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KEY PO INT S

l Anti-GPIba antibodies
exert a pulling force on
platelet GPIba by
crosslinking platelets
under shear flow.

l A mechanical feature
of an anti-GPIba
antibody, rather than
affinity or epitope,
determines ability to
induce Fc-independent
clearance.

Immune thrombocytopenia (ITP) is a prevalent autoimmune disease characterized by
autoantibody-induced platelet clearance. Some ITP patients are refractory to standard
immunosuppressive treatments such as intravenous immunoglobulin (IVIg). These patients
often have autoantibodies that target the ligand-binding domain (LBD) of glycoprotein Iba
(GPIba), a major subunit of the platelet mechanoreceptor complex GPIb-IX. However, the
molecularmechanismof this Fc-independent platelet clearance is not clear. Here, we report
that many anti-LBD monoclonal antibodies such as 6B4, but not AK2, activated GPIb-IX
in a shear-dependent manner and induced IVIg-resistant platelet clearance in mice. Single-
molecule optical tweezer measurements of antibodies pulling on full-length GPIb-IX
demonstrated that the unbinding force needed to dissociate 6B4 from the LBD far exceeds
the force required to unfold the juxtamembrane mechanosensory domain (MSD) in GPIba,
unlike the AK2-LBD unbinding force. Binding of 6B4, not AK2, induced shear-dependent
unfolding of the MSD on the platelet, as evidenced by increased exposure of a linear

sequence therein. Imaging flow cytometry and aggregometry measurements of platelets and LBD-coated platelet-
mimetic beads revealed that 6B4 can sustain crosslinking of platelets under shear, whereas 6B4 Fab and AK2 cannot.
These results suggest a novel mechanism by which anti-LBD antibodies can exert a pulling force on GPIb-IX via
platelet crosslinking, activating GPIb-IX by unfolding its MSD and inducing Fc-independent platelet clearance. (Blood.
2018;131(7):787-796)

Introduction
Immune thrombocytopenia (ITP) is a common bleeding disorder
characterized by increased platelet clearance, primarily via anti-
platelet autoantibodies.1-3 Thrombocytopenia leads to an in-
creased risk of bleeding and potentially fatal hemorrhage.4

Common first-line treatments for ITP include intravenous im-
munoglobulin (IVIg) and corticosteroids.5,6 However, it is esti-
mated that 20% of patients are refractory to these treatments.7

The underlying mechanism of refractoriness is not entirely clear
and, to date, there are no clinical tests that can make an accurate
prognosis for a given ITP treatment.5,8

Autoantibodies that target platelet surface proteins are the primary
factors leading to excessive platelet clearance in ITP.9,10 Common
targets of these antibodies are integrinaIIbb3 and glycoprotein Ib-
IX (GPIb-IX),11,12 the 2 most highly expressed receptor complexes
on the platelet surface. GPIb-IX is a highly integrated complex
consisting of GPIba, GPIbb, and GPIX subunits.13 GPIba contains,

starting from its N terminus, a ligand-binding domain (LBD) that
binds von Willebrand factor (VWF) and other ligands, a heavily
glycosylated macroglycopeptide region, a mechanosensory do-
main (MSD), a single-span transmembrane domain, and a cyto-
plasmic domain (Figure 1A). Notably, there is correlation between
refractoriness to IVIg or steroids and the presence of anti-GPIb-IX
antibodies in patient sera.11,12,14 In addition, infusion of mono-
clonal antibodies (mAbs) targeting the N-terminal LBD of GPIba
causes fast depletion of nearly all platelets from animals.15-18

Clearance by these anti-LBD mAbs is Fc independent and largely
unaffected by IVIg treatment,19,20 consistent with findings that
these mAbs can directly activate GPIb-IX, leading to intracellular
signaling, particularly deglycosylation and subsequent platelet
clearance by hepatocytes or macrophages.21-23 Many studies
corroborate a remarkable similarity between patient sera anti-
bodies that target GPIb-IX and murine mAbs that target GPIb-IX.
Markers of GPIb-IX activation, especially platelet desialylation,
have been seen in mAb-induced ITP as well as patient sera,
and the extent of desialylation correlates with patient response to
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first-line treatments.4,6,21 Studies using mAbs19,20 underscore the
relationship between ITP mediated by anti-GPIb-IX antibodies
and resistance to IVIg or steroids, which has also been docu-
mented in patients.11,12,14

