
turnover in which circulating proteins are
constantly subjected to the activity of
glycosidases, including sialidases that
remove sialic acids.7 Thus, the longer a
protein circulates in plasma, the more
hyposialylated it will become. In the case of
VWF, this would mean that hyposialylated
VWF becomes a target for MGL, con-
tributing to the removal of aged VWF
from the circulation (see figure). As such,
MGL would be different from other mac-
rophage receptors, like LRP1 (known
to interact with VWF in a shear stress–
dependent manner) and scavenger-
receptor AI (recently reported to contribute
to basal VWF clearance).8,9 The data
presented by Ward et al further indicate
that MGL would have a larger contri-
bution to the clearance of hyposialylated
VWF as compared with the AMR.

A final point of interest relates to the in-
creased clearance of VWF that has been
observed in VWD-type 1. Recent studies
showed that specific mutations may in-
crease the binding of such VWF mutants
to LRP1 and/or scavenger-receptor AI.9,10

In addition, another study also showed
that many VWD-type 1 mutations are
associated with reduced sialylation of
O-linked glycan structures.5 In light of the
report by Ward et al, it now seems con-
ceivable that the increased clearance
observed in VWD-type 1 patients can
originate from premature binding of these
mutants to MGL, due to hyposialylation of
the O-linked glycan structures (see figure
fast lane). In this regard, it would be of
interest to investigate whether polymor-
phisms in the gene encoding MGL are
associated with modified VWF levels, par-
ticularly in VWD-type 1 patients. Another
relevant avenue to explore would be the
role of MGL in the clearance of FVIII. Is
MGL-mediated clearance limited to VWF,
or does it also include the VWF/FVIII
complex? And if so, would making
VWF resistant to desialylation improve
its half-life and that of FVIII? Upon
further studies on these matters, it is
without doubt that MGL is another
player in the complicated pathway of
VWF clearance.
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HSCT for PID:
not just for children
Blachy J. Dávila Salda~na | Children’s National Health System

In this issue of Blood, Fox et al summarize their experiencewith allogeneic bone
marrow transplantation for adults with a variety of primary immunodeficiencies,
describing excellent outcomes with reduced-intensity conditioning.1

The number of adults diagnosed with pri-
mary immunodeficiencies (PIDs) continues
to increase.2 This is likely due to a variety of
factors, including improved supportive
care of those without definitive treatment
in childhood, recognition of milder clinical
phenotypes, and marked progress in our
ability to identify genetic defects. Although
diagnostic methods have greatly improved,
treatment considerations have been slow
to follow. Most of these diseases are not
typical adult indications for allogeneic
transplantation. Long-term natural his-
tory is lacking for many newly identified
disorders (though life expectancy is di-
minished for those diagnosed early in life)
such as chronic granulomatous disease
(CGD).3 Moreover, most adult patients
with PIDs have substantial comorbidities,4

as defined by the hematopoietic cell
transplantation–comorbidity index (HCT-CI).
These patients are therefore considered
to be at high risk for transplant-related
mortality, though there are few data

specific to this population to corroborate
the presumption.

Although there is a tremendous amount of
new data showing the success of trans-
plantation in pediatric-onset PIDs, adult
reports are scarce. One of the first re-
ports of a significant number of adults with
PIDs undergoing transplantation was for
patients affected with CGD.5 It included
14 patients older than 17 years, show-
ing excellent survival and very low rates
of graft-versus-host disease and graft
failure. Similar outcomes have been
obtained by other teams treating adult
CGD.6 However, a summary on patients
with severe complications attributed
to common variable immunodeficiency
undergoing transplantation7 showed very
poor outcomes, mostly due to transplant-
associated mortality.

With 29 adult subjects and over 10 dis-
eases represented, the cohort described
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by Fox et al is the biggest to date. De-
spite its heterogeneity, survival outcomes
are impressively good, with resolution of
most clinical indicators for transplant
despite instances of mixed chimerism.
Interestingly, the authors note that
HCT-CI scores did not correlate with pa-
tient outcomes. The previously summarized
reports4,5 share this conclusion. Although
HCT-CI has been validated in patients
with hematological malignancies and in
pediatric populations, it has not been
evaluated in patients with PIDs.

The results of this article argue that allo-
geneic bone marrow transplantation can
be safely performed, with good results, in
young adult patients with PIDs and that
the presence of multiple comorbidities
should not deter from providing definitive
treatment. It remains to be determined
whether all PIDs will be as responsive to
transplant, as well as what level of donor

chimerism will be required for full reso-
lution, but this is a notable first step in
opening the door for further studies.
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