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KEY PO INT S

l CTCL patients have
decreased miR-29b
levels and increased
BRD4 binding
occupancy at
promoter regions of
tumor-associated
genes.

l Therapeutic targeting
of miR-29b and BRD4
in CTCL mice results
in significantly
decreased disease
severity and
progression.

MicroRNA (miRNA) dysregulation is a hallmark of cutaneous T-cell lymphoma (CTCL), an
often-fatal malignancy of skin-homing CD41 T cells for which there are few effective
therapies. The role of microRNAs (miRs) in controlling epigenetic modifier-dependent
transcriptional regulation in CTCL is unknown. In this study, we characterize a novel miR
dysregulation that contributes to overexpression of the epigenetic reader bromodomain-
containing protein 4 (BRD4). We used patient CD41 T cells to show diminished levels of
miR-29b comparedwith healthydonor cells. Patient cells andmiR-29b2/2mouse cells revealed
an inverse relationship between miR-29b and BRD4, the latter of which is overexpressed in
these cells. Chromatin immunoprecipitation and sequencing analysis revealed increased
genome-wide BRD4 occupancy at promoter and enhancer regions in CD41 T cells from
CTCL patients. The cumulative result of BRD4 binding was increased expression of tumor-
associated genes such as NOTCH1 and RBPJ, as well as the interleukin-15 (IL-15) receptor
complex, the latter enhancing IL-15 autocrine signaling. Furthermore, we confirm the in
vivo relevance of this pathway in our IL-15 transgenic mouse model of CTCL by showing
that interference with BRD4-mediated pathogenesis, either by restoring miR-29b levels

via bortezomib treatment or by directly inhibiting BRD4 binding via JQ1 treatment, prevents progression of CTCL. We
describe a novel oncogenic pathway featuring IL-15, miR-29b, and BRD4 in CTCL and suggest targeting of these
components as a potentially effective therapy for CTCL patients. (Blood. 2018;131(7):771-781)

Introduction
Cutaneous T-cell lymphoma (CTCL) is a non-Hodgkin lymphoma
characterized by progressive infiltration and proliferation of mature
skin-homing CD41 T cells in the skin, followed by systemic spread
to lymph nodes, blood, and viscera in a significant fraction of
patients.1-3 Recent whole-genome sequencing studies highlighted
the central role of somatic mutations that affect cellular signaling
andepigenetic regulation in thepathogenesis of CTCL.4-8 Although
epigenetic modifiers such as histone deacetylase (Hdac) inhibitors
are approved for treatment of CTCL, responses occur in approx-
imately 30% of patients with high relapse rates,9,10 which highlights
the need for better understanding the epigenetic aberrations and
regulatory pathways that promote disease pathogenesis and sus-
tain survival and proliferation of malignant T cells in CTCL.

Tumor suppressive microRNAs (miRNAs) that downregulate
epigenetic modifiers and lead to effects on tumor suppressor

gene expression are termed “epi-miRs.” miR-29b targets DNA
methyltransferases resulting in global DNA hypomethylation
in malignant cells.11-13 Experimental overexpression of miR-29b
in multiple myeloma,14 acute myeloid leukemia,15 and rhabdo-
myosarcoma induces apoptosis and suppresses cell growth.16,17

Expression of miR-29b can be increased pharmacologically with
bortezomib, a proteasome inhibitor, which leads todose-dependent
increases of miR-29b and apoptosis.14

An additional mechanism of epigenetic regulation is post-
translational modification of histones recognized by epigenetic
reader proteins, which direct assembly of transcription factors
at gene promoter regions. Bromodomain-containing protein 4
(BRD4), a bromodomain and extra-terminal (BET) protein, binds
acetylated lysine residues on histones and regulates many
genes involved in cellular proliferation, cell-cycle progression,
and apoptosis.18 Numerous models have demonstrated BRD4
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dependence for tumor cell proliferation and survival. A small
molecule inhibitor of BET, JQ1, which displaces BRD4 from
chromatin, was recently found to be a potent inducer of ap-
optosis in B-cell leukemia,19,20 acute myeloid leukemia,21,22

glioblastoma,23 and lung cancer.24

Expression of chronic inflammatory cytokine interleukin-15
(IL-15) is increased in neoplastic T cells from CTCL patients,
and autocrine IL-15 signaling results in epigenetically driven
induction of oncogene expression.25 These oncogenic drivers of
T-cell malignancies include NOTCH1 and its effector cofac-
tor recombination signal binding protein for immunoglobulin-
kappa-J region (RBPJ).26 Aberrant NOTCH1 activity is oncogenic
in several malignancies and results in accelerated tumor growth.27

In CTCL, NOTCH1 expression is increased in advanced stages,
and in vitro blockade of NOTCH1 signaling induces apoptosis in
CTCL-derived cell lines.28

In this study, we show decreased expression of miR-29b asso-
ciated with increased expression of BRD4. In addition, increased
genomic BRD4 occupancy in CTCL cells results in increased
expression of NOTCH1 and RBPJ as well as IL-15 receptor
complex, suggesting that the miR-29b-BRD4 axis may be an
important targetable pathway in CTCL.