Despite these findings, the mechanism by which these anti-
bodies induce GPIb-IX signaling has yet to be elucidated. Re-
garding the mechanism, 4 key observations have coalesced from
the literature. First, the F(ab9)2 but not the Fab fragment of an anti-
LBDmAb can induce platelet clearance.17,19 This indicates that the
bivalent structure of the antibody is required for activating GPIb-
IX. Second, many anti-LBD antibodies clear platelets rapidly,
regardless of their epitope in the LBD.15-18,21 This implies that the
mechanism of clearance likely does not involve steric occlusion of
any binding pockets or regions of interest within the LBD itself.
Third, most mAbs targeting the LBD, but not other regions in
GPIb-IX, including the juxtamembrane portion of GPIba, induce
Fc-independent clearance (Figure 1A).15,24-26 This indicates that
there is something particular about the LBD that allows antibodies
targeting this region to activate the receptor and/or clear platelets
in an Fc-independent manner. Finally, although almost all anti-
LBD antibodies induce platelet clearance, 1 anti-LBD mAb,
VM16D, does not (Figure 1A).22 To date, no model has been
proposed to fully explain these 4 observations.

It has long been documented that stirring or shear flow is re-
quired for triggering ristocetin-induced VWF-mediated platelet
aggregation.27 Recently, a juxtamembrane MSD was identified
in GPIba.28 Under physiological shear, binding of soluble VWF
induces MSD unfolding on the platelet, which leads to intra-
cellular signaling events, including desialylation, P-selectin ex-
pression, and subsequent platelet clearance.29 Moreover,
transfected cells and murine platelets that express mutant GPIb-
IX complexes in which GPIba contains an already unfolded MSD
exhibit constitutive ligand-free GPIb-IX signaling, and the mu-
tant platelet is cleared much faster than the wild-type platelet.29

In this study, we report evidence that, like VWF, anti-LBD mAbs
induce platelet signaling in a shear-dependent manner that
entails MSD unfolding, which leads to a new mechanomolecular
mechanism to account for all 4 aforementioned observations.
Our findings have mechanistic implications for GPIb-IX signal-
ing, particularly in the context of IVIg-resistant ITP, as well as
clinical implications in other thrombocytopenic diseases.

Methods
Mice
Transgenic mice expressing only human GPIba (hTg) have been
previously described.30 All experimental procedures were ap-
proved by the Institutional Animal Care and Use Committee of
Emory University and were carried out in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals. In vitro characterization and in vivo clear-
ance measurements were performed as described in the sup-
plemental Methods (available on the Blood Web site).

Human platelets
All procedures using donor-derived human platelets were
approved by the Institutional Review Boards at Children’s
Healthcare of Atlanta/Emory University and Qilu Hospital. Flow
cytometry, aggregometry, and uniform shear treatment were

performed as previously described31,32 or as described in the
supplemental Methods.

Statistical analysis
Statistical analysis was performed using Graphpad Prism soft-
ware. Unless otherwise indicated, significance was determined
by one-way analysis of variance or Student t test. Flow cytometry
data were analyzed by using FlowJo, BD FACSDiva (BD Bio-
sciences), and IDEAS software (Amnis), as indicated. Differences
were considered statistically significant when P , .05.

Results
Activation of GPIb-IX by anti-LBD mAbs is epitope
independent but shear dependent
A previous report suggested that antibodies targeting an
N-terminal portion of the LBD activate GPIb-IX more readily
than those targeting other epitopes in the LBD.22 To this end, we
analyzed the signaling abilities of several representative anti-LBD
mAbs. mAbs AN51 and AK2 bind to the N-terminal portion of
the LBD, 6B4 to a site in the middle (residues 230-262), and SZ2
to the sulfated tyrosine region in theC-terminal portion.33,34 Although
the epitopes of NIT-A21 and 11A835 are not determined, both can
inhibit VWF binding.21 mAb-treated human platelet-rich plasma
(PRP) was exposed to static (0 dyn/cm2) and uniform arterial
(30 dyn/cm2) shear stress on a cone-plate viscometer. After shear
treatment at 22°C for 5 minutes, several markers of GPIb-IX ac-
tivation (surface exposure of b-galactose, phosphatidylserine, and
P-selectin) were detected by flow cytometry via fluorescein iso-
thiocyanate (FITC)–conjugated Erythrina cristagalli lectin, green
fluorescent protein–conjugated lactadherin C2 domain (Lact-C2),
and allophycocyanin-conjugated anti-P-selectin antibody, re-
spectively. GPIb-IX activation was observed for all anti-LBD mAbs
tested (Figure 1B, top). The effect was shear dependent because
GPIb-IX signaling was absent in static samples. These experiments
were also performed in PRP containing murine hTg platelets,
which produced very similar effects (Figure 1B, bottom). In
agreement with previous reports that bivalency is required for
mAb-induced GPIb-IX activation,17,19 the monovalent 6B4 Fab
did not induce signaling (Figure 1C). Given the diversity of
epitopes for the mAbs tested, these data indicate that the ability
of an anti-LBD mAb to activate GPIb-IX is not determined by its
precise epitope in the LBD. Conversely, mAbs FMC25, RAM.1,
and 5G6, which target GPIX, GPIbb, and the MSD of GPIba,
respectively,29,31,36 did not induce P-selectin exposure in human
platelets under either static or sheared conditions (Figure 1D),
confirming the difference between them and most anti-LBD
mAbs in their abilities to activate GPIb-IX.24,31

