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KEY PO INT S

l The binding of mutant
calreticulin to MPL can
be uncoupled from
MPL activation.

l The lectin activity but
not the chaperone
functionality of mutant
CALR is required for
cytokine-independent
growth.

Mutations in calreticulin (CALR) are phenotypic drivers in the pathogenesis of myelo-
proliferative neoplasms. Mechanistic studies have demonstrated that mutant CALR binds
to the thrombopoietin receptor MPL, and that the positive electrostatic charge of the
mutant CALR C terminus is required for mutant CALR-mediated activation of JAK-STAT
signaling. Here we demonstrate that although binding between mutant CALR and MPL is
required for mutant CALR to transform hematopoietic cells; binding alone is insufficient
for cytokine independent growth. We further show that the threshold of positive charge
in the mutant CALR C terminus influences both binding of mutant CALR to MPL and
activation of MPL signaling. We find that mutant CALR binds to the extracellular domain
of MPL and that 3 tyrosine residues within the intracellular domain of MPL are required
to activate signaling. With respect to mutant CALR function, we show that its lectin-
dependent function is required for binding to MPL and for cytokine independent growth,

whereas its chaperone and polypeptide-binding functionalities are dispensable. Together, our findings provide
additional insights into the mechanism of the pathogenic mutant CALR-MPL interaction in myeloproliferative neoplasms.
(Blood. 2018;131(7):782-786)

Introduction
Recurrent mutations in calreticulin (CALR), an endoplasmic re-
ticulum (ER) resident chaperone protein, represent the second
most common mutation in patients with myeloproliferative neo-
plasms (MPNs) after JAK2V617F.1-4 CALR mutations in MPN occur
as a heterogeneous set of indel mutations in exon 9 of CALR
that all result in a 11 bp frameshift in the CALR reading frame.5,6

Although the mutant CALR C-terminal alterations vary, all CALR
mutations lead to a loss of most of the C-terminal acidic domain and
a concomitant gain of a novel C terminus consisting of 36 amino
acids that are enriched for positively charged residues.
Mechanistic studies have demonstrated that mutant CALR
(CALRMUT) binds to the thrombopoietin receptor, MPL, to
activate the MPL-JAK-STAT signaling axis,7-10 and that the
positive charge of the CALRMUT C terminus is required to
mediate this interaction.9

Several unanswered questions remain regarding the molec-
ular and functional basis of CALRMUT oncogenic activity. In this
report, we use a series of mutagenesis experiments to address
some of these questions, focusing on the structural deter-
minants of CALRMUT and MPL that are necessary for hema-
topoietic cell transformation.

Study design
Ba/F3 cell growth assays
Ba/F3 cells expressing CALRMUT or MPL variants were generated
by retroviral transduction and assayed for cytokine-independent
growth as previously described.9

In vitro binding assay
V5-tagged purified recombinant wild-type CALR (CALRWT),
CALRMUT, CALRMUT-D135L, and CALRMUT-D317A proteins were
incubatedwith purified recombinant ERp57 orMPL for 30minutes
at 4°C, and washed with N-2-hydroxyethylpiperazine-N9-2-
ethanesulfonic acid acetate buffer. Bound proteins were eluted
from beads and analyzed by sodium dodecyl sulfate polyacrylamide
gel electrophoresis.

