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Dû, Fabien Lebras, Sophie Lefort, Elena Loppinet, Jean-Pierre
Marolleau, Marie-Pierre Moles-Moreau, Lysiane Molina, Nadine
Morineau, Franck Morschhauser, Emmanuelle Nicolas-Virelizier,

Frédéric Peyrade, Isabelle Roche-Lachaise, Anna Schmitt, Adrian
Tempescul, Mohamed Touati, Olivier Tournihac, Elodie Gat,
Laure Flament, and Florence Broussais.

REFERENCES
1. Armand P, Engert A, Younes A, et al. Nivolumab for relapsed/refractory

classic Hodgkin lymphoma after failure of autologous hematopoietic cell
transplantation: extended follow-up of the multicohort single-arm phase II
CheckMate 205 trial. J Clin Oncol. 2018;36(14):1428-1439.

2. Chen R, Zinzani PL, Fanale MA, et al; KEYNOTE-087. Phase II study of the
efficacy and safety of pembrolizumab for relapsed/refractory classic
Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125-2132.

3. Robert C, Ribas A, Hamid O, et al. Durable complete response after dis-
continuation of pembrolizumab in patients with metastatic melanoma
[published online ahead of print 28 December 2017]. J Clin Oncol.
doi:10.1200/JCO.2017.75.6270

4. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for
malignant lymphoma. J Clin Oncol. 2007;25(5):579-586.

5. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international
workshop to standardize response criteria for non-Hodgkin’s lymphomas.
J Clin Oncol. 1999;17(4):1244-1253.

DOI 10.1182/blood-2018-03-841262

© 2018 by The American Society of Hematology

TO THE EDITOR:

A common TCN1 loss-of-function variant is associated
with lower vitamin B12 concentration in
African Americans
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Vitamin B12 (VB12), or cobalamin, is a water-soluble vitamin. It
serves as an enzyme cofactor in the 1-carbon metabolism path-
way, which plays a key role in awide range of biological processes,
including red blood cell (RBC) formation, DNA synthesis, and
myelination of the central nervous system.1-3 VB12 deficiency is
clinically associated with megaloblastic anemia and neurode-
generative disorders and is also linked to cardiovascular diseases,
which is thought to be mediated via hyperhomocysteinemia.1,3

Uptake of VB12 from the diet in the gastrointestinal tract depends
on intrinsic factor (encoded by GIF).3,4 VB12 in blood is bound
to haptocorrin (HC; encoded by TCN1) and transcobalamin
(encoded by TCN2) and circulates as holohaptocorrin (holoHC)
and holotranscobalamin, respectively.3,5,6

Although VB12 deficiency often results from poor gastrointestinal
absorption,7 genetic factors also contribute to phenotypic var-
iation. Previous genome-wide association studies (GWASs),
primarily focusing on populations of European and Asian an-
cestry, have identified 13 loci (FUT2, CUBN, TCN1, MUT,
MS4A3, FUT6, PRELID2,CLYBL,CD320, TCN2,ABCD4,MMAA,
and MMACHC) associated with VB12.8-15 GWASs in Chinese11

and Indians14 identified VB12-associated shared genetic variants
across ancestry groups, as well as population-specific variants.
VB12 and holoHC concentrations are higher in blacks than in
whites,16 yet no GWAS has examined the genetic determinants
of VB12 specifically in African Americans (AAs). In the current
study, we used whole-genome sequencing (WGS) from the
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National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics
for Precision Medicine (TOPMed) Program to assess genetic
variants associated with VB12 in an unselected population-based
sample of AAs from the Jackson Heart Study (JHS).17

The JHS is a population-based longitudinal study based in
Jackson, Mississippi17,18; additional information is reported in
supplemental Methods (available on the Blood Web site). The
JHS was approved by the Institutional Review Board of the

Table 1. Association of TCN1-rs34530014 with VB12 concentration

Trait Study SNP CHR:POS N EA/NEA EAF BETA (SE) P*

VB12 JHS rs34530014 11:59631467 1280 A/AC 0.036 20.817 (0.104) 6.48 3 10215

VB12 BioVU rs11822978 11:59626896 725 T/C 0.034 20.158 (0.038) 3.28 3 1025

VB12 BioMe rs11822978 11:59626896 3199 T/C 0.032 20.272 (0.037) 2.76 3 10213

CHR, chromosome; EA, effect allele; EAF, effect allele frequency; NEA, noneffect allele; POS, position; SE, standard error; SNP, single nucleotide polymorphism.

*Genome-wide significance was predefined as P , 1.69 3 1029 or 0.05/29 665 030 variants tested.
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Figure 1. Locus-zoom plots. TCN1-rs34530014 (A) and
FUT2-rs507766 (B). Genetic coordinates are displayed
along the x-axis (Build 37/hg19), and genome-wide
association significance level is plotted against the
y-axis as 2log10(P value). The purple diamond indi-
cates the top hit. LD is generated using JHS WGS data
and is indicated by the color scale in relationship to the
top hit, with red for strong LD (r2 . 0.8) and navy blue
for weak LD (r2 , 0.2).