Anti-LBD mAb AK2 neither activates GPIb-IX nor
induces IVIg-resistant clearance of platelets
In our initial screen of anti-LBD mAbs, we found that 1 of them,
AK2, behaved differently from the others (Figure 1C). Additional
measurements were carried out to characterize and compare
the effects of AK2 with those of 6B4, a canonical anti-LBD mAb
well-documented to induce platelet clearance.17 Both mAbs
bind GPIba (supplemental Figure 1) and block VWF binding to
GPIba.17,34,37,38Whenexposed to shear stresses of 5 or 30 dyn/cm2,
human PRP treated with 6B4 includes a subpopulation composed
of events of high size (forward scatter [FSC]) and granularity (side
scatter [SSC]) (supplemental Figure 2). By comparison, control
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Figure 1. Anti-LBDmAbs, but not others, induce shear-dependent signaling. (A) Illustration of GPIb-IX domains and differential effects of mAbs. Locations of mAb epitopes
are noted by arrowheads. (B) Graphs of percentage of positive events for b-galactose, phosphatidylserine, and P-selectin exposure in human (top) and hTg mouse (bottom) PRP
treated with control IgG, AN51, NITA, SZ2, 6B4, or 11A8 as indicated under static or sheared conditions. (C) Graph of P-selectin exposure in hTg mouse PRP treated with control
IgG, AK2, 6B4-Fab, or 6B4 under static or sheared conditions. (D) Graph of P-selectin exposure in human PRP treated with control IgG, FMC25, RAM.1, or 5G6 under static or
sheared conditions. For all graphs, gray bars represent 0 dyn/cm2 and red bars represent 30 dyn/cm2. *P # .05; **P # .01; ***P # .001. n.s., not significant.

ANTI-GPIba ANTIBODIES PULL TO CLEAR PLATELETS blood® 15 FEBRUARY 2018 | VOLUME 131, NUMBER 7 789

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/7/787/1406634/blood784975.pdf by guest on 05 M

ay 2024



immunoglobulin G (IgG) did not induce this at any shear level,
and the effect of AK2 was notably smaller. In both human and
hTg platelets treated with 6B4, expression of all 3 markers
of GPIb signaling increased in a shear-dependent manner,
an effect not observed in samples treated with IgG or AK2
(Figure 2A).

It has previously been observed that many anti-LBD antibodies
can clear platelets in an Fc-independent and IVIg-resistant
manner.19,20 To compare the abilities of AK2 and 6B4 to induce
platelet clearance, hTg mice were treated with intraperitoneal
injection of IVIg or human serum albumin 24 hours before
intravenous injection of either AK2 or 6B4. Platelet counts in
these mice were measured before mAb injection and over a
4-day period after induction of thrombocytopenia by either
mAb. As anticipated,17 6B4 induced robust and long-lasting

thrombocytopenia, and its effect was not ameliorated by IVIg
pretreatment (Figure 2B). In contrast, AK2 induced clearance to
a lesser extent, which was significantly attenuated by pre-
treatment with IVIg. Overall, these results demonstrate that not
all anti-LBD mAbs can effectively activate GPIb-IX and induce
IVIg-resistant platelet clearance.