Materials and methods
Mouse strains
All mice were bred and maintained in pathogen-free conditions,
and all studies were approved by the Ohio State University
Institutional Animal Care and Use Committee. FVB/N mice with
global overexpression of IL-15 have been described.25 All mice
were age and gender matched. C57Bl6 miR-29b2/2 mice (kindly
provided by Carlo M. Croce, The Ohio State University) have
been previously described.29

Human T-cell isolation
All samples from patients and normal donors were processed
per protocol approved by the Institutional Review Board of The
Ohio State University Comprehensive Cancer Center. Fresh
peripheral blood from patients was obtained through The Ohio
State University Leukemia Tissue Bank. Normal donor periph-
eral blood was obtained through the American Red Cross
(Columbus, OH). CD41 T-cell isolation was performed as
described,25 and full details for the method are available in the
supplemental Data, available on the Blood Web site.

Mouse tissue isolation
Mouse tissue isolation was performed as described,25 and full
details regarding the methods can be found in the supplemental
Data.

In vivo drug treatments
Three- to 4-week-old IL-15 transgenic mice were dosed in-
traperitoneally with 50 mg/kg JQ1 or vehicle control (10% cy-
clodextrin in phosphate-buffered saline [PBS]) 5 times per week
for 4 weeks and with 1 mg/kg bortezomib or vehicle control
(50% PBS/50% dimethyl sulfoxide) twice per week for 5 weeks.
Cutaneous lesions were scored twice per week as described.25

Mice were euthanized by carbon dioxide inhalation followed by
cervical dislocation. Skin tissues were collected in 10% neutral-

buffered formalin for histology, and in 13 PBS to generate a
single-cell suspension.

Chromatin immunoprecipitation and sequencing
Cell suspensions were processed for chromatin immunopre-
cipitation (ChIP) per Active Motif kit instructions (Active Motif,
La Hulpe, Belgium). ChIP sequencing (ChIP-seq) was per-
formed by using FactorPath ChIP-Seq technology by Active
Motif. Full details regarding the methods can be found in the
supplemental Data.

Immunoblotting
Cell suspensions were lysed with Bio-Rad buffer (Bio-Rad,
Hercules, CA). Cell lysates were run on precast gel (Bio-Rad
Criterion). Antibodies for BRD4 were obtained from Bethyl
Laboratories (A301), IL-15 receptor complex (IL-15Ra [H-107],
IL-2Rb [M-20], IL-2Rg [N-20]) from Santa Cruz Biotechnology
(Dallas, TX), NOTCH1 (D3B8) from Cell Signaling (Beverly,
MA), RBPJ (AB2284) from Millipore (Billerica, MA), and actin
(MAB1501) from Millipore.

Isolation of RNA, complementary DNA
preparation, and reverse transcription polymerase
chain reaction
Purified cells were prepared as described.25,30 TaqMan probe
indentification numbers for the genes used can be provided
upon request.

Silencing RNA transfection
The HuT-102 cell line was cultured at 2 3 106 cells per mL with
silencing RNA (siRNA) at 0.15 nmol to BRD4 or with scrambled
control. Transfections were performed by using nucleofector
solution and Amaxa protocol (Lonza, Basel, Switzerland). Cells
were cultured for 24 hours and then collected and analyzed for
reverse transcription polymerase chain reaction (RT-PCR).
Additional in vitro treatments can be found in supplemental
Methods.

Statistics
Two-sample Student t test was used to compare 2 independent
groups, and paired Student t test was used to compare 2 paired
groups. Data transformation was performed if the original dis-
tribution was nonnormal. Analysis of variance models or gen-
eralized linear models were used to compare 3 or more groups.
P values were adjusted for multiple comparisons by Holm’s
procedure. A P value of , .05 was considered significant.

Results
An inverse relationship betweenmiR-29b and BRD4
levels in CTCL patients and miR-29b2/2 mice
By examining purified peripheral blood CD41 T cells from
CTCL patients (supplemental Table 1) and normal donors, we
found significantly decreased expression of miR-29b in CTCL
patients (0.007 6 0.002 [n 5 9]) compared with normal donors
(1.008 6 0.052 [n 5 6]; P , .0001) (Figure 1A). Alignment of
seed sequence of miR-29b demonstrated complementarity
with BRD4 39 untranslated region (UTR) (Figure 1B). To confirm
miR-29b–mediated regulation of BRD4, we analyzed isolated
splenocytes from miR-29b2/2 mice and found that BRD4
protein expression is significantly increased in the miR-29b2/2
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cells compared with wild-type (WT) mouse cells (fold change,
1.876 0.29; P5 .014) (Figure 1C). To investigate this potential
interaction, a BRD4 39UTR reporter assay was performed.
Briefly, CD41 T cells from normal donors were transfected with
the vector construct green fluorescent protein (GFP) fused to
the 39UTR of BRD4 (BRD4 39UTR GFP) and concurrently with
miR-29b mimic or scrambled control (supplemental Figure 1A).
In each of 3 normal donors, relative BRD4 activity (% GFP-
expressing cells) decreased in miR-29b transfected cells com-
pared with that of scrambled control cells (supplemental
Figure 1B). Pooling data for the donors, the decrease in BRD4
activity was statistically significant (P 5 .0376) (data not shown).
Subsequently, a BRD4 39UTRGFP stable cell line was transfected
with miR-29b mimic. A significant decrease in BRD4 activity was
observed in cells transfected with miR-29b mimic (3.13 6 0.8)
vs scrambled control (69.4 6 1.42; P , .0001) (supplemental
Figure 1C).