Results and discussion
To resolve which amino acids within the CALRMUT C terminus are
required for CALRMUT activity, we generated CALRMUT variants
harboring serial truncations of the mutant C-terminal tail in
blocks of 8 to 10 amino acids (Figure 1A) and tested their ability
to associate with MPL in pull-down assays. All CALRMUT variants
examined retained the ability to bind MPL (Figure 1B). However,
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Figure 1. Binding ofmutant calreticulin toMPL is required to transform hematopoietic cells but binding alone is insufficient for cytokine-independent growth. (A) Schema
depicting serial C-terminal truncationmutants of mutant CALR. (B) Immunoblotting of FLAG-immunoprecipitated proteins and whole cell lysates from 293T cells cotransfected with
wild-type FLAG-CALR (CALRWT), FLAG-CALR 52-bp deletion (CALRMUT), or FLAG-CALR 52-bp deletion serial C-terminal truncation mutants (CALRMUT D10-D36) demonstrates that
mutant CALR truncated up to D36 still binds to MPL. (C) Immunoblotting demonstrates phosphorylation of Stat5 and Stat3 in Ba/F3-MPL cells expressing CALRMUT and truncation
variantsD10,D18, andD28, but not D36. (D) Immunoblotting demonstrates phosphorylation ofMPL in Ba/F3-MPL cells expressing CALRMUT and D28, but notD36. (E) Growth curves
in Ba/F3-MPL cells expressing CALRWT, CALRMUT, or CALRMUT C-terminal truncation variants demonstrates that only severe truncation of themutant CALRC terminus (D36) abolishes
the transforming capacity ofmutant CALR. (F) Immunoblotting of FLAG immunoprecipitated proteins from 293T cells co-transfected with FLAG-CALR 52 bp deletion (CALRMUT) and
glutathione S-transferase (GST)–tagged full-length MPL, GST-tagged MPL intracellular1 transmembrane domains, or GST-tagged MPL extracellular 1 transmembrane domains
demonstrates that mutant CALR binds to the extracellular domain of MPL. (G) Immunoblotting of FLAG immunoprecipitated proteins from 293T cells coexpressing FLAG-tagged
mutant CALR and MPL YF variants demonstrates that mutations of intracellular tyrosine residues on MPL does not affect the ability of mutant CALR to bind to MPL. (H) Im-
munoblotting demonstrates that phosphorylation of Stat5 is abrogated in Ba/F3 cells expressing MPL YF variants harboring loss of Y626. (I) Growth curves in Ba/F3 cells stably
expressing MPL-YF variants demonstrate that all 3 intracellular tyrosines play a role in supporting cytokine independent growth in Ba/F3 cells mediated by mutant CALR. WB, western blot.
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the most severely truncated form (CALRMUTD36) failed to activate
JAK-STAT signaling (Figure 1C), stimulate phosphorylation of MPL
(Figure 1D), and transform Ba/F3-MPL cells to interleukin-3 in-
dependence (Figure 1E). Further truncation of an 11 amino acid
positively charged stretch (QRTRRMMRTKM) that is also present
in CALRMUT protein species generated by the 52-bp deletion
(CALRMUTD47; see supplemental Figure 1A , available on the Blood
Web site) led to loss of MPL binding (supplemental Figure 1B) and
inability to transform Ba/F3-MPL cells (supplemental Figure 1C). A
CALRMUT variant in which these 11 residues are deleted but the
distal 36mutant-specific amino acids are retained (CALRMUTD37-47)
was still able to bind to MPL and transform Ba/F3-MPL cells
(supplemental Figure 1A-C), suggesting that the QRTRRMMRTKM
stretch is sufficient but not strictly required for MPL binding. Our
data also suggest that although CALRMUTD36 can bind to MPL, this
binding is insufficient to activate MPL signaling. To our knowledge,
these data provide the first evidence that physical interaction be-
tween CALRMUT andMPL is not ipso facto sufficient to activateMPL.
Rather, our data argue for a model whereby different thresholds of
positive charge in the CALRMUT C terminus are required to enable
binding of CALRMUT toMPL and to activateMPL signaling. Because
MPL phosphorylation is dependent on homodimerization of single

MPL chains, these data may suggest that CALRMUTD36 retains the
ability to interact with single MPL chains but is unable to induce
homodimerization, which is required for receptor activation. Further
studies are warranted to fully resolve the 3-dimensional structure
of the CALRMUT-MPL interaction.

We next sought to elucidate the regions of MPL that are essential to
support CALRMUT activity. We observed that CALRMUT binds to full-
length MPL and to the extracellular and transmembrane fragment
of MPL, but not to the intracellular and transmembrane fragment
(Figure 1F). Furthermore, anMPL variant inwhich the thrombopoietin
(TPO) binding site is mutated (D235A/L239A)11 was still able to bind
to CALRMUT (supplemental Figure 1D) and could support CALRMUT-
mediated cytokine-independent growth in Ba/F3 cells (supplemental
Figure 1E). This suggests that CALRMUT does not occupy the same
binding pocket as TPO and is consistent with CALRMUT-driven he-
matopoietic transformation being a TPO-independent process.7