6B4, but not AK2, induces shear-dependent
unfolding of the MSD in GPIba on the platelet
A trigger model of GPIb-IX activation, which describes unfolding
of the MSD as the instigating event in VWF-mediated GPIb-IX
activation, was recently proposed.29 Given the shear require-
ments of anti-LBD mAb-induced platelet signaling that was
similarly observed for VWF, we next tested whether mAbs in-
duce GPIb-IX activation via unfolding of the MSD.
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Figure 2. 6B4, but not AK2, induces shear-dependent platelet signaling and IVIg-resistant platelet clearance in mice. (A) Graphs of percentage of positive events
for Erythrina cristagalli lectin, Lact-C2, and P-selectin exposure in human (top) and hTg (bottom) PRP treated with control IgG, AK2, or 6B4. Samples were exposed to 0, 5, or
30 dyn/cm2 as indicated (n 5 5). (B) Platelet survival curves for hTg mice injected retro-orbitally with AK2 or 6B4 24 hours after intraperitoneal IVIg treatment. Blood was drawn
from mice at the time of IVIg administration (–24 hours), time of antibody injection (0 hours), and thereafter every 24 hours until 96 hours after antibody injection. Platelet count
determined by complete blood count analysis. *P # .05, **P # .01, ***P # .001. HSA, human serum albumin.
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To detect MSD unfolding on the platelet surface, mAbs 5G6
(which binds a linear epitope in the MSD31,39) and WM23 (which
binds the macroglycopeptide region of GPIba) were used.
When theMSD is unfolded, 5G6 has greater access to its epitope
but WM23 binding remains the same, making the ratio of
5G6 binding to WM23 binding a proxy for the extent of MSD
unfolding, as previously established.29 Human PRP was pre-
treated with fluorescently labeled 5G6 or WM23 in the presence
of EDTA, an inhibitor of metalloproteinases that cleave GPIba.
After incubation with 5G6 or WM23, platelets were treated with
either 6B4 or AK2 or control IgG under static or shear conditions.
Under static conditions, neither 6B4 nor AK2 increased 5G6
binding above the baseline established by control IgG. Under
shear conditions (30 dyn/cm2), 6B4 induced a greater than
twofold increase in 5G6 binding but AK2 induced little change

(Figure 3A-B). WM23 binding did not change between static and
sheared samples for all mAbs, indicating that any changes in 5G6
binding were not the result of alterations in overall GPIba surface
expression (Figure 3B). These results suggest that binding of
6B4, but not AK2, induces shear-dependent unfolding of the
MSD on the platelet.

Differential unbinding forces of 6B4 and AK2
underlie their disparate abilities to unfold the MSD
of GPIb-IX
Faced with the differential abilities of 6B4 and AK2 to unfold the
MSD in response to shear, we next measured the unbinding
forces between mAbs and the LBD (ie, the force required to pull
an mAb apart from the LBD) and their effects on MSD unfolding
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Figure 3. Platelet signaling is triggered by MSD
unfolding. (A) Representative histograms illustrating 5G6
binding in PRP treated with control IgG, 6B4, or AK2 under
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by single-molecule force spectroscopy. As described earlier,28

recombinant biotinylated GPIb-IX was immobilized on a strep-
tavidin bead held by a fixed micropipette, and the Fab fragment
of mAbs (AK2, 11A8, or 6B4) was coupled to a DNA handle–
attached bead that was controlled by an optical laser trap. Under
typical conditions with contact force of 2 pN, contact time of
0.1 second, and pulling speed of 200 nm/s, adhesion frequen-
cies of 10% to 20% were detected between mAb- and GPIb-
IX–coupled beads. In comparison, adhesion frequency was
1% between an uncoupled bead and a GPIb-IX–coupled bead
and was undetectable between 2 uncoupled beads or between
an mAb-coupled bead and an uncoupled bead (supplemental
Figure 3A). Under our experimental conditions, almost 90% of
the observed adhesion events should be mediated by a single-
molecule bond between the mAb and the LBD in GPIb-IX.40,41