Bortezomib increases miR-29b level and thus
decreases BRD4 expression
Bortezomib, a 26S proteasome inhibitor, has been previously
shown to increase miR-29b expression in neoplastic cells.14

Treatment of 5 patient-derived CTCL cell lines (HuT-78,
HuT-102, HH, MyLa, and SeAx) with 10 nM bortezomib for
3 hours in vitro resulted in significantly increased pri-miR-29b1
expression level above that of dimethyl sulfoxide–treated cells

for 4 of the 5 lines, whereas HuT-78 had a nonsignificant increase
in miR-29b level, likely due to the presence of an NF-kB/p65
truncation mutation in that line (Figure 1D). Similarly, treatment
of purified CD41 cells from a CTCL patient in vitro with 100 nM
bortezomib for 2 hours resulted in a significant increase in
the pri-miR-29b1 expression level (P 5 .0334) (supplemental
Figure 2A). Because miR-29b levels are regulated by recruit-
ment of c-Myc and Hdac1,30 we measured these transcripts
in bortezomib-treated CTCL cell lines. Significant decreases
were seen in c-Myc for HH (P 5 .0157), HuT-78 (P 5 .0059), and
HuT-102 (P , .0001), and were also seen in Hdac1 for HH
(P 5 .0002), HuT-78 (P , .0001), and HuT-102 (P , .0001)
(supplemental Figure 2B-C). These data demonstrate that
bortezomib regulates miR-29b in CTCL, at least in part by
downregulation of c-Myc and Hdac1. In addition, treatment of
CTCL lines with 50 nM bortezomib for 24 hours resulted in
profound decreases in BRD4 protein expression in the same
4 lines showing reversal of pri-miR-29b1 levels (Figure 1E). We
demonstrated that effects of bortezomib on BRD4 expres-
sion are miR-29b dependent by treating T cells from WT and
miR-29b2/2 mice with 50 nM bortezomib for 24 hours. BRD4
protein decreased in WT mice, as expected; however, there was
no change in BRD4 in cells from miR-292/2 mice (supplemental
Figure 2D). Furthermore, we transfected normal donor CD41

T cells (which have higher levels of miR-29b) with miR-29b
inhibitor, and we subsequently treated these cells with
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Figure 1. BRD4 is inversely correlated with miR-29b in
CTCL. (A) Relative expression of miR-29b in peripheral
blood CD41 T cells fromCTCL patients (n5 9) and normal
donors (n5 6). (B) Sequence alignment of the mature miR
seed sequence of miR-29b showing complementarity to
the 39UTR of BRD4. (C) Immunoblot analysis of BRD4
protein in splenocytes from miR-29b2/2 and age-matched
WTmice (n5 4 each). (D) RT-PCR analysis for pri-miR-29b1
in CTCL-derived CD41 T-cell lines treated with 10 nM
bortezomib showing a significant increase in pri-miR-29b1
level after 3 hours. Data are presented asmean6 standard
error of the mean (SEM) (n 5 3 each). (E) Immunoblot of
BRD4 protein expression in CTCL-derived CD41 T-cell
lines treated with 50 nM bortezomib for 24 hours showing
decreased expression in treated cells compared with
dimethyl sulfoxide–treated controls. Data are presented
as mean 6 standard error of the mean (SEM). *P # .05;
**P # .01; ***P # .001; ****P # .0001; unpaired 2-tailed
Student t test. ns, not significant.
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bortezomib. We demonstrated that in scrambled control
transfected cells, bortezomib results in a decrease of;80% in
BRD4 expression. However, miR-29b inhibitor–transfected
cells had no change in BRD4 expression in response to
bortezomib (supplemental Figure 2E). These data demon-
strate a novel regulatory association between BRD4 and
miR-29b, and furthermore, that treatment with bortezomib
results in increased miR-29b levels with a resultant decrease in
BRD4 in vitro.

