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Most cases of genetic iron overload are characterized by ele-
vated systemic iron levels and iron deposition in parenchymal
cells due to inadequate expression of hepcidin. Here, we pre-
sent a novel mouse model of iron overload due to selective
overexpression of Smad7 in hepatocytes. Transgenic mice pre-
sent low hepcidin levels and iron accumulation prevalently in the
liver, implying that hepatic Smad7 overexpression causes severe
liver iron overload in mice. We speculate that patients with high
Smad7 expression in the hepatocytes may therefore be at risk of
developing liver iron overload.

Regulation of systemic iron homeostasis critically depends on
the adequate expression of the small liver peptide hormone

hepcidin.1 Large bodies of evidence demonstrate that impaired
transforming growth factor-b (Tgf-b)/bone morphogenic protein
(Bmp)/Smad signaling underlies low hepatic hepcidin expres-
sion. More precisely, mice with genetic disruption of endothelial
Bmp2 or Bmp6,2,3 hepatic Bmp receptors type I (Alk3, Alk2),4

Bmp coreceptor hemojuvelin (Hjv),5 or hepatic Smad46 show im-
paired Smad signaling and low hepcidin expression; in turn, low
hepcidin fails to inhibit iron uptake, which results in enhanced
iron deposition in various tissues.

In the canonical signaling pathway, Tgf-b family members, which
include Tgf-b, Bmps, and activins, as well as nodal, growth, and
differentiation factors, transduce signals by binding to type I
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Figure 1. Generation of hepatocyte-specific Smad7-overexpressingmice and liver status. (A) Schematic presentation of the Smad7-expression cassette: downstream of the
albumin regulatory elements (Alb.Enh.-Promotor) are globin intron sequences (Intron) and a lac-Z reporter gene (b-Gal) with polyA signal (pA), flanked by 2 loxP sites (indicated
by blue triangles). Downstream of the second loxP site is themurine Smad7 complementary DNAwith another polyA signal. The construct is flanked by insulator sequences (Ins.)
to minimize the influence of neighboring genomic regulatory sequences. (B) LacZ staining of the livers of wild-type (wt) mice and Smad7-tg single-transgenic animals showing a
clear and strong signal; liver sections from 2 Alb-Smad7–transgenic animals are shown to demonstrate partial to no staining reactions (original magnification 340). (C-D)
Presence of hepatic fibrosis was evaluated by immunohistochemistry for a-smooth-muscle actin (a-SMA) expression, extracellular matrix–producing cells (scale bar, 50 mm; inset
scale bar, 20 mm), and Sirius red (scale bar, 50 mm; inset scale bar, 20 mm), respectively. (E) Relative messenger RNA (mRNA) expression of Smad7 in the liver of Alb-Smad7-tg
(n5 7) and control mice (n5 5), measured by quantitative real-time polymerase chain reaction (PCR). (F) Immunohistochemistry for Smad7 expression (scale bar, 50 mm) on liver
sections from control and Alb-Smad7-tg mice (arrows indicate positive brown-colored staining). (G-H) Immunoblot analysis and relative quantification of pSmad1, total Smad1,
and b-actin proteins in the livers of Alb-Smad7-tg and control mice (n 5 3 per group). (I-J) Immunohistochemistry for Smad2 phosphorylation and quantification of pSmad21