2860 blood® 21 JUNE 2018 | VOLUME 131, NUMBER 25 LETTERS TO BLOOD

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/25/2859/1466025/blood841023.pdf by guest on 02 June 2024



University of Mississippi Medical Center, and participants pro-
vided written informed consent. At the baseline examination,
VB12 was measured in plasma in a subset of 1851 JHS partici-
pants using a homogenous enzyme immunoassay system and
Hitachi 911 equipment (Roche Diagnostics, Indianapolis, IN).19

A total of 3406 JHS participants underwent 303 coverage
WGS through the TOPMed project at the Northwest Genome
Center at the University of Washington, and genotype calling
was performed by the Informatics Resource Center at the Uni-
versity of Michigan, as previously described.20 After quality control
(supplemental Methods), a total of 29 665 030 variants (minor allele
frequency. 0.001) and 1280 participants (20.6-91.6 years of age,
65.5% female, VB125 639.96 289.3 pg/mL) were included in the
discovery analysis (phs000964.v2.p1 for sequencing data and
phs000286.v5.p1 for VB12 data on the Database of Genotypes
and Phenotypes; https://www.ncbi.nlm.nih.gov/gap).

Association of each single variant with rank-based inverse-
normal–transformed VB12 concentration was tested in JHS
participants adjusted for age, sex, and the first 10 principal
components (PCs) of genetic ancestry using a linear mixed model
approach to account for familial relationships, as implemented in
EPACTS 3.2.6 on the University of Michigan ENCORE server
(https://encore.sph.umich.edu). Genome-wide significance was
predefined as P , 1.69 3 1029, or 0.05/29 665 030 variants
tested; 33 variants across 2 genomic regions (TCN1 and FUT2)
reached genome-wide significance (P , 1.69 3 1029) for VB12

(supplemental Figure 1).

The index variant rs34530014 on chromosome 11 is a 1-bp
deletion of TCN1 (minor allele frequency 5 0.036; P 5 6.48 3
10215; Table 1; Figure 1A) associated with lower VB12. It is a loss-
of-function (LoF) frameshift mutation (p.Val58Cysfs) prevalent
only among African ancestry populations, originally reported in
2 Afro-Caribbean pedigrees with HC deficiency.21 Replication of
the novel LoF variant TCN1-rs34530014 was performed using
genomic data from 2 AA electronic medical record–linked
biobanks: the Biobank of Vanderbilt University (BioVU)22 and
BioMe of Mount Sinai23 (supplemental Methods). Because TCN1-
rs34530014 was not directly genotyped or imputed in BioVU or
BioMe, we used its linkage disequilibrium (LD) proxy rs11822978
(r2 5 0.98 in JHS) and confirmed its association with lower VB12

in 3924 additional AAs from BioVU and BioMe (Table 1). TCN1-
rs34530014 is distinct from other VB12-associated TCN1 variants
(including 2 missense variants, rs34324219 and rs34528912) iden-
tified in Europeans and Indians.9,12-14 Of the TCN1 variants
previously associated with lower VB12, only rs34324219 was
nominally associated with lower VB12 in the JHS (P 5 .009;
supplemental Table 1). Together, these results demonstrate an
ancestry-specific role for rs34530014 in lower VB12 concentra-
tion in African ancestry populations and substantial allelic het-
erogeneity in the genetic architecture of VB12 at the TCN1 locus.

The identification of this naturally occurring LoF mutation prev-
alent in AAs allowed us to further investigate additional he-
matologic and clinical consequences of mild HC deficiency,
beyond the association with lower VB12 concentration. The as-
sociation of rs34530014 with additional quantitative traits, in-
cluding RBC indices and homocysteine, was assessed in the JHS
and the Women’s Health Initiative SNP Health Association Re-
source24 (supplemental Methods). An elevated concentration of
methylmalonate is a more sensitive and specific marker for

VB12 deficiency1,3; unfortunately, it was not available in our data
sets. In addition, a phenome-wide association study (PheWAS)
of TCN1-rs11822978 was performed in BioVU and BioMe.
A total of 340 traits was scanned for association using logistic
regression adjusted for age, sex, and the first 10 PCs, including
metabolic, neurological, and hematologic outcomes and dis-
orders. Individual study association results were combined
using fixed-effect inverse-variance–weighted meta-analysis,
and P values were corrected for multiple testing. Although
marginal associations (P , .05) were observed for mean cor-
puscular hemoglobin and mean corpuscular volume, as well as
diagnosis codes Vitamin Deficiency and Other Deficiency Ane-
mia, none of these reached the Bonferroni-corrected threshold
(P . .006, or 0.05/8 traits for RBC indices, supplemental
Table 2; and P . 1.47 3 1024, or 0.05/340 traits for PheWAS,
supplemental Table 3).