Genome-wide increase in BRD4 occupancy in
genome of CTCL patients compared with that of
healthy donors with reversal of occupancy by
treatment with BET inhibitor JQ1
To determine the overall occupancy of BRD4 in a CTCL patient,
we used ChIP-seq. CD41 T cells from CTCL patients demon-
strated increased BRD4 binding at gene-regulatory regions
(Figure 2A), promoter-active regions (Figure 2B), distal-active
regions (Figure 2C), and super-enhancer regions (Figure 2D)
compared with normal donor CD41 T cells. Enhanced binding
was reversed after CTCL patient cells were treated with 100 nM
JQ1. Presented as average signal intensity, BRD4 binding in
patient cells was increased over normal donor and JQ1-treated
patient cells (Figure 2E-H). Importantly, treating CTCL patient
cells with JQ1 returns the level of BRD4 binding to approxi-
mately that in normal donor cells. The correlation coefficient (R)
between patient and normal donor is 0.759, whereas R5 0.762
when comparing normal donor and patient cells treated with
JQ1 (Figure 2I). Gene ontology analysis performed by using
the GREAT functional annotation tool31 revealed enrichment of
BRD4-regulated genes in CD41 cells from patients and healthy
donors, and they were analyzed on the basis of biological
process, molecular function, and signaling pathways (supple-
mental Table 2). These data demonstrate the extensive binding
activity of BRD4 at regulatory regions in CTCL patients and that
this binding profile can be reversed to that of a normal donor
with JQ1 treatment.

Inhibition of BRD4 activity results in cytotoxicity
to CTCL cells, partially by induction of
sub-G0/G1 phase
BET inhibitor JQ1 has been investigated as a treatment
strategy in many hematologic malignancies,19,32 but whether
JQ1 has therapeutic efficacy in CTCL is not known. In our study,
3 CTCL cell lines were highly sensitive to JQ1 treatment, with
50% effective concentration (EC50) values at 0.461 mM for the
HH cell line, 0.167 mM for HuT-78, and 0.445 mM for HuT-102.
Two lines were moderately resistant to JQ1 with EC50 values of
4.45 mM for SeAx and 21 mM for MyLa cell lines (Figure 2J). JQ1
treatment of cell lines resulted in a dose-dependent increase
in population of cells in sub-G0/G1 phase of the cell cycle
(Figure 2K). To further address the specificity of BRD4 in cellular
survival, we transfected HuT-102 cells with siRNA to BRD4
(siBRD4). We demonstrated significant decrease in BRD4 ex-
pression (0.47 6 0.01 compared with 1.0 6 0.01 for control
RNA; P, .0001) (supplemental Figure 3A) as well as decreased
cell count (supplemental Figure 3B) and significantly decreased
proliferation (P 5 .0316) (supplemental Figure 3C) in siBRD4-
transfected cells compared with control cells. These data
demonstrate the specificity of BRD4 inhibition in cytotoxicity of
malignant T cells.

BRD4 binding at promoter regions is associated
with increased transcriptional activity of tumor-
associated NOTCH1 gene and its cofactor RBPJ
It was previously shown that increased BRD4 activity modulates
induction of oncogene expression.33 Here we describe the role
of BRD4 in regulating expression of 2 tumor-associated genes
in CTCL: NOTCH1 and RBPJ. NOTCH1 signaling acts through
its effector and co-activator RBPJ,34 allowing transcriptional
activation of NOTCH1 target genes,35 and is oncogenic in T-cell
leukemias.26,36 ChIP-seq analysis revealed that BRD4 binding at
NOTCH1 promoter was increased in CTCL patient CD41 T cells
compared with normal donor cells. Binding was reversed by
treating patient cells with 100 nM JQ1 (Figure 3A, top panel).
BRD4 binding was also increased at the promoter of RBPJ in
CTCL patients and was similarly decreased by treatment with
JQ1 to the same level of binding as that in normal donor cells
(Figure 3A, bottom panel). Furthermore, transcript levels of both
NOTCH1 (4.166 0.99 [n5 9]; P5 .024) and RBPJ (3.036 0.56;
P 5 .0122) were significantly increased in CD41 cells from pa-
tients compared with normal donors (1.01 6 0.06 and 1.01 6
0.05, respectively [n 5 6]) (Figure 3B). These data demonstrate
that increased binding of BRD4 to regulatory regions in CTCL is
associated with enhanced expression of NOTCH1 and RBPJ.

