and suggests that use of PB-MRD does not hamper the
relationship between treatment effects on MRD and PFS.

In the CLL10 study, the PFS Cox regression and Kaplan-Meier
curves indicate a small difference in PFS between BR and FCR
in PB-MRD2 patients, with those treated with FCR having a
slightly better long-term outcome. Although this difference was
not observed when assessing BM-MRD, the lack of a statistically
significant difference in outcomes based on BM-MRD may be
due to the small patient numbers, and/or the bias introduced
in this analysis through collection of BM-MRD samples only
from responding patients. Measurements based on PB-MRD
are taken from an unrestricted patient population, including
both responders and nonresponders, making this a more rep-
resentative sample to compare PFS between treatment groups.
Furthermore, based on the baseline characteristics of patients
included in the CLL10 study, the difference in outcome forMRD2

patients is likely impacted by an imbalance in the proportion of
patients with IGHV mutation. In the FCR arm, 41.9% of patients
in the MRD-evaluable population had a mutation, compared
with 31.6% in the BR arm. Because IGHV mutation is a recog-
nized prognostic factor for CLL, it is possible that this has had
a minor impact on the results from this study. Indeed, Cox
regression analysis for PFS adjusted for both IGHV status at
baseline and MRD in PB indicated that there was no longer a
statistically significant treatment difference between FCR and
BR at the 5% level (P 5 .074). This suggests that the IGHV muta-
tion imbalance is contributing to the apparent difference in long-
term outcome between treatments. Therefore, the analysis of
PB-MRD in CLL10, when adjusting for baseline imbalances,
provides results that support the surrogacy relationship between
PB-MRD and BM-MRD.
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Figure 3. Meta-regression sensitivity analysis restricting PFS HR to be 1 when
there is no difference in MRD rates. Based on combined CLL8, CLL10, and CLL11
patient populations (MRD evaluable populations). Orange circles, CLL8; blue circles,
CLL10; red circles, CLL11. Circle size in the figure reflects weighting of each subgroup
to the overall model; those with least variability in PFS HR have the largest circle.
Clustering of circles by trial reflects overall treatment effect for MRD and PFS in the
trials.
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The trials selected for this analysis differed with respect to the
patient populations and treatments under investigation; CLL8
and CLL10 enrolled patients who were considered physically fit
and CLL11 comprised patients with comorbidities. Additionally,
5 different chemoimmunotherapy regimens were evaluated in
these trials. However, to obtain a model that is generalizable to
a wide range of clinical settings and to avoid excessive ex-
trapolation, it was believed beneficial to have some level of
heterogeneity between trials. Sensitivity analyses including only
CLL8 and CLL10 data confirmed the relationship between
treatment effects on MRD and PFS. The similarity of the results
supports the use ofMRD as a surrogate end point for PFS in future
CLL clinical trials that contain induction treatment, using chemo-
immunotherapies with a mechanism of action similar to those
investigated in these studies. Inclusion of CLL data from patients
with comorbidities did not impact the model conclusions and
the added data from the CLL11 trial increased the reliability of
the model.

As expected, several limitations may be considered. First, the
wide CIs around the PFS prediction show that additional data
are required to define a more precise quantitative relationship
between treatment effects on PFS and MRD, although these
wide CIs would be reduced if there were a higher number of PFS
events observed in a future study. Second, although external
validation of the model using REACH data suggests general
applicability across treatment regimens and patient character-
istics, the data used to generate the model were from a single
research group (GCLLSG) and 3 clinical trials only. Though data
were split into subgroups to generate sufficient data points
and facilitate a robust regression analysis, the use of additional
trials to serve as individual data points would avoid over-
representation of trials with specific baseline and treatment char-
acteristics. Importantly, use of the regression model to predict
the PFS HR within key prognostic subgroups in each clinical trial
(based on IGHV mutation, age [,65 years vs $65 years] and
gender), demonstrated good agreement with the observed HRs
in those subgroups, further supporting that the model holds
in patients with different baseline disease and demographic
characteristics. Third, the analysis assessed MRD at the end of
induction treatment, in patients who did not receive any post-
induction therapy. The effect of maintenance treatment on the
ability of MRD to predict PFS and the effect of treatments that
are administered continuously until disease progression remain
unknown. The effect of treatments that have a different mech-
anism of action than those studied in this analysis, such as kinase
inhibitors, also remains unknown. Finally, it should be noted that
the model was not designed to predict the PFS of individual
patients, but rather to facilitate design of randomized trials using
MRD as a surrogate end point to predict treatment effect on PFS.
Further work to investigate the relationship between treatment
effects on MRD and PFS for agents that have a different mech-
anism of action, such as small-molecule inhibitors administered
continuously until disease progression, could be considered.

In summary, the present MRD meta-regression model supports
the use of MRD as a surrogate primary end point in randomized
CLL clinical trials. Future analyses will aim to determine a more
precise quantitative relationship between treatment effect on
MRD and treatment effect on PFS while also assessing the
general applicability of this relationship across CLL treatment
regimens and patient populations.

