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KEY PO INT S

l One-third of T-ALL
cases with JAK3
mutation harbor
2 JAK3 mutations.

l Double JAK3 mutants
show stronger
signaling than single
JAK3 mutants.

The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lym-
phoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling
and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we
observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of
which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3
competes with mutant JAK3 (M511I) for binding to the common g chain and thereby
suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its
limited oncogenic potential through the acquisition of an additional mutation in the mutant
JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased
potential to transform primarymouse pro–T cells to interleukin-7–independent growth and

were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3
mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the
accumulation of additional JAK3 mutations. (Blood. 2018;131(4):421-425)

Introduction
Janus kinase 3 (JAK3) is a nonreceptor tyrosine kinase that in-
teracts with the common g chain (IL2RG) of cytokine receptor
complexes.1 JAK1 kinase is also present within the cytokine
receptor complex and is bound to the complementary a or
b chain receptor.1 Sequencing studies have identified recurrent
mutations in both JAK1 and JAK3 in several hematological
malignancies.2-10 We described the importance of JAK3 muta-
tions in the development of T-cell acute lymphoblastic leukemia
(T-ALL) and showed that a majority of JAK3mutants require both
binding to the common g chain and presence of JAK1 for their
transforming capacities.11-13 However, the JAK3 L857Q/P and
L875H kinase domain mutants are exceptions and do not require
the common g chain or JAK1 for their transforming capacity.11,12

Between 10% and 16% of patients with T-ALL carry at least
1 mutation in JAK3.2,9,10,14-16 A more detailed analysis presented
here shows that up to a third of these patient cases harbor a
second JAK3 mutation, and we investigated the biological
significance of having multiple JAK3 mutations.

Materials and methods
The JAK3 genomic sequence was amplified by polymerase
chain reaction and subjected to PacBio long-read sequencing
(Pacific Biosciences). 293T and Ba/F3 cells were cultured in

RPMI1640 medium supplemented with 10% fetal bovine serum.
Ba/F3 cell medium was supplemented with interleukin-3 (IL-3;
10 ng/mL). Pro–T-cell cultures were established as described
previously.17 Retroviral vector production and transduction of
Ba/F3 and pro–T cells were performed as described.11 Cell
growth was analyzed using a Guava easyCyte Flow Cytometer
(Merck Millipore). For phospho flow, cells were fixed with Inside
Fix and permeabilization buffer (Macs Miltenyi) and stained with
an allophycocyanin-labeled antibody against phospho-STAT5
(eBioscience). Cells were analyzed using a FACSVerse cell ana-
lyzer (BD Biosciences), and data analysis was performed using
FlowJo software (Tree Star). This study was approved by the ethics
committees of the institutes involved, and informed consent
was obtained from theparticipants. Samples and clinical datawere
stored in accordance with the Declaration of Helsinki.

Results and discussion
JAK3 (M511I) is the most frequent JAK3 mutation in T-ALL, but
other mutations have also been described.2,9,10,14-16 Detailed
analysis of our next-generation sequencing data9,10,18 revealed
that 14 of 41 JAK3-mutant T-ALLs have either a homozygous
JAK3 mutation or 2 different JAK3 mutations (Figure 1A). In a
recently published exome sequencing study, 3 of 20 JAK3-
mutant T-ALL patient cases were reported to harbor 2 JAK3
mutations.14
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Wequestioned why the acquisition of a homozygous mutation in
JAK3 would be beneficial. JAK3 normally binds to the common
g chain of cytokine receptors,1 and most JAK3 mutants require

