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Myelodysplastic syndromes (MDSs) are hematopoietic stem cell
disorders characterized by ineffective hematopoiesis and high
rates of leukemic transformation. The only curative treatment is
stem cell transplantation; therefore, new therapies are needed.1

Recent studies suggest that enhanced Toll-like receptor
(TLR) signaling may contribute to the pathogenesis of MDS.2-10

Specifically, the expression of TLR2 is markedly elevated in the
CD341 cells of MDS patients compared with healthy controls,3,11

and TLR2 stimulation of CD341 cells in vitro impairs erythroid
differentiation.3 Based on these data, a clinical trial using a TLR2
antagonist as a second-line treatment of patients with lower risk
MDS is ongoing (OPN-305, Opsona Therapeutics). However,
despite growing interest in TLR2 inhibition as a therapeutic
strategy, the role of TLR2 in MDS is not clear. Moreover, in-
creased expression of TLR2 is actually associated with lower risk
disease and improved overall survival,3,11 raising the question of
whether TLR2 may have a protective role in MDS.

To elucidate the contribution of TLR2 signaling to MDS path-
ogenesis, we used a well-characterized mouse model of MDS
(expressing the NUP98-HOXD13 fusion from the hematopoietic
Vav-1 promoter, also known asNHD13mice). Thesemice exhibit
many features of humanMDS, including bonemarrow dysplasia,
cytopenias, and increased apoptosis of hematopoietic stem and
progenitor cells (HSPCs) and die of acute leukemia or severe
cytopenias.12-15 Notably, similar to the CD341 cells of patients
with MDS, the HSPCs (lineage2 c-Kit1 Sca-11 [KSL] cells) of
NHD13 mice display elevated TLR2 expression and signaling
compared with wild-type (WT) controls (Figure 1A-B; supple-
mental Figure 1A-C, available on the Blood Web site). In this
study, the NHD13 mice were crossed to mice lacking TLR2, and
the effects of TLR2 loss on the development of cytopenias,
leukemogenesis, and survival were assessed. In addition, the
contribution of TLR2 to premalignant HSPC cycling, apoptosis,
and DNA damage accumulation were determined (see supple-
mental Materials for a description of the methods used).

To begin, the NHD13 mice were bred to Tlr22/2 mice (NHD13;
Tlr21/2 3 Tlr21/2) to generate 4 groups: NHD13;Tlr22/2, NHD13;
Tlr21/1, Tlr22/2, andWT (NHD13-;Tlr21/1). Surprisingly, loss of TLR2
was associated with worse survival (P 5 .03 comparing NHD13;
Tlr22/2 to NHD13;Tlr21/1; Figure 1C; supplemental Figure 2A;
supplemental Table 1), and did not confer an improvement in

peripheral cytopenias (supplemental Figure 2B-D). In addition, we
more recently crossed the NHD13 mice to mice lacking MyD88,
an adapter required for most TLR signaling, including TLR2, and
found an even more significant acceleration of death (P , .0001
comparing NHD13; MyD882/2 to NHD13 and P , .01 comparing
NHD13;MyD882/2 toNHD13; Tlr22/2; supplemental Figure 2A,E).
As shown in supplemental Figure 2A and supplemental Table 1,
the most common causes of death were leukemia and myelo-
proliferative disorder–like leukemia. Of note, although we de-
tected high levels of surface TLR2 on premalignantNHD13;Tlr21/1

HSPCs, this expression was often markedly reduced on the blasts
of leukemic mice (Figure 1D-E), suggesting that TLR2 is frequently
downregulated at some point during disease progression. Thus,
TLR signaling may play a protective role against leukemic trans-
formation in the NHD13 mice.

To investigate the potential mechanism by which loss of TLR
signaling accelerates death in NHD13 mice, the KSL cells of
preleukemic young adultNHD13;Tlr21/1 andNHD13;Tlr22/2mice
were evaluated for cell-cycle status, cell death, and DNA damage.
Previous studies have shown that the KSL population in NHD13
mice contains the transplantable disease-initiating cells,14,16 and
displays both enhanced cycling and apoptosis compared with WT
controls.13,17 Although loss of TLR2 in the NHD13 mice did not
confer a significant difference in KSL cycling (Figure 2A; supple-
mental Figure 3), it did lead to a loss of Annexin V1 KSL cells in
the bone marrow (Figure 2B; supplemental Figure 4) and an ac-
cumulation of c-Kit1 lineage2 cells in the liver (supplemental
Figure 5). An assessment of Caspase-1 and Caspase-3/7 activities
showed a significant reduction in activated Caspase-1 in the KSL
cells of NHD13;Tlr22/2 mice compared with NHD13;Tlr21/1 mice
(Figure 2C-D), suggesting that TLR2 specifically promotes
inflammasome-dependent cell death in theNHD13mice. Further
supporting a role for TLR2 signaling in the death of premalignant
NHD13 HSPCs, RNA sequencing of sorted KSL cells demon-
strated an enrichment of apoptosis-related gene pathways in the
NHD13 compared with the NHD13;Tlr22/2 cells (supplemental
Table 2). To determine whether the TLR2-associated cell death
is cell autonomous or cell-nonautonomous, chimeric animals
were generated by transplanting a mixture of NHD13;Tlr21/1

and NHD13;Tlr22/2 bone marrow cells into lethally irradiated
WT recipients (supplemental Figure 6). Analysis of these chi-
meras revealed that the enhanced apoptosis of NHD13 HSPCs
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requires cell-autonomous TLR2 signaling (ie, only cells expressing
TLR2 have elevated Annexin V staining; Figure 2E-F). Finally, the
accumulated HSPCs in the NHD13;Tlr22/2 mice show elevated
levels of g-H2AX staining compared with WT controls (Figure 2G),
indicating that TLR2 loss promotes the survival of damaged
premalignant HSPCs.