hepatocyte nuclei per field on liver sections from Alb-Smad7-tg and control mice (I: scale bar, 200 mm; inset scale bar, 100 mm). Images are representative staining of 2 to 3 mice
per group. Data were analyzed using GraphPad Prism software and results are shown as mean 6 standard error of mean (SEM). For statistical analysis, a nonparametric
distribution and the Mann-Whitney U test were used. *P , .05; **P , .005; ***P , .0005.
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Figure 2. Iron overload phenotype in hepatocyte-specific Smad7-overexpressing mice. (A-B) Relative mRNA expression of hepcidin (Hamp) and several Tgf-b/Bmp target
genes in the liver of Alb-Smad7-tg (n5 7) and control mice (n5 5), measured by quantitative real-time PCR. (C) Hematoxylin-and-eosin (H&E) staining (scale bar, 100mm) and (D)
Perls’ staining (scale bar, 20 mm) for iron depositions in liver of Alb-Smad7-tg and control mice. (E) Nonheme iron content in liver and spleen of Alb-Smad7-tg (n5 7) and control
mice (n5 5). (F-G) Normalization of hepcidin and of phosphorylated Smad1 levels to liver iron in Alb-Smad7-tg and control mice. (H) Perls’ staining (scale bar, 50mm) in the spleen
of Alb-Smad7-tg and control mice. (I) Plasma iron levels in Alb-Smad7-tg mice (n 5 7) compared with control mice (n 5 3). (J) Hematological indices in Alb-Smad7-tg mice
compared with control mice (n5 3 mice per group). Images are representative staining of 3 mice per group. Data were analyzed using GraphPad Prism software and results are
shown as mean 6 SEM. For the statistical analysis, a nonparametric distribution and the Mann-Whitney U test were used. *P , .05; **P , .005; ***P , .0005. Hb, hemoglobin;
HCT, hematocrit; LIC, liver nonheme iron content; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; RBC, red blood cell.
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and type II serine/threonine kinase receptors to induce phos-
phorylation of the receptor (R)-activated cytoplasmic Smad-
signaling molecules; subsequently R-Smads complex with Smad4
and translocate to the nucleus where, in cooperation with other
nuclear factors, they regulate the transcription of target genes.7,8

Inhibitory (I) Smads, Smad6 and Smad7, are induced by Smad
signaling and act in negative feedback control mechanisms.7

Whereas Smad7 acts as pan inhibitor of both Tgf-b– and
Bmp-induced Smad signaling, Smad6 preferentially inhibits the
latter.7 Smad7 antagonizes Tgf-b signaling in the cytoplasm by
blocking R-Smad phosphorylation and by modulating Tgf-b
receptor activity either by dephosphorylation or degradation,
or by reducing its transcription.9 In the nucleus, Smad7 inhibits
Tgf-b signaling by disrupting the formation of functional
R-Smad/Smad4 complexes and their binding to DNA.10

I-Smads, and in particularly Smad7, are important signal trans-
ducers and key regulators of cellular processes including
proliferation, migration, apoptosis, and immune responses.9,11

A number of studies pinpointed to a complex role of Smad7 in
several cancers where it either inhibits or promotes cancer de-
velopment depending on cancer type and context.12 Importantly,
I-Smads recently emerged as novel regulators of hepcidin. We
found that adenoviral overexpression of Smad7 or Smad6
decreased hepcidin levels in primary hepatocytes, whereas
RNA interference–mediated inhibition of Smad7 or Smad6
increased hepcidin expression.13,14 These in vitro data pro-
posed that I-Smads, by modulating hepcidin expression,
might play an important role in the regulation of systemic iron
homeostasis. Hence, we generated mice with targeted over-
expression of Smad7 in hepatocytes (Alb-Smad7-tg mice)
(Figure 1A-B) (supplemental Material and methods, available
on the Blood Web site).

