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KEY PO INT S

l Daratumumab
conjugated with 64Cu
efficiently binds to
CD38 on myeloma
cells and was mainly
detected in the bones
of mice.

l PET/CT based on
64Cu-radiolabeled
daratumumab displays
a higher resolution
and specificity for
detecting myeloma
than does 18F-FDG
PET/CT.

As a growing number of patients with multiple myeloma (MM) respond to upfront ther-
apies while eventually relapsing in a time frame that is often unpredictable, attention has
increasingly focused on developing novel diagnostic criteria to also account for disease
dissemination. Positron emission tomography/computed tomography (PET/CT) is often
used as a noninvasive monitoring strategy to assess cancer cell dissemination, but because
the uptake of the currently used radiotracer 18fluorodeoxyglucose (18F-FDG) is a function
of the metabolic activity of both malignant and nonmalignant cells, the results frequently
lack sufficient specificity. Radiolabeled antibodies targeting MM tissue may detect
disease irrespective of cell metabolism. Hence, we conjugated the clinically significant
CD38-directed human antibody daratumumab (Darzalex [Dara]) to the DOTA chelator and
labeled it with the positron-emitting radionuclide copper 64 (64Cu; 64Cu-DOTA-Dara). Here,
we show that 64Cu-DOTA-Dara can efficiently bind CD38 on the surface ofMMcells andwas
mainly detected in the bones associated with tumor in a MM murine model. We also show
that PET/CT based on 64Cu-DOTA-Dara displays a higher resolution and specificity to
detect MM cell dissemination than does 18F-FDG PET/CT and was even more sensitive than

were bioluminescence signals. We therefore have supporting evidence for using 64Cu-DOTA-Dara as a novel imaging
agent for MM. (Blood. 2018;131(7):741-745)

Introduction
Prognostic information to stratify multiple myeloma (MM) pa-
tients into distinct risk-based treatments is currently based on
specific genetic and cytogenetic abnormalities and clinical
characteristics.1,2 However, the extensive heterogeneity in
therapeutic response, even in patients sharing similar
characteristics,1,2 emphasizes the need for more accurate
prognostic tools.

Positron emission tomography/computed tomography using
fluorodeoxyglucose-18 (18F-FDG PET/CT) imaging in newly di-
agnosed MM patients correlates with progression-free
survival.3,4 18F-FDG PET/CT also predicts the progression rate
from smoldering MM to active disease.5 Hence, most investi-
gators now agree on the importance of using imaging as a
prognostic criterion for MM.6-8

However, despite widespread use of 18F-FDG PET/CT, its ability
to detect malignancies is dependent on metabolic activity.

Lesions with a low metabolic rate may therefore be undetect-
able. In fact, low expression of hexokinase-2 in MM cells is as-
sociated with false-negative 18F-FDG PET/CT in MM.9 By binding
to a tumor antigen rather than relying on the metabolic state of
a malignancy, antibody-based approaches may allow imaging of
cancer cells with low metabolic activity. In support, the chimeric
fibril-reactive monoclonal antibody can be used in patients with
light chain–associated amyloidosis to identify candidates for
passive immunotherapy.10,11

Daratumumab (Dara), a human anti-CD38 immunoglobulin
G1 (ĸ subclass) antibody against the highly expressed plasma
cell receptor CD38, has shown particularly efficacious clinical
activity12-16 and recently has been approved by the US Food
and Drug Administration for the treatment of relapsed MM.
Because almost all MM patients express CD38 on the sur-
face of their cancer cells, we hypothesize that tracing MM
cell dissemination by targeting CD38 could be a successful
approach.
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Figure 1. 64Cu-DOTA-Dara detectsMM cell dissemination in vivo. (A) The radiolabeled antibody 64Cu-DOTA-Dara (3.7 MBq, 10mg) was administered to 3mice that had been
transplanted by IV injection with a humanMMcell line (MM.1SGFP1/Luc1) before (7 days post-IV) and after (21 days post-IV) signs ofMMbonemetastasis as detected by BLI. The
mice were also imaged with 64Cu-DOTA-Dara radiolabeled antibody on the following days, and PET imaging identifiedMM cell dissemination in the bone (yellow boxes), which
overlap with the BLI signals in the same mouse. (B) 64Cu-DOTA-Dara (3.7 MBq, 10 mg) was also administered to 2 mice that had been transplanted by IV injection with U266 Luc1

MMcells, when clear signs (5 weeks post-IV) ofMMbone engraftment were detected by BLI. Themicewere imagedwith 64Cu-DOTA-Dara radiolabeled antibody after 1 day from
the radiolabeledDara injection (see also supplemental Figure 4B). Of note, no sign of engraftment was observed by PET/CT scan. (C) 64Cu-DOTA-trastuzumab (64Cu-DOTA-trast)
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Study design
See the supplemental Methods section, available on the Blood
Web site.