JQ1 treatment significantly reduces disease
severity in the IL-15 transgenic mouse model
of CTCL
To confirm the effects of JQ1 on inhibition of BRD4 as a potential
anti-tumor agent, we used our recently characterized IL-15 trans-
genic mouse model.25 This mouse develops spontaneous cuta-
neous disease with 100% penetrance by 8 weeks of age, which is
phenotypically andmorphologically comparable to human CTCL.25

After a 4-week treatment with 50 mg/kg JQ1 injected intraperi-
toneally into 4-week-oldmice, development of CTCL was apparent
only in vehicle-treated IL-15 transgenic mice, whereas JQ1-treated
mice were less affected (Figure 3C). Gross lesion scores represent a
scale of cutaneous disease severity from mild erythema (score of 1)
to severe extensive ulceration (score of 5) (supplemental Figure 4A).
Gross lesion severity scores for JQ1-treated mice (n5 7) averaged
1.0 6 0.12 compared with 2.46 0.23 of 5 possible (P 5 .0318) for
vehicle-treated mice (n 5 5) (supplemental Figure 4B). Histologi-
cally, cutaneous lesions in vehicle-treated mice were characterized
by intense intraepidermal and dermal infiltrate of neoplastic T cells
with a formation of intraepidermal Pautrier’s microabscesses, a
histologic hallmark of CTCL (Figure 3D). The severity of histologic
lesions was significantly decreased in JQ1-treated mice (n 5 7)
(3.37 6 0.49; P 5 .0041) compared with vehicle-treated controls
(n5 5) (6.06 0.45, with 7 as the highest possible score) (Figure 3E).
Skin from JQ1-treated mice also showed significantly reduced
protein expression of BRD4, NOTCH1, and RBPJ compared with
vehicle-treated mice (Figure 3F). Infiltrating T cells in the skin were
CD31CD41 (Figure 3G). The numbers of infiltrating CD31 and
CD41 T cells were decreased in JQ1-treated mice compared with
vehicle-treated mice (Figure 3H-I). In the dermis where high
numbers of CD31-infiltrating cells were present, JQ1-treated mice
(n5 7) had amean of 112.56 9.19 CD31 cells per high-power field
(4003) compared with 198.4 6 23.61 (P 5 .002) CD31 cells in
vehicle-treated mice (n5 5). After further evaluating CD41 cells
in the dermis, the mean number of CD41 cells per high-power
field (4003) in JQ1-treated cells was 28.66 4.9 compared with
41 6 5.26 in vehicle-treated mice.
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Figure 2. BRD4 binds regulatory regions in CTCL patients. (A) ChIP analysis of BRD4 binding to active regions of the genome in CD41 T cells from a normal donor (left), CTCL
patient (middle), andCTCL patient cells treated with 100 nM JQ1 in vitro for 24 hours. (B-D) ChIP analysis of BRD4 binding to (B) promoter regions, (C) distal active regions, and (D)
super-enhancer regions. (E) Average signal intensity plot of BRD4 binding to active regions of the genome in CD41 T cells from a normal donor, CTCL patient, and CTCL patient
cells treated with 100 nM JQ1 in vitro for 24 hours. (F-H) Average signal intensity plot of BRD4 binding to (F) promoter regions, (G) distal active regions, and (H) super-enhancer
regions. (I) Pearson correlation map demonstrating correlation coefficients of BRD4 binding across all genomic regulatory regions between normal donor, CTCL patient, and
patient treated with JQ1. (J) MTS assay showing viability of CTCL-derived cell lines exposed to increasing doses of JQ1 from 0.25 mM to 20 mM. All cell lines demonstrate,50%
cell viability at high doses of JQ1. Fifty percent effective concentration (EC50) values are presented as a table. (K) Cell cycle analysis of CTCL-derived cell lines exposed to
increasing doses of JQ1 from 0.5 mM to 10 mM demonstrating the percentage of cells in sub-G0/G1 phase. Data are presented as mean 6 SEM unless otherwise specified.
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Inhibition of BRD4 binding by JQ1 significantly
reduces expression of tumor-associated NOTCH1
and RBPJ genes
To determine whether the expression effects are specific to
BRD4, we used siRNA to BRD4 in HuT-102 cells, which signifi-
cantly decreased BRD4 expression (80% to 90% transfection

efficiency; P , .0001). In these transfected cells, expression of
NOTCH1 (P 5 .0007) and RBPJ (P 5 .0065) were also signifi-
cantly reduced (Figure 3J, left). This is confirmed in patient CD41

T cells in which siBRD4 results in a significant decrease in BRD4
level (P 5 .0057) as well as NOTCH1 (P 5 .0260) and RBPJ
(P5 .0138) transcript levels (Figure 3J, right). By using ChIP-PCR,
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we demonstrated that treatment of CTCL patient–derived cell
lines with 1 mM JQ1 for 24 hours resulted in a decrease in BRD4
binding at the promoter regions of NOTCH1 and RBPJ (sup-
plemental Figure 5A). JQ1 treatment also resulted in significant
dose-dependent decreases in transcript levels of both tumor-
associated genes in vitro (supplemental Figure 5B-C).
Altogether, these data show that the broad genomic and gene-
specific effects of pharmacologic inhibition of BRD4 with JQ1 are
associated with clinical efficacy in an in vivo mouse model of
CTCL, suggesting that BRD4 should be explored as a therapeutic
target in CTCL.