Bond lifetimes and force distributions of the mAb-LBD interac-
tions were measured and compared with those of MSD unfolding
obtained from our earlier study28 (Figure 3C-E). Among these, the
AK2-LBD interaction had the weakest unbinding force and dis-
played the shortest lifetime under any given force. The force
required for MSD unfolding is slightly stronger than the AK2-LBD
bond strength but much weaker than 11A8-LBD or 6B4-LBD
bond strength. The 6B4-LBD interaction is the strongest, with
5% of the traces beyond the detection limit of our optical tweezer
instrument (about 80-100 pN), because they exhibited DNA
overstretching (supplemental Figure 3B). In comparison, pulling
the biotin-streptavidin bond on the same instrument produced
DNA overstretching in .80% of the traces. At a given force, the
6B4-LBD bond exhibits a five- to tenfold greater lifetime than
MSD unfolding (Figure 3C). Thus, the MSD unfolding event was
observed in most pulling traces of 11A8 or 6B4 (Figure 3D). In
contrast, MSD unfolding was rarely observed when AK2 was

used to pull. Together these data indicate that AK2 is much less
likely than 6B4 and other anti-LBD mAbs to activate GPIb-IX
because of its inability to sustain the interaction necessary to
exert enough force to unfold the MSD. This is consistent with our
observations that AK2 induced much lower and less frequent
platelet signaling or clearance of platelets than 6B4.

Antisera from a patient with chronic ITP produces
6B4-like effects
To verify whether human antibody-induced effects are shear
dependent in a manner similar to those of murine mAbs such as
6B4, plasma was obtained from 12 patients with chronic ITP, and
the presence of anti-GPIb-IX antibodies was assayed via enzyme-
linked immunosorbent assay (Figure 4A; supplemental Figure 4).
Among these patients, only 1 (patient 11) seemed positive for
anti-GPIb-IX antibodies. Washed healthy human platelets were
reconstituted in plasma from a healthy donor, an ITP patient
lacking anti-GPIb-IX Abs (patient 02), or an ITP patient with anti-
GPIb-IX Abs (patient 11) to a normal human platelet count of
150 to 450 3 103/mL and exposed to either static (0 dyn/cm2) or
sheared (30 dyn/cm2) conditions. Subsequent testing for platelet
signaling showed that healthy donor or patient 02 plasma did
not induce shear-dependent expression of P-selectin or phos-
phatidylserine. In contrast, plasma from patient 11 significantly
increased expression of both markers in a shear-dependent
manner (Figure 4B; supplemental Figure 5). To assess whether ITP
patient antisera could induce MSD unfolding similar to 6B4, the
remaining reconstituted PRP samples were pretreated with flu-
orescently labeled 5G6 or WM23 in the presence of EDTA. In
sheared platelets treated with plasma from patient 11, the 5G6
binding increased by ;16-fold with respect to that under static
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events for P-selectin (top) and phosphatidylserine (bottom)
exposure in healthy donor platelets reconstituted in plasma
fromhealthy donors, patient 02, or patient 11 under sheared
(30 dyn/cm2) or static conditions (n 5 4-5). (C) Graphs of
fold increase (sheared/static) in 5G6 and WM23 binding to
healthy donor platelets reconstituted in plasma fromhealthy
donors, patient 02, or patient 11. Bars represent the mean
of duplicate (n 5 2) values for each condition. Variance in
WM23 fold changewas 12% to 15%of total. Variance in 5G6
fold change was 5% to 17% of total. ****P # .0001.
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conditions, which is markedly larger than the ;1.3-fold change
observed for healthy donor plasma (Figure 4C). For comparison,
WM23 binding was largely unchanged for both samples. Overall,
these results indicate that human antisera frompatientswith chronic
ITP can produce shear-dependent platelet signaling and induce
MSD unfolding in a manner similar to that of murine mAbs.

6B4, but not AK2, can crosslink platelets
under shear
To exert force on platelet GPIb-IX under blood flow, VWF can
be anchored to the site of injury, but anti-LBD mAbs clearly
produce their shear-dependent activity in solution. This raises the
question of how anti-LBD mAbs exert a pulling force on GPIb-IX
in platelets. Unlike the platelet, which could exert a dragging
force upon attachment to the immobilized VWF under shear
flow,42 the size of an anti-LBD mAb is too small to create suffi-
cient drag in shear flow. To test the possibility that anti-LBD
mAbs crosslink platelets under shear flow, we analyzed the
abilities of AK2, 6B4, 6B4 Fab, SZ2, and control IgG to induce
platelet aggregation or agglutination by platelet aggregometry.
Compared with the full platelet aggregation induced by risto-
cetin, 6B4 and SZ2 induced a moderate response, leading to

platelet agglutination reflected by ;20% aggregation. 6B4 Fab
did not induce any observable agglutination (Figure 5A), sug-
gesting that the dimeric structure of the antibody is used to
crosslink platelets. Anti-LBD mAbs may induce platelet aggluti-
nation, in part, by activating integrin aIIbb3.22 To separate the
crosslinking effects of anti-LBD mAbs and integrins, we applied
EDTA, a broad inhibitor of integrin binding. The addition of EDTA
reduced the extent of anti-LBD mAb-induced agglutination
(Figure 5A) but did not completely block it, which confirms that
platelet crosslinking is initiated by anti-LBD mAb binding. It
should be noted that unlike 6B4 or SZ2, AK2 did not induce any
observable agglutination.