Results and discussion
The conjugation of Dara to DOTA was successful, as was
demonstrated by gel electrophoresis (supplemental Figure 1A-
B); DOTA-Dara was labeled with copper 64 (64Cu) efficiently,
with no evidence of aggregates (supplemental Figure 1C-D).
The immunoreactivity of 64Cu-DOTA-Dara preparations was
.95% (supplemental Figure 1E). 64Cu-DOTA-Dara was extremely
stable up to 48 hours in saline solution and in mouse serum
(supplemental Figure 2A-B). CD38-positive MM.1S green fluo-
rescent protein/luciferase-positive (GFP1/Luc1) and CD38-
negative U266 Luc1 MM cells,17 which express CD38 antigen
at the same levels as do the respective parental cell lines (sup-
plemental Figure 3A-B), were used to assess 64Cu-DOTA-Dara
specificity in vivo. Mice were analyzed 7 and 21 days after MM.1S
GFP1/Luc1 cell injection. Each animal was then injected with the
radiolabeled antibody 24 hours after bioluminescence (BLI) as-
sessment and imaged immediately (T0), at 4 hours and at days 1
and 2 after the injection (Figure 1A; supplemental Figure 4A). Both
BLI and 64Cu-DOTA-Dara PET/CT imaging of the same mice
suggested absence of MM bone engraftment in the mice imaged
at day 7, but bothmethods detected signals at day 21 (Figure 1A).
No positive bone signs were indicated in nonengrafted mice or in
mice engrafted with U266 Luc1 cells (Figure 1B; supplemental
Figure 4B). Lack of bone signaling was also observed in mice
engrafted with MM.1S GFP1/Luc1 cells but imaged by a MM
nonspecific radiolabeled antibody (64Cu-trastuzumab-DOTA
[64Cu-trast-DOTA]) (Figure 1C), and when unlabeled Dara
(cold) (50:1 excess) was used in combination with 64Cu-DOTA-
Dara (Figure 1D-E; supplemental Figure 4C). Ex vivo bio-
distribution studies at 24 hours verified the trends observed
through PET analysis (Figure 1F). 64Cu-DOTA-Dara was signifi-
cantly detectable in MM.1S-engrafted mice (n 5 4) in com-
parison with the tumor-free mice (n 5 4) and with the mice
injected with 64Cu-trast-DOTA (n 5 3) in the femurs, tibias,
humeri, and scapola, known sites of MM cell invasion (Figure 1F).
The same biodistribution trend observed in the control mice was
observed in the organs of the mice injected with U266 cells or
with cold unlabeled Dara (1:50) (Figure 1F). Higher signals were
also observed in all organs made of bone tissue such as sternum,
skull, and spinal column and in the lung (supplemental Figure
5A-B). 64Cu-DOTA-Dara was also significantly detected in the
spleen of MM.1S GFP1/Luc1–engrafted mice (Figure 1F;
supplemental Figure 5A), which was also confirmed by flow
cytometry (supplemental Figure 5B). In contrast, the majority
of 64Cu-DOTA-Dara remained in the blood of the control mice
(P , .0001) and was not significantly different in the other
organs (supplemental Figure 5A). To assess the sensitivity of

the 64Cu-Dara signal in comparison with the standard 18F-FDG
PET-CT scan, we analyzed an independent group of animals bear-
ing CD381 tumors. At 21 days after cell injection, mice were first
assessed by BLI and then injected with 18F-FDG (Figure 2A-B).
The same group of mice were then injected with 64Cu-DOTA-
Dara the next day, and PET imaging was performed (Figure 2C;
supplemental video A). BLI and 64Cu-DOTA-Dara PET/CT
revealed the presence of MM cells, whereas tumors were al-
most undetectable with the 18F-FDG PET/CT (Figure 2C-D). The
18F-FDG PET signals were mainly associated with the nonspecific
uptake of glucose in leg muscles and the brain. The 18F-FDG
bone signal was almost equal to the background signal of
18F-FDG in the heart, a contrast to the highly specific bone
signal detected by 64Cu-DOTA-Dara (Figure 2D; see also sup-
plemental videos A and B).

To assess the ability of 64Cu-DOTA-Dara to recognize MM cells
in the bones when the BLI signal was minimal or completely
absent, we used an independent group of mice for histology
analysis and for immunohistochemical staining for the MM cell
marker CD138. Step section of the bones show foci of MM cells,
as is also assessed by CD138 staining in the right and left femurs,
confirming the presence of MM cells in the location where both
BLI and 64Cu-DOTA-Dara signals were present (Figure 2E-G).We
also detected MM cells in the lower vertebral body, which had
no BLI signal (Figure 2E-G) and no cells in the humerus, which
was also found negative by PET/CT scan (Figure 2E-G).