Proteasome inhibitor bortezomib decreases BRD4
expression and reduces disease severity in
CTCL mice
To validate the finding in CTCL-derived cell lines that borte-
zomib treatment decreased BRD4 expression (Figure 1D-E)
and to further support the roles of BRD4 and miR-29b in the
pathogenesis of CTCL, we treated 3-week-old IL-15 transgenic
mice for 5 weeks with 1 mg/kg of intraperitoneal bortezomib.
Bortezomib-treated mice failed to develop clinical disease
(Figure 4A), and histologic lesions were mild (Figure 4B-C)

compared with vehicle-treated mice. Grossly, lesion severity
scores for bortezomib-treated mice (n5 4) averaged 0.5 6 0.14
compared with 2.5 6 0.14 of 5 possible (P 5 .0027) for vehicle-
treated mice (n 5 4) (supplemental Figure 4C). Average histo-
logic lesion score for bortezomib-treatedmice (n5 4) was 2.756
0.75 compared with the severity in the tissue of vehicle-treated
mice (6.06 1.0 of 7 possible; P5 .04). The numbers of infiltrating
malignant CD31 and CD41 T cells were significantly decreased
in bortezomib-treated mice compared with vehicle-treated mice
(Figure 4D-E). Bortezomib-treated mice (n 5 4) had a mean
of 90.4 6 16.69 infiltrating dermal CD31 cells compared with
133.86 1.65 (P5 .04) in vehicle-treatedmice (n5 4) (Figure 4D).
Bortezomib-treated mice had 59.1 6 5.08 dermal CD41

T cells per high-power field (4003) compared with 99.2 6 4.55
(P 5 .001) in vehicle-treated mice (Figure 4E). We also analyzed
transcript levels of pri-miR-29b1 in peripheral blood mono-
nuclear cells from bortezomib- and vehicle-treated mice as well
as protein expression of BRD4, NOTCH1, and RBPJ in the skin.
As expected, pri-miR-29b1 expression was significantly higher in
bortezomib-treated mice (n 5 4) (18.95 6 3.65; P 5 .02) com-
pared with vehicle-treated mice (n5 4) (1.076 0.19) (Figure 4F),
whereas BRD4, NOTCH1, and RBPJ protein expression was
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decreased (Figure 4G). These data demonstrate that treatment
with bortezomib results in decreased expression of NOTCH1
and RBPJ in vivo, in part by upregulation of miR-29b, which leads
to reduced activity and expression of BRD4. As a further con-
firmation of the role of miR-29b in downstream tumor-associated
gene expression, we assessed NOTCH and RBPJ protein levels
and found levels for both to be elevated in splenocytes of
miR-29b2/2 mice compared with WT mice (Figure 4H).

BRD4 binding enhances expression of IL-15
receptor complex in CTCL
IL-15 overexpression alone can induce development of CTCL in
vivo25; however, the mechanisms underlying autocrine signaling
in the progression of CTCL are poorly understood. To determine
the regulatory effect of BRD4 on IL-15 signaling, we analyzed
ChIP-seq data and found that BRD4 binding was increased in
CTCL patient cells at promoter regions of all 3 components of
the IL-15 receptor complex (IL-15Ra, IL-15Rb, and IL-15Rg)
(Figure 5A). This binding is reversed upon treatment with 100 nM
JQ1 to a level similar to that in normal donor cells. Furthermore,
treatment of the HuT-102 cell line with 1 mM JQ1 for 48 hours
resulted in a significant decrease in IL-15Rb and IL-15Rg, with a
modest decline in the IL-15Ra subunit (Figure 5B). Additional in
vitro treatment of HuT-102 cells with 50 nM bortezomib for
24 hours resulted in significant reductions in all IL-15 receptor
constituents, and BRD4 protein expression was also decreased
in bortezomib-treated cells (Figure 5C). Finally, splenocytes from

miR-29b2/2 mice demonstrated significantly higher IL-15 re-
ceptor complex protein expression than cells from WT mice
(Figure 5D).

IL-15 signaling increases BRD4 expression in human
and mouse T cells
It was previously shown that IL-15 drives a decrease in miR-29b
levels in natural killer cells.30 To examine the potential role of this
pathway in CTCL, CD41 T cells from healthy donors were stim-
ulated with 100 ng IL-15 in vitro for 48 hours. IL-15 treatment
significantly decreased pri-miR-29b1 levels compared with un-
treated cells (P5 .0001) (supplemental Figure 6A), whereas BRD4
protein expression was increased (supplemental Figure 6B, top).
Consistent with our hypothesis, IL-15 transgenic mice have in-
creased expression of BRD4 (supplemental Figure 6B, bottom),
NOTCH, and RBPJ (supplemental Figure 6C). Our workingmodel
for the regulation of BRD4 and miR-29b by IL-15 is presented in
supplemental Figure 6D.