binding to the common g chain to activate downstream
signaling.11,12 In T-ALL cells with heterozygous JAK3 mutation,
there could be competition betweenmutant and wild-type JAK3
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Figure 1. JAK3 mutation data in T-ALL and investigation of JAK3 as a competitive factor for JAK3-mutant signaling. (A) Graph shows variant allele frequency (VAF) of
JAK3 mutations in patients with T-ALL; 34% of JAK3-mutant patient cases either have a second JAK3 mutation or a homozygous JAK3 mutation. (B-D) Proliferation curves
of Ba/F3 cells expressing JAK3 (M511I), JAK3 (L875H), or JAK3 wild type in the absence of cytokines: parental Ba/F3 cells (B), Ba/F3 cells lacking common g chain (guide RNA
[gRNA] targeting exon 3 of Il2rg) (C), and Ba/F3 cells lacking common g chain (gRNA targeting exon 5 of Il2rg) (D). Significance was calculated compared with wild-type
control using the Kruskal-Wallis test and Dunn’s multiple comparisons correction. (E-F) Graph showing relative percentage of Ba/F3 cells expressing wild-type JAK3 or
empty vector in cells transformed by JAK3 M511I (E) or JAK3 L857Q (F). Competition between wild-type JAK3 and mutant JAK3 results in the disappearance of wild-type
JAK3–expressing cells, which is observed only in panel E. Experiment was performed in biological triplicate. Standard error of the mean is shown. Significance was
calculated using 1-way analysis of variance and the Bonferroni correction. ***P # .001, **P # .01, *P # .05, not significant [ns] P $ .05. GFP, green fluorescent protein.
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Figure 2. Double JAK3 mutants show enhanced signaling and transformation potential. (A) Crystal structure of JAK3 JH1 (kinase domain; Protein Data Bank [PDB]: 1YVJ)
and a model of JAK3 JH2 (pseudokinase domain) obtained by SWISS-MODEL server using JAK1 JH2 (PDB: 4L00) as a template. The 2 domains were assembled together by
superimposition of the TYK2 JH1-JH2. (B) Western blot analysis of whole-cell lysates after reconstitution of the IL-7 receptor signaling complex in 293T cells. The 293T cells were
transiently transfected with the constructs as indicated. (C) Phospho-flow analysis of phospho-STAT5 in Ba/F3 cells expressing single or double JAK3 mutants after 3 hours
without IL-3 stimulation. Results are comparedwith BaF3 wild-type cells after 3 hours without IL-3 stimulation. (D-F) Growth of primarymouse pro–T cells in the absence of IL-7. (D)
STAT5 (N642H) confers IL-7–independent growth. Significance was calculated compared with empty vector control using the Mann-Whitney test. (E) Analysis of single or double
JAK3 mutants; only double mutants confer IL-7–independent growth to pro–T cells. Significance was calculated compared with wild-type control using the Kruskal-Wallis test
and Dunn’s multiple comparisons correction. (F) Comparison of proliferation of pro–T cells transduced with 2 JAK3-mutant constructs or 1 double JAK3-mutant construct; only
the JAK3 double mutant confers IL-7–independent growth. Significance was calculated compared with JAK3 A572T using the Kruskal-Wallis test and Dunn’s multiple
comparisons correction. (G) Graph showing relative percentage of Ba/F3 cells expressing wild-type JAK3 (green fluorescent protein positive [GFP1]) in cells transformed by
STAT5 (N642H), JAK3 (L875H), JAK3 (M511I1A573V), or JAK3 (M511I). Competition between wild-type JAK3 and mutant JAK3 results in the disappearance of wild-type
JAK3–expressing cells, observed only in the case of JAK3 (M511I). **P # .01, *P # .05.
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for binding to the same receptor. Biallelic mutation of JAK3,
which is associated with loss of wild-type JAK3, would then be
beneficial for the leukemia cells.

To verify if wild-type JAK3 can compete with mutant JAK3,
we coexpressed wild-type JAK3 with JAK3 (M511I) or JAK3
(L875H) in Ba/F3 cells. These JAK3 mutants represent 2 types
of JAK3 mutants: JAK3 (M511I) is dependent on binding to
the common g chain, whereas the JAK3 (L875H) mutant is not.
Using CRISPR/Cas9 editing, we showed that in Ba/F3 cells, JAK3
(M511I) also requires binding to the common g chain, whereas the
JAK3 (L875H) mutant could easily transform in the absence of the
common g chain (Figure 1B-D). Next, we used wild-type Ba/F3
cells transformed by JAK3 (M511I) or JAK3 (L875H) to determine
the effect of JAK3 coexpression. Ba/F3 cells express low levels of
Jak3; therefore, expression of JAK3 from the same viral vector as
the mutant JAK3 constructs would result in nearly equal expres-
sion levels of wild-type andmutant JAK3. Ba/F3 cells coexpressing
wild-type JAK3 and JAK3 (M511I) had a significant disadvantage
in cell growth compared with cells only expressing JAK3 (M511I;
Figure 1E). In contrast, cells that coexpressed wild-type JAK3 and
JAK3 (L875H) showed equivalent cell growth compared with cells
only expressing JAK3 (L875H; Figure 1C). Taken together, these
data indicate that JAK3 wild type acts as a suppressive factor for
JAK3 mutants that are dependent on the receptor complex.