The relatively short half-life of 64Cu (12.7 hours) may be ideal
for patient safety and is sufficiently long for PET/CT imaging
up to 48 hours after administration. We have used 64Cu-
labeled trastuzumab to safely detect human epidermal
growth factor receptor 2 (HER2)–positive tissue in metastatic
breast cancer (MBC) patients.18 64Cu was safe, and by day 1
after injection, 64Cu-trastuzumab-DOTA was able to detect
MBC, its binding correlating with patient HER2 status. Al-
though Dara has been conjugated with the radionuclide
89zirconium (89Zr),19 the tendency of 89Zr to accumulate in the
bones,19-21 associated with a longer time requested for im-
aging in contrast to 64Cu, may be a limitation in specifically
detectingMM cell dissemination in the bones. Our data clearly
show higher sensitivity of 64Cu-Dara-DOTA not only in com-
parison with 18F-FDG signal but also in comparison with BLI
imaging, an effect that was not seen when Dara was conju-
gated with 89Zr.19 Because our studies show a high sensitivity
of 64Cu-Dara-DOTA in detecting MM cells, we believe that this
imaging approach for MM may also be clinically relevant for
detecting minimal residual disease (MRD). MRD, as detected
by high throughput bone marrow DNA sequencing, is being
considered as a surrogate endpoint in clinical trials,22-24 be-
cause effective therapies necessitate 5 to 10 years of follow-up
to detect differences in survival.25,26 However, irrespective
of its sensitivity, this technique is marrow based and cannot

Figure 1 (continued) (3.7 MBq, 10 mg) was administrated to 3 MM.1S GFP1/Luc1–engrafted mice, as assessed by BLI imaging, and a PET/CT scan was performed 1 day after
64Cu-DOTA-trast injection. No bone signals were observed, but only high background associated with the circulating radiolabeled antibody. (D-E) Mice bearing CD381MMcells
(MM.1S GFP1/Luc1) with a high level of engraftment (see also supplemental Figure 4C), as assessed by BLI images, that were injected with 64Cu-DOTA-Dara (3.7 MBq, 10 mg)
without (D) and with (E) unlabeled Dara (500 mg) and imaged at day 1 by PET/CT. Almost no signs of engraftments were detected in the presence of cold Dara, independent
of the BLI signals. (F) 64Cu-DOTA-Dara PET/CT-positive mice (MM.1S GFP1/Luc1–engrafted mice: 4) and negative mice (tumor free mice: 4); 64Cu-DOTA-trast–treated mice (3);
unlabeled Dara (Block) treated mice (2); and U266-engrafted mice (2) were sacrificed, and organs were harvested at 24 hours and used for g counting to determine
their radioactive content, as is presented in the bar graphs as a percentage of the injected dose per gram (%ID/g). See also supplemental Figure 5A.
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account for a nonhomogenous bone marrow infiltration and
extramedullary involvement. In support of Dara as a unique
tool for imaging in MM, our group developed a 64Cu antibody
(elotuzumab [Elo]) against the highly specific MM receptor
CS1 (64Cu-DOTA-Elo). Although 64Cu-DOTA-Elo bound the
CS1 antigen in vitro, it did not identify bone engraftment
of CS1-positive MM cells in in vivo studies (data not shown).
We have begun a 64Cu-DOTA-Dara PET/CT imaging trial that
has the potential to affect MM clinical cell detection.
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Figure 2. 64Cu-DOTA-Dara PET/CT shows higher resolution than does 18F-FDG-PET/CT. (A-C) Representative images of 2 NSG mice (mouse 1 and mouse 2), which were
injected with 53 106 MM.1S GFP1/Luc1 cells. After 2 weeks from the injection, the mice were imaged using BLI (A), and after 24 hours, the same mice were imaged by 18F-FDG-
PET (B). The day after, 64Cu-DOTA-Dara (3.7 MBq, 10 mg) was administered to the samemice imaged with 18F-FDG-PET and BLI (C). (D) Graphical representation of the intensity
of the signal of 64Cu-DOTA-Dara PET/CT in comparisonwith 18F-FDG-PET/CT, expressed as a percentage of the increase in percentage of the injected dose per gram (%ID/gr) of
bone organs in comparison with the nonspecific signal of each radio nucleotide (%ID/gr) detected in the heart. A radiolabeled antibody identified MM cancer cells, which were
undetectable by 18F-FDG-PET scan. (E) Mice with minimum BLI signals were IV-injected with 64Cu-DOTA-Dara (3.7 MBq, 10 mg) and then imaged by PET/CT, which identified
MM cell dissemination in the bone (yellow boxes). (F-G) Representative images at different magnifications of tissue sections stained by hematoxylin and eosin stain (F) and
CD138 immunohistochemical stain (G) showing MM cell accumulation (black dashed ovals) in the left and right femurs and in the vertebral body (lower lumbar), but not in
the left humerus, which did not show PET/CT signals. H&E, hematoxylin and eosin; IHC, immunohistochemical.
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