Transgenic mice developed normally with no overt phenotypic
abnormalities. The livers from transgenic mice showed no
signs of fibrosis (Figure 1C-D). We demonstrate that ectopically
overexpressed Smad7 is predominantly localized in the nucleus
of hepatocytes of transgenic mice (Figure 1E-F). Principally,
Smad7 resides in the nucleus and Tgf-b stimulation is needed
for its partial cytoplasmic distribution.15 We next measured the
levels of phosphorylated R-Smads in the livers of control and
Smad7-overexpressing mice. We found no significant changes
in the levels of pSmad1 between control and transgenic mice
by western blot analysis using the whole-cell liver extracts
(Figure 1G-H). Similarly, the levels of pSmad2 did not show
statistically significant variation, however, there was a tendency
toward less pSmad2 positively stained hepatocytes nuclei in
transgenic mice (Figure 1I-J), suggesting that Smad7 may to
some extent reduce Smad2 phosphorylation. Importantly,
increased hepatic Smad7 expression resulted in significant
downregulation of hepcidin (Hamp) (Figure 2A), substantiating
our previous in vitro findings.13 Similarly, the expression of
a number of Tgf-b/Bmp target genes, including Tgf-b1, Id1,
Activin, SnoN, and Col4a1, was decreased in the livers of
transgenic mice (Figure 2B). These findings suggest that Smad7
might act as transcriptional regulator rather than a mere regu-
lator of Smad signaling. Indeed, accumulating evidence showed
that Smad7 acted as transcriptional suppressor where its binding
to DNA via the Mad homology 2 (MH2) domain interfered with
formation of a functional R-Smads/Smad4–DNA complex.10,16

Moreover, Smad7 can also act as transcriptional corepressor in

cooperation with Yin Yang 1 (YY1)17 and histone deacetylase
(HDAC1).16 Future investigations may determine whether Smad7
interaction with protein-modification enzymes such as HDAC1
mediates an epigenetic regulation of hepcidin expression.

Given that transgenic mice show low hepcidin expression, we
next analyzed systemic iron levels. We observed significant
iron overload in the livers of transgenic mice with abundant
iron deposition predominantly in the periportal region without
obvious histological alterations (Figure 2C-E). A similar iron de-
position pattern is observed in mouse models of primary iron
overload (hemochromatosis) due to Hfe-, TfR2-, and hepatocyte-
specific Alk2 deficiency.4,18 Hfe, TfR2, and Alk2 regulate hepcidin
expression in response to iron/Bmp6 signaling; consequently,
the lack of these proteins results in impaired Smad signaling, low
hepcidin expression, and profound iron overload.4,18 Thus, in
regard to liver iron, hepcidin andpSmad levels are inappropriately
low in these mouse models. The same is seen in mice with over-
expression of Smad7 in hepatocytes (Figure 2F-G), implying that
suppression of hepcidin by Smad7 contributes to a substantial
increase in liver iron stores. By contrast, iron levels in the spleen and
plasma, as well as hemoglobin values, were not significantly dif-
ferent in transgenic mice compared with controls (Figure 2E,H-J).
Taken together, we show that mice with selective overexpression of
Smad7 in hepatocytes develop liver iron overload. Whether de-
ficiency of Smad7 in hepatocytesmay enhance hepcidin expression
and thereby affect iron homeostasis is currently unknown andwill be
interesting to investigate further.

Our findings bring attention to conditions characterized by
acquired iron overload, as is often seen in chronic viral or nonviral
hepatitis, which can progress to end-stage liver disease in-
cluding cirrhosis and hepatocellular carcinoma (HCC). Patients
with chronic hepatitis C virus (HCV) infections,19 HCV-transgenic
mice,20 andmurine models of alcoholic liver disease21 frequently
exhibit liver iron overload and low hepcidin expression. Im-
portantly, increased hepatic Smad7 expression was recently
reported in patients with chronic HCV infections.22 Further-
more, high Smad7 expression was detected in HCC nodules
when compared with surrounding nontumorous liver tissue.23

HCC patients and animal models of HCC present low hepcidin
expression.24,25 In light of our findings, we propose that hepcidin
expression in these conditions may further be suppressed by the
action of hepatocyte-specific Smad7. We speculate that patients
with increased hepatic Smad7 expression may therefore be at
risk of developing liver iron overload. This in turn may accelerate
disease progression and contribute to evenmore adverse outcome.
Whether high Smad7 expression may serve as a reliable marker
of chronic liver diseases and progression to HCC, and whether
therapeutic interventions to decrease Smad7 levels may help to
normalize hepcidin expression and prevent liver iron overload
and cancer development, warrant further investigations.

Collectively, our results unravel novel biological function of
Smad7 required for the control of liver iron metabolism.
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