Platelet crosslinking via anti-LBD mAbs was directly visualized
and quantitated via imaging flow cytometry. Human platelets
treated with 6B4 or AK2 at various shear levels were labeled
with fluorescently labeled anti-aIIbb3 antibody. Each fluorescent
particle interrogated by the cytometer was imaged and cate-
gorized by the aspect ratio, the ratio of the height and width
of the particle. Single platelets have aspect ratios close to 1,
whereas clumps of 2 or more platelets have lower aspect ratios,
typically below 0.8 (Figure 5B; supplemental Table 1).43,44 Under
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Figure 5. mAbs induce platelet signaling via crosslinking platelets. (A) Percentage aggregation of human PRP treated with AK2, IgG, 6B4 Fab, SZ2 1 EDTA, 6B4, SZ2, or
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ANTI-GPIba ANTIBODIES PULL TO CLEAR PLATELETS blood® 15 FEBRUARY 2018 | VOLUME 131, NUMBER 7 793

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/7/787/1406634/blood784975.pdf by guest on 05 M

ay 2024



static conditions, platelets treated with IgG, AK2, or 6B4 con-
tained the same percentage of clumped platelets. When exposed
to physiological shear, 6B4 crosslinked a higher percentage of
platelets (Figure 5C). This effect is not the result of increased
mixing because neither IgG nor AK2 had the effect. In addition,
we tested whether anti-LBD mAbs could crosslink platelet-sized
beads coated with recombinant LBD (supplemental Figure 6)
under shear conditions. Judging by flow cytometry plots, LBD-
coated beads incubated with IgG or AK2 produced 2 major
populations in which the larger was roughly double the size (FSC)
of the smaller (Figure 5D). These 2 populations likely represent
single beads and 2 beads stuck together, a phenomenon which
occurs at a certain frequency regardless of treatment. In addition
to these 2 populations, incubation with 6B4 produced a third
major population of beads with even larger size, which represents
more highly crosslinked clumps of beads (Figure 5D). Overall,
these results suggest that through its binding to the LBD, 6B4
crosslinks significantly more platelets under shear than AK2 does.
When crosslinking the platelets, 6B4 must use each of its 2 Fab
fragments to engage a copy of GPIb-IX on opposing platelets
(Figure 6). In this scenario, a platelet is of sufficient size to generate
drag on a linked platelet, thus allowing exertion of tensile force
on GPIb-IX and subsequent unfolding of the MSD (Figure 6). It
is conceivable that because of the relatively weak AK2-LBD un-
binding force, AK2-crosslinked platelets or bead complexes are
not stable under shear. Conversely, 6B4 and other anti-LBD an-
tibodies with a strong unbinding force to the LBD can sustain
crosslinking of platelets under shear in the bloodstream, allowing
tensile force to be exerted on GPIb-IX and leading to GPIb-IX–
mediated signaling (Figure 6).

Discussion
In this study, we provide new evidence that shear is required for
anti-LBD antibody-inducedGPIb-IX signaling. Following this critical
observation, the binding and functional properties of anti-LBD
mAbs, particularly those of AK2 and 6B4, were characterized.
Although 6B4 and AK2 are similar in their high-affinity binding to
the LBD, they differ significantly in their abilities to activate GPIb-IX
in the platelet and induce IVIg-resistant clearance of platelets
(Figures 1-3). In addition, wedemonstrate for the first time that their
difference in function is correlated with their difference in the
unbinding force for the LBD, and consequently in the ability to
sustain platelet crosslinking under shear and induceMSDunfolding
(Figures 3 and 5). These results suggest a newmechanomolecular
mechanism for Fc-independent platelet clearance induced by
anti-LBD mAbs and related IVIg-resistant immune thrombocy-
topenia. In this mechanism, anti-LBD antibodies crosslink plate-
lets through binding of both Fab domains and generate a pulling
force on copies of GPIb-IX on opposing platelets. For most anti-
LBD antibodies, their unbinding force for the LBD is sufficiently
strong to sustain platelet crosslinking, induce unfolding of the
MSD under shear, and subsequently activateGPIb-IX and result in
rapid platelet clearance (Figure 6).