IL-15 signaling results in repression of miR-29b and
increased BRD4 activity
To examine this proposed pathway further, we analyzed normal
donor T cells stimulated with IL-15 for 24 hours by immunoblot and
by ChIP-PCR at the miR-29b promoter. We show increased ex-
pression of components of the repressor complex c-Myc andHdac1
in stimulated cells (supplemental Figure 7A). This result corresponds
to increased binding of repressor complex constituents c-Myc and
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Figure 5. BRD4 binding enhances IL-15 receptor com-
plex expression in CTCL patient cells. (A) Gene tracks
depicting genomic occupancy of BRD4 (rpm per bp) at
regulatory regions of IL-15 receptor complex loci in CD41

T cells from a normal donor, a CTCL patient, and patient
cells treated with 100 nM JQ1 for 24 hours in vitro. (B)
Immunoblot of IL-15 receptor complex subunits (a, b, and g)
in HuT-102 cell line treated with vehicle or 1 mM JQ1 for 48
hours, with actin as internal control. (C) Immunoblot of
BRD4 and IL-15 receptor complex in HuT-102 cells treated
in vitro with vehicle or 50 nM bortezomib for 24 hours with
actin as internal control. (D) Immunoblot of IL-15 recep-
tor constituent protein expression in splenocytes from
miR-29b2/2 mice and age-matched WT mice (n 5 4 each).
Data are presented as mean 6 SEM unless otherwise
specified.
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Hdac-1 at themiR-29bpromoter (supplemental Figure 7B). Nextwe
transfected normal donor CD41 cells with BRD4 39UTR GFP or
control GFP vector and subsequently stimulated transfected cells
with 50 ng/mL IL-15 or control PBS. IL-15 signaling resulted in
increased BRD4 activity (percentage of GFP-expressing cells)
compared with unstimulated CD41 T cells, which is consistent with
repression of miR-29b (supplemental Figure 7C).

IL-15 and lack of miR-29b cooperate to drive
cellular transformation
To determine whether there may be cooperation between IL-15
signaling and decreased miR-29b that would drive malignant
transformation in CD41 T cells, we performed a cell trans-
formation assay using total splenocytes and thymocytes fromWT
and miR-29b2/2 mice, with or without IL-15. We observed sig-
nificantly increased cell transformation in miR-29b2/2 cells when
compared with WT cells (relative percentage of transformation,
112.9 6 2.004 vs 100 6 3.472 in spleen [P 5 .0325]; 129.8 6
4.884 vs 100 6 7.895 in thymus [P 5 .0325]). With IL-15 stim-
ulation, we observed significantly increased transformation over
unstimulated cells (relative percentage of transformation in WT
spleen, 127.3 6 6.561 [P 5 .0213]; WT thymus, 133.3 6 3.163
[P 5 .0173]; miR-29b2/2 spleen, 159.8 6 7.461 [P 5 .0037];
and miR-29b2/2 thymus, 183.36 9.768 [P5 .008]) (supplemental
Figure 8A-B). Altogether, these data show that IL-15 repressed
miR-29b levels in CD41 cells through recruitment ofMyc/Hdac1 at
the miR-29b regulatory region and that repressed miR-29b levels
contribute to increased BRD4 activity and ultimately CTCL disease
pathogenesis.

miR-29b regulates BRD4 and IL-15 receptor
complex expression in primary cells
To confirm the function of our proposed pathway in primary
human cells, we purified CD41 T cells from CTCL patients (n5 2)
and transfected them with increasing doses of miR-29b mimic
(100 ng and 250 ng) and scrambled control (250 ng). We
achieved significant increase in miR-29b expression in these
primary cells (P , .0001) (supplemental Figure 9A) and sub-
sequently noted significantly decreased expression of BRD4
(100 ng: 0.75 6 0.02 and 0.56 6 0.02; 250 ng: 0.78 6 0.02 and
0.62 6 0.01) (supplemental Figure 9B) and all 3 components of
the IL-15 receptor complex (IL-15Ra: 0.43 6 0.03 and 0.59 6
0.1745 for 100 ng and 0.29 6 0.01 and 0.29 6 0.03 for 250 ng;
IL-15Rb: 0.36 6 0.01 and 0.68 6 0.01 for 100 ng and 0.24 6
0.01 and 0.62 6 0.02 for 250 ng; IL-15Rg: 0.28 6 0.006 and
0.44 6 0.02 for 100 ng and 0.24 6 0.009 and 0.43 6 0.02 for
250 ng) (supplemental Figure 9C-E). We also demonstrated
decreased survival in miR-29b mimic–transfected cells (supple-
mental Figure 9F). These data further demonstrate that the activity
of our proposed regulatory pathway occurs in primary human cells.

Our working model demonstrates that in malignant cells, the
IL-15–driven decrease in miR-29b allows increased binding
of BRD4, which results in tumor-associated gene expression,
as well as expression of the IL-15 receptor complex (Figure 6A).
This regulatory scheme promotes the formation of an autocrine
feedback loop, which further promotes proliferation and cell
survival in malignant cells (Figure 6B). Finally, we showed that
strategic targeting of several components in this pathway led to
disruption of this loop and resulted in a significant therapeutic
benefit in our preclinical model.