Together, these data suggest that cell-autonomous TLR2 sig-
naling promotes the death of premalignant HSPCs in NHD13
mice, and that complete loss of TLR2 leads to worse survival
(with the most common cause of death being leukemia or
myeloproliferative disorder–like leukemia). These findings are
consistent with patient data demonstrating that higher TLR2
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Figure 1. Loss of TLR2 accelerates leukemogenesis in theNHD13mice. (A) Representative flow plots of TLR2 surface expression on the bone marrow lineage2 c-Kit1 Sca-11

(KSL) cells of WT and NHD13 mice. A TLR2 FMO control was included as a negative control. These data are quantified in panel B, which shows the MFI values for each of the
samples analyzed (n5 6 mice/group, age 6-8 weeks). (C) Kaplan-Meier survival curve of NHD13;Tlr21/1 (n5 16), NHD13;Tlr22/2 (n5 23), Tlr22/2 (n5 16), and WT mice (n5 7).
*P5 .03 by the Gehan-Breslow-Wilcoxon test and .07 by log-rank (Mantel-Cox) test comparingNHD13;Tlr22/2 withNHD13;Tlr21/1. (D) TLR2 surface expression was assessed by
flow cytometry on bone marrow KSL cells of 6- to 8-week-old (preleukemic) WT vs NHD13mice (left) and the bone marrow blast cells of leukemic NHD13 mice compared with
the c-Kit1 cells of healthy WT controls (right). A TLR2 FMO was included as a negative control. Data for each mouse analyzed are plotted in panel E, with each data point
representing theMFI of theNHD13 cells (KSL cells or blasts) normalized to theMFI of WT cells (KSL cells or c-Kit1 cells for preleukemic HSPCs and blasts, respectively) run at the same
time. n 5 6-7 mice/group. Error bars represent mean 6 standard error of the mean. FMO, fluorescence minus one; MFI, median fluorescence intensity.
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expression is associated with increased HSPC apoptosis, lower
risk disease, and longer survival.3,11 Elevated HSPC apoptosis is
characteristic of low-risk MDS, and is lost as the disease prog-
resses to leukemia and cells overcome pro-death signals.18 The
lack of surface TLR2 on transformed cells in NHD13mice further
supports the idea that TLR2 signaling contributes to this ele-
vated death of premalignant MDS cells. Thus, although recent
studies have demonstrated an association between high TLR2
expression and signaling and MDS, prompting enthusiasm for
TLR2 as a therapeutic target in this disease, the data presented

here caution that complete inhibition of TLR2 signaling may
expedite leukemogenesis. Although these data are based on a
single MDS model, it nonetheless suggests that this pathway
may in fact serve a protective role against transformation,
stimulating the death of damaged premalignant HSPC. Studies
are under way to determine whether TLR2 signaling contributes
more broadly to premalignant HSPC death and protection
against transformation in other genetic backgrounds. In addi-
tion, future studies are needed to define the specific down-
stream effectors of TLR2 signaling contributing to HSPC death in
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Figure 2. Cell-autonomous TLR2 signaling promotes apoptosis of preleukemic HSPCs. The bone marrow KSL cells of 6- to 8-week-old WT, Tlr22/2, NHD13;Tlr21/1, and
NHD13;Tlr22/2 mice were analyzed by flow cytometry. (A) Percent of KSL cells in the S/G2/M phase of the cell cycle as determined by Ki-67 and 49,6-diamidino-2-phenylindole
staining (n 5 4-8 mice/group). (B) Bone marrow KSL cells from the same groups of mice were analyzed for Annexin V staining by flow cytometry. Shown are the percentage
of Annexin V1 KSL cells (n 5 6-7 mice/group). (C) Caspase-1 and (D) Caspase-3/7 activities were assessed from sorted KSL cells as described in the supplemental Methods
(n 5 3-8 mice/group). (E) Chimeras (containing a mixture of NHD13;Tlr21/1 and NHD13;Tlr22/2 bone marrow cells) were generated as described in supplemental Figure 6,
and Annexin V flow cytometry staining was performed on bone marrow. Shown is a representative flow analysis of the KSL cells of 1 of the chimeric animals. These data
are quantified in panel F, which shows the MFI of Annexin V staining on the KSL cells from each of the genotypes in 8 total chimeras analyzed. (G). g-H2AX staining was
performed on the bone marrow KSL cells. Left, a representative flow plot comparing g-H2AX levels between young adult (6-8 weeks old) WT (NHD13-;Tlr21/1), NHD13, and
NHD131;Tlr22/2 animals. Right, each data point represents the MFI for KSL cells from individual mice from each of the WT, NHD13, and NHD131;Tlr22/2 cohorts.
n 5 8 mice/group performed over 4 independent experiments. *P , .05; **P , .01, ***P , .001, ****P , .0001 by an unpaired Student t test or 1-way analysis of variance.
Error bars represent mean 6 standard error of the mean.
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MDS, as well as to identify factors that regulate the expression of
TLR2 in premalignant and transformed HSPCs and determine
the timing of TLR2 downregulation during disease progression.
Finally, while this data supports a role for cell-autonomous TLR2
signaling in regulating premalignant HSPC death, it does not
rule out a potential contribution of cell-nonautonomous TLR2
signaling to the regulation of premalignant HSPCs. Studies using
conditional deletion of TLR2 from different hematopoietic and
stromal bone marrow populations are under way to address
the contribution of TLR2 signaling from the microenvironment
to the pathogenesis of MDS.
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