Acknowledgments
The authors would like to acknowledge the patients and their families,
investigators, trial coordinators, and support staff; laboratories for MRD
measurement (Second Department of Medicine, University of Schleswig-
Holstein, Kiel; Department of Immunology, Erasmus MC, University
Medical Center, Rotterdam); the German CLL Study Group; the rituximab
and obinutuzumab molecule development teams at F. Hoffmann-La
Roche Ltd; Otto Schaub (DATAMAP GmbH) for statistical programming
support, the EuroMRD Consortium for MRD-PCR guidelines and quality
assessment; and Anne Nunn (Envision Pharma Group) for editorial
support.

Statistical programming and editing were funded by F. Hoffmann-La
Roche Ltd.

Authorship
Contribution: G.F.-R., V.G., and M.H. designed the research; K.F., B.E.,
V.G., J.J.M.v.D., M.R., S.B., andM.H. performed the research; J.J.M.v.D.,
M.R., S.B., A.W.L., and M.K. contributed reagents and analytical tools;
J.B. collected data; N.D., P.D., C.W., R.M.-Z., G.F.-R., and J.B. analyzed
and interpreted the data; N.D., P.D., and C.W. performed statistical
analyses; N.D., P.D., C.W., R.M.-Z., andG.F.-R. wrote themanuscript; and
all authors reviewed and approved the manuscript.

Conflict-of-interest disclosure: N.D., P.D., C.W., and G.F.-R. have been
employed by and own stock in F. Hoffmann-La Roche. R.M.-Z. has been
employed by F. Hoffmann-La Roche. J.B. received honoraria and travel
support from Roche. K.F. received travel grants from Roche. B.E. received
research funding from Roche, AbbVie, Gilead Sciences, and Janssen
Pharmaceuticals; has had a consulting/advisory role for AbbVie, Roche,
Gilead, Janssen, and Novartis; and been on speakers’ bureaus for Roche,
Janssen, Gilead, and Celgene. V.G. received a research grant from Roche;
was an advisory board member or had an advisory role for Roche, Gilead,
and Janssen; received speaker honoraria from Roche, GlaxoSmithKline,
Mundipharma, and Bristol-Myers Squibb; and received travel grants from
Roche and Janssen. J.J.M.v.D. received: consultancy fees from Roche;
patents and royalties fromBDBiosciences, Cytognos, DAKO, InVivoScribe,
and Immunostep; and laboratory services from Roche and BD Biosciences.
M.R. received research funding from Roche and was a member of the
Roche Board Of Directors and Advisory Board. S.B. received research
funding from Roche, AbbVie, and Celgene, and received honoraria from
Roche and AbbVie. A.W.L. received research funding from Roche and
patents and royalties from InVivoScribe Technologies. M.K. received re-
search funding from Gilead Sciences, Roche, and Mundipharma; received
honoraria from AbbVie, Roche, and Mundipharma; and had a consulting/
advisory role for AbbVie and Roche. M.H. was an advisory board mem-
ber or had an advisory role for, and received honoraria and research
support from, AbbVie, Amgen, Celgene, Roche, Gilead, Janssen, and
Mundipharma.

ORCID profile: N.D., 0000-0002-8537-4962.

Correspondence: Natalie Dimier, Roche Products Limited, Hexagon Pl,
6 Falcon Way, Shire Park, Welwyn Garden City, Hertfordshire AL7 1TW,
United Kingdom; e-mail: natalie.dimier@roche.com.

Footnotes
Submitted 21 June 2017; accepted 29 November 2017. Prepublished
online as Blood First Edition paper, 18 December 2017; DOI 10.1182/
blood-2017-06-792333.

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

A MODEL FOR MRD AS SURROGATE END POINT IN CLL blood® 1 MARCH 2018 | VOLUME 131, NUMBER 9 961

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/9/955/1406695/blood792333.pdf by guest on 18 M

ay 2024

http://orcid.org/0000-0002-8537-4962
mailto:natalie.dimier@roche.com
https://doi.org/10.1182/blood-2017-06-792333
https://doi.org/10.1182/blood-2017-06-792333
http://www.bloodjournal.org/content/131/9/943


REFERENCES
1. Fischer K, Bahlo J, Fink AM, et al. Long-term

remissions after FCR chemoimmunotherapy
in previously untreated patients with CLL:
updated results of the CLL8 trial. Blood. 2016;
127(2):208-215.

2. Hallek M, Cheson BD, Catovsky D, et al; In-
ternational Workshop on Chronic Lympho-
cytic Leukemia. Guidelines for the diagnosis
and treatment of chronic lymphocytic leuke-
mia: a report from the International Workshop
on Chronic Lymphocytic Leukemia updating
the National Cancer Institute-Working Group
1996 guidelines. Blood. 2008;111(12):
5446-5456.
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