Discussion
The role of epigenetic dysregulation in the pathogenesis of CTCL
is an area of active research and clinical interest.3,37 In addition to
global changes such as promoter DNA hypomethylation, muta-
tions in epigenetic modifiers have been identified in CTCL pa-
tients and have been suggested to play a role in the development
of disease.6,7,38,39 Epigenetic reader protein BRD4 has been a
therapeutic target of interest in several tumor types because BRD4
inhibitors such as JQ1 have shown efficacy in early-phase clinical
trials.40 The role and regulation of BRD4 in CTCL pathogenesis is
not yet known. Further defining the mechanisms of epigenetic
dysregulation in CTCL will be critical in developing effective
treatment strategies to modify epigenetic landscapes and influ-
ence favorable clinical outcomes for CTCL patients.

In this study, we sought to assess the expression and regulation
of BRD4 activity in CTCL cells as well as genome-wide and gene-
specific patterns of BRD4 binding in CTCL patients. Previously
studied mechanisms of the regulation of BRD4 focused on its
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creased miR-29b releases negative regulation on BRD4 which then binds acetylated
lysine residues on chromatin to direct gene expression. Upregulated genes include
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and both of these therapeutic strategies reduce oncogene and IL-15 receptor
complex expression. In nonmalignant CD41 T cells, miR-29b basal levels are higher,
and BRD4 binding is relatively low. (B) IL-15 autocrine signaling loop. The regulatory
pathway described facilitates formation of a self-sustaining autocrine loop that drives
oncogene activation and cellular proliferation. This loop can be disrupted through
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subcellular localization41 or interaction with transcriptional co-
activators such as Mediator.42 We identified IL-15 signaling and
downstream miR-29b as novel regulators of BRD4 protein ex-
pression in CTCL. The significance of these findings is high-
lighted by demonstration of the critical role of IL-15 in CTCL
pathogenesis,25 our observation of significantly lower expression
of miR-29b in CD41 T cells from CTCL patients, and increased
binding of BRD4 to regulatory regions in these cells. The
specificity of the effect of miR-29b on BRD4 expression was
confirmed by using a GFP-39UTR BRD4 vector construct in
normal donor CD41 T cells and by evaluating tissues from
miR-29b2/2 mice. We performed short-term in vitro treatment of
CTCL cell lines with bortezomib and quantified pri-miR-29b1
to evaluate early effects. HuT-78 was the only cell line that did
not increase miR-29b, and we suspect that this was a result of the
NF-kB–truncating mutation harbored by HuT-78 cells.43,44

Bortezomib acts in part by inhibiting NF-kB, which also results
in increased miR-29b,30 and thus the response in HuT-78 cells
may be due to altered NF-kB signaling.

Decreased miR-29b results in increased BRD4 expression and
subsequent binding at regulatory regions throughout the ge-
nome in CTCL patients. Molecular targeting of BRD4 by JQ1,
which competitively binds the acetyl-lysine binding motif to
displace BRD4 from chromatin,45 reverses BRD4-mediated ef-
fects on expression of NOTCH1 and RBPJ in patients and CTCL
cell lines, as well as in vivo in the IL-15 transgenic mouse. We
showed a slight decrease in BRD4 protein expression after in
vitro and in vivo treatment with JQ1 in CTCL-derived cell lines
and IL-15 transgenic mice, respectively. The cause is not certain
but may represent increased degradation of unbound protein
through physiologic cellular recycling.

We used a multi-tiered approach to demonstrate downstream
effects of IL-15 signaling in CTCL. IL-15 expression is increased in
CTCL cells, in part because of IL-15 promoter hypermethylation
that results in reduced binding of transcriptional repressor
Zeb1.30 Enhanced IL-15 signaling in CTCL is thought to form an
autocrine loop with increased IL-15 receptor complex expres-
sion on tumor cells thus promoting cellular proliferation.30

A similar signaling loop is described in adult T-cell lymphocytic
leukemia,46 but the mechanisms are poorly understood. We
used the proteasome inhibitor bortezomib to indirectly decrease
BRD4 function via increased levels of miR-29b, and a specific
inhibitor, JQ1, to directly disrupt BRD4 chromatin binding to
study the downstream effects of IL-15 signaling. Both approaches
resulted in decreased expression of BRD4-regulated genes

NOTCH1 and RBPJ and a decrease in IL-15 receptor complex
constituents. The availability of several drugs targeting the 26S
proteasome and current investigation of BRD4 inhibitors in
clinical trials provides an opportunity to explore the therapeutic
value of inhibiting this newly described miR-29b/BRD4 onco-
genic loop in CTCL.
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syndrome: clinical, histopathological and im-
munohistochemical review and update. An
Bras Dermatol. 2012;87(6):817-828.

3. Kohnken R, Fabbro S, Hastings J, Porcu P,
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