To determine whether T-ALL patient cases with 2 different JAK3
mutations had monoallelic or biallelic mutation of JAK3, PacBio
long-read sequencing was performed on samples from indi-
viduals TLE44 (M511I1A572T) and 22347 (M511I1A573V;
Figure 1A). We observed that 16% to 34% of the reads contained
both mutations, respectively; 3% to 9% of the reads contained
M511I only; and ,1% of the reads contained the A572T or
A573V mutation (on a total of 913 and 8182 high-quality reads;
data not shown). These data indicate that the leukemia cells
acquired the M511I mutation first and that the A572T or A573V
mutation was acquired later on the same allele.

It has been shown that single M511I, A572T, or A573V mutations
lead to activation of JAK3 kinase activity.5,11 M511 is part of the
SH2-pseudokinase (JH2) linker (Figure 2A). The pseudokinase
domain (JH2) interacts with the kinase domain (JH1) active site
through residues from the aC and N-lobe of the pseudokinase
domain. In JAK3,M511I could slightly destabilize the conformation
of the SH2-JH2 linker, leading to the activation of the kinase
domain. The 2 alanines (A572 and A573) are found in the aC helix
of the pseudokinase domain (Figure 2A), which was shown to be
involved in the mechanism of activation of JAK2 V617F.19

This structural information suggests that a combination of M511I
and A572T or A573V mutations might be additive and lead to
a stronger activation of JAK3 than each mutation alone. We
compared the signaling and transforming properties of the
double mutants JAK3 (M511I-A572T) and JAK3 (M511I-A573V)
compared with the single mutants. When these proteins were
expressed in 293T cells (togetherwith the IL-7 receptor proteins),11

STAT5 phosphorylation was significantly stronger for double JAK3
mutants compared with single JAK3 mutants (Figure 2B). Ba/F3
cells expressing double mutant JAK3 constructs also showed
stronger STAT5 phosphorylation compared with single JAK3 mu-
tants as measured by phospho flow (Figure 2C). Despite these
differences in STAT5 phosphorylation, growth of Ba/F3 cells was

not different between single or double JAK3 mutant–expressing
cells (data not shown).

We next tested the capability of the JAK3 mutants to drive
IL-7–independent growth of primary mouse pro–T cells.17 We
confirmed that constitutive JAK/STAT signaling was able to confer
IL-7–independent growth by expressing the STAT5B (N642H)
mutant (Figure 2D). Expression of the single JAK3 mutants (M511I,
A572T, or A572V) was unable to confer IL-7–independent growth
(Figure 2E-F), whereas the double JAK3 mutants (M511I-A572T
and M511I-A572V) were able to drive IL-7–independent growth of
the pro–T cells (Figure 2E-F). Strikingly, the double JAK3 mutant
required Jak1 and was sensitive to a JAK1 selective inhibitor
(ruxolitinib; supplemental Figure 1, available on the Blood Web
site) but was not affected by wild-type JAK3 overexpression
(Figure 2G). These data suggest an increasedbindingof thedouble
JAK3 mutant to the receptor associated with increased signaling.

Together, these data illustrate that JAK3 M511I is a relatively
weak kinase that can obtain increased signaling by acquisition of
an additional mutation in the pseudokinase domain. Previous
reports have described the cooccurrence of JAK1 and JAK3
mutations, JAK3 and IL-7 receptor mutations, and JAK1 and PTPRC
deletions, all of which act to increase JAK/STAT signaling.19-22 We
demonstrate that acquisition of additional JAK3 mutations is another
mechanism increasing JAK/STAT signaling during T-ALL progression.
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