Analysis of the intracellular portion of MPL reveals 3 tyrosine
residues (Y591, Y626, and Y631) that may also be important for
CALRMUT-MPL signaling.12 MPL variants were therefore generated
where these residues were systematically mutated to phenylalanine
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Figure 2. The lectin-dependent function of mutant CALR is required for cytokine-independent growth, whereas its chaperone and polypeptide binding functionalities
are dispensable. (A) Schema depicting mutations introduced into the lectin (dark red), polypeptide binding (blue), and chaperone (light green) domains of mutant CALR. (B)
Immunoblotting of FLAG immunoprecipitated proteins from 293T cells cotransfected with wild-type CALR, mutant CALR, or mutant CALR lectin-, chaperone-, and polypeptide
binding-deficient variants demonstrates that binding betweenmutant CALR andMPL is lost when residues required for lectin binding are mutated, but binding is retained when
residues critical for CALR chaperone and polypeptide binding functionality are mutated. (C) Growth curves in Ba/F3-MPL cells expressing wild-type CALR, mutant CALR, or
mutant CALR lectin- (left), chaperone- (center), and polypeptide binding-deficient (right) variants demonstrates that mutant CALR loses its ability to drive cytokine-independent
growth when residues required for lectin binding are mutated but retains its ability to drive cytokine-independent growth in when residues critical for CALR chaperone and
polypeptide-binding functionality are mutated. (D) In vitro binding assay between purified recombinant CALRWT or CALRMUT and purified recombinant ERp57 demonstrates that
CALRWT binds directly to ERp57 but CALRMUT does not. (E) In vitro binding assay between purified recombinant CALRWT, CALRMUT, CALRMUT-D135L, or CALRMUT-D317A
demonstrates that CALRMUT binds directly to MPL but not CALRWT or altered CALRMUT variants. (F) FLAG pulldown in 293T cells coexpressing CALRMUT and MPL glycosylation
mutants (2xNQ 5 N117/178Q; 4xNQ 5 N117/178/298/358Q), shows CALRMUT binding to MPL-2xNQ but not to MPL-4xNQ.
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individually (FYY, YFY, YYF), in tandem (FFY, FYF, YFF), or altogether
(FFF). As expected, all MPL variants were able to physically interact
with CALRMUT in FLAG pull-down assays (Figure 1G). However, we
found differences in their ability to support CALRMUT signaling. MPL
variants harboring intact Y626 (MPL-FYY, MPL-YYF, MPL-FYF)
supported robust Stat5 phosphorylation (Figure 1H) in associa-
tion with cytokine-independent growth (Figure 1I), but not
MPL variants in which the Y626 is mutated (MPL-YFY, MPL-YFF,
MPL-FFY, MPL-FFF). These data indicate that Y626 plays a more
prominent role than Y591 and Y631 in MPL signaling down-
stream of CALRMUT, which is consistent with a previous report
identifying Y626 as the major signaling tyrosine in canonical TPO-
MPL signaling.12 Our data therefore highlight the importance
of tyrosine-mediated MPL signaling as a pathway coopted by
CALRMUT to effect cytokine-independent proliferation.Our studies
do not rule out a role for nontyrosine residues of MPL, which may
be required for CALRMUT-mediated activation of other down-
stream signaling pathways (eg, extracellular signal-regulated ki-
nase)13; future studies to explore this question are warranted.

Finally, we sought to gain functional insights into how CALRMUT

interacts with MPL to confer cytokine-independent growth. Wild-
type calreticulin is an ER-resident chaperone that interacts with
glycoproteins by binding to Glc1Man9GlcNAc2 oligosaccharides
and the polypeptide backbone to facilitate proper protein fold-
ing. We therefore created variants of CALRMUT harboring muta-
tions in critical residues implicated in 3 key functionalities of
wild-type CALR: (1) polypeptide binding, (2) chaperone activity,
and (3) lectin activity. We then tested their capacity to bind to
MPL and confer cytokine independence (Figure 2A).

We observed that both polypeptide binding-deficient variants
of CALRMUT (CALRMUT-P19K/V21E and CALRMUT-W244G) and
chaperone-deficient variants of CALRMUT (CALRMUT-H153G and
CALRMUT-EEDE)14,15 retained MPL binding ability (Figure 2B)
and conferred cytokine-independent growth (Figure 2C). Consis-
tent with the nonessentiality of chaperone functionality in CALRMUT

oncogenic activity, CALRWT exhibits strong, direct binding to the
ERp57 cochaperone, whereas CALRMUT does not (Figure 2D). In
contrast, lectin-deficient CALRMUT variants harboring mutations
in Asp-135 andAsp-317 (CALRMUT-D135L andCALRMUT-D317A)16,17

were both unable to bind toMPL or confer cytokine independence
(Figure 2B-C). In accordance, we also found that only recombi-
nant CALRMUT protein directly binds to recombinant MPL in an in
vitro binding assay, whereas neither CALRWT nor lectin-deficient
CALRMUT do (Figure 2E). These data explain the previously
reported essential role for Asp-135 in mediating CALRMUT-driven
STAT5 activation8 as being from a requirement for Asp-135 in
mediating binding between CALRMUT toMPL. Finally, to determine
the requisite glycosylation status of MPL that enables CALRMUT

binding, we tested CALRMUT binding to MPL mutants where either
2 (2xNQ 5 N117/178Q) or all 4 (4xNQ 5 N117/178/298/358Q)
glycosylation sites in the extracellular domain of MPL were

abolished. We found that CALRMUT can still bind to MPL-2xNQ but
not to MPL-4xNQ (Figure 2F). These data are consistent with a
previous report that demonstrated that MPL variants devoid of the
same 4 N-glycosylation sites failed to support STAT5 activation by
CALRMUT8 and suggests that this defect is due to an inability of
unglycosylated MPL to bind CALRMUT.

In conclusion, our data provide additional insights into the
molecular mechanism by which CALRMUT interacts with MPL to
induce MPN (supplemental Table 1). Specifically, we (1) un-
couple the binding of CALRMUT to MPL from MPL activation, (2)
define the key properties of MPL required for CALRMUT binding
and for its activation, and (3) decipher the key functionalities of
CALRMUT required for its oncogenic activity.
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