Although numerous studies have confirmed GPIb-IX as the
endogenous VWF receptor and characterized its structure, the
mechanism by which antibodies and ligands activate GPIb-IX is
less well defined. An early electron microscopy study indicated
that GPIb-IX is uniformly distributed on the surface of the rest-
ing platelet, and it undergoes receptor clustering in platelets

AK2 + Shear
6B4 +

 Shear

signals leading
to clearance

signals leading
to clearance

MSD unfolds

anti-LBD
mAb

GPIb-IXPlatelet

Platelet

Figure 6. A model of GPIb-IX activation via crosslinking by antibodies against the LBD. In this model, an anti-LBD antibody binds to 2 copies of GPIb-IX on opposing
platelets, thereby crosslinking them. Under shear flow, this crosslinking allows the exertion of force onGPIb-IX, subsequent unfolding of theMSD, and signaling into the platelet,
which leads to clearance. The ability to crosslink platelets under shear depends on a sufficiently high unbinding force between the antibody and its epitope in the LBD.
Antibodies with low unbinding force to the LBD, such as AK2, cannot effectively crosslink platelets and thus cannot exert a shear force to unfold the MSD of GPIb-IX.
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activated by ristocetin/VWF and thrombin.45 Further work sug-
gested that clustering of GPIb-IX leads to its migration or par-
tition into platelet glycosphingolipid-enriched microdomains
and promotes activation of GPIb-IX.46,47 These data led to a
clustering model for the mechanism of GPIb-IX activation.48

Regarding antibody-induced GPIb-IX signaling, the clustering
model could explain the requirement of bivalency (which is
required if an antibody is to laterally dimerize the receptor) and
the lack of a specific activating epitope within the LBD. However,
it cannot adequately account for the lack of activation by certain
anti-LBD (ie, AK2), most anti-GPIbb, anti-GPIX, and anti-MSD
antibodies, which should also be capable of lateral dimerization
(Figure 1A).15,24-26 In comparison, the platelet-crosslinking model
we propose here is the first model to fully explain the afore-
mentioned 4 observations about anti-GPIb-IX antibodies, in
addition to the shear requirement of anti-LBD antibody–induced
signaling (Figure 6). First, the dimeric structure of an antibody,
but not the Fc region, is used to crosslink platelets, which ex-
plains the requirement of bivalency and the feature of Fc in-
dependence.19 Second, the location of the binding epitope is
not the defining feature of an activating anti-LBD antibody,
which explains why these antibodies can have non-overlapping
epitopes. Third, the defining feature is instead an unbinding
force for the LBD that is sufficiently large to induce MSD unfolding,
which explains why certain anti-LBD antibodies such as AK2
are not as effective in activating GPIb-IX as 6B4. Fourth, shear is
required to generate a pulling force through an anti-LBD anti-
body on GPIb-IX and to induce unfolding of the MSD. Finally,
compared with anti-LBD antibodies, antibodies that target the
other portions of GPIb-IX are not positioned to exert a pulling
force on theMSD, which explains why these antibodies generally
do not activate GPIb-IX.

VWF engagement with GPIb-IX under shear was reported to
induce apoptotic signaling events in human platelets and
transfected Chinese hamster ovary cells, in which 14-3-3 protein
z isoform plays a role.49 Several kinases and other molecules
have been identified to mediate GPIb-IX–induced activation of
integrin,50-52 but it is not clear whether they also mediate the
presentation of clear-me signals on the platelet surface, such as
the exposure of b-galactose and other clearance-related cellular
changes. Future studies will be needed to clarify the signaling
events connecting GPIb-IX activation to platelet clearance.

Overall, this study provides evidence that the bond strength or
the force resistance of an antibody to the LBD of GPIb-IX, rather

than the location of its binding epitope in the LBD, is the de-
terminant of whether or not the antibody induces GPIb-IX sig-
naling and thrombocytopenia. To the best of our knowledge,
this is the first time a mechanical feature of an antibody is the
defining pathological feature of a disease. Our results provide
insight into the mechanism of IVIg resistance in ITP and inform
potential new diagnostic and therapeutic approaches.
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