In contrast to mutations of TCN2, which result in transcobalamin
II deficiency (OMIM #275350) with severe clinical manifesta-
tions,25 the clinical impact of HC deficiency is poorly defined.
The distinct consequences of TCN1 and TCN2 mutations are
consistent with the fact that holotranscobalamin is the bioactive
form of VB12 that is taken up by all tissues, whereas the bi-
ological role of holoHC is unclear.6 Despite the relatively large
overall sample, the small number of homozygotes (4 in JHS)
limited our ability to accurately assess the recessive effect of the
TCN1-rs34530014 on VB12 and related traits and disorders.
Therefore, further investigation, including very large phenotypic
data sets of African ancestry individuals, will be needed to draw
firm conclusions about the clinical impact of HC deficiency.

The index single nucleotide polymorphism at the other genome-
wide significant association peak in the JHS on chromosome 19
was rs507766 (located in the 39 untranslated region of FUT2;
P 5 5.51 3 10211) (Figure 1B). This noncoding variant is in only
moderate LD (r25 0.55 in JHS) with the common secretor variant
FUT2-rs601338 (P 5 1.49 3 1027 for association with VB12

in JHS), which was previously identified in Europeans and
Indians.8,9,14 Thus, we found evidence for 2 functional alleles
involving FUT2: 1 with an additive genetic effect (rs507766) and
1 with a dominant effect (rs601338) on VB12 (supplemental
Table 4). We confirmed 4 previously identified loci (MUT,
MMACHC, FUT6, and CD320; supplemental Table 1) at P , .05
with consistent association directions of effects.

We report a novel association between the African ancestry–
specific LoF variant TCN1-rs34530014 and VB12 concentration
and an additional FUT2 variant rs507766 associated with VB12

specific to AAs, highlighting the ancestry heterogeneity of ge-
netic factors that influence VB12. Another population-specific
VB12-associated LoF variant, CLYBL-rs41281112 (p.Arg259Ter), is
found in ;3% of apparently healthy non-African individuals (but is
rare in Africans).11 Further elucidation of the genetics and role of
HC-bound VB12 may lead to improved diagnosis and differentia-
tion of true bioavailable VB12 deficiency from total VB12 deficiency.
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TO THE EDITOR:

Plerixafor effectively mobilizes CD56bright NK cells in blood,
providing an allograft predicted to protect against GVHD
Peggy P. C. Wong,1,2,* Amina Kariminia,3,* David Jones,4 Connie J. Eaves,5-7 Ronan Foley,8,9 Sabine Ivison,3 Stephen Couban,10
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Canada; 4Department of Medicine, Memorial University, St. Johns, NL, Canada; 5Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada;
6Department of Medicine and 7Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; 8Hamilton Health Sciences Centre,
Hamilton, ON, Canada; 9Department of Medicine, McMaster University, Hamilton, ON, Canada; and 10Department of Medicine, Dalhousie University, Halifax, NS,
Canada

The recent Blood article by Schroeder et al demonstrates that
plerixafor mobilizes a unique hematopoietic stem and pro-
genitor cell (HSPC) product that is enriched in plasmacytoid
dendritic cell (pDC) precursors (pre-pDCs).1 This study further
reports that enrichment of these cells in plerixafor-mobilized
allografts is associated with lower cumulative incidence of acute
graft-versus-host disease (aGVHD) and chronic graft-versus-host
disease (cGVHD). In an earlier study, Waller et al reported a
protective advantage against aGVHD of pDCs derived from
bone marrow (BM) but not granulocyte colony-stimulating factor
(G-CSF)-mobilized peripheral blood (PB) graft.2 Studies have
shown that allogeneic transplantation with a BM allograft results
in lower rates of aGVHD and cGVHD when compared with
G-CSF–mobilized PB graft. In a commentary to the Schroeder
study, Waller proposes that the relatively rapid onset of mobi-
lization by plerixafor (hours vs days by G-CSF) generates a novel
PB graft that immunologically and phenotypically resembles
cells harvested from bone marrow.3 He hypothesizes that this
unique allograft contains immune subsets, including pre-pDCs
and pDCs, which favorably modulate alloreactivity post-
transplantation thus resulting in lower GVHD rates.

Recently, the Canadian Blood and Marrow Transplant Group
(CBMTG) conducted a phase 3 randomized trial and compared
the impact of G-CSF–mobilized PB to BM. In this trial, G-CSF–
treated BMdonors had a significantly lower frequency of cGVHD,4

similar to that seen in the Schroeder study. A further compre-
hensive investigation of the donor graft composition found that
the lower rate of cGVHD in G-BM correlated most closely with a
higher proportion of CD56bright regulatory NK cells (NKreg) rep-
resented as the percentage of CD56bright NKreg cells.5 Additional
evidence of the importance of this immune-regulatory pop-
ulation is our recent observation of a correlation of low numbers of
CXCR31CD56bright NKreg cells with the onset of cGVHD in adults.6

Based on these observations, we hypothesized that an alternate
donor cell population, with a selective increase in NKreg cells by
plerixafor, may contribute to the lower rate of cGVHD seen in the
recent Schroeder study.

To address this possiblemechanism, we recruited 9 healthy adult
human volunteers after full consent. This study was approved by
the Dalhousie University and University of British Columbia (UBC)
researchethical boards. All subjectswerebetween18and60 years of
age and were enrolled at the Dalhousie University. All biological
analyses were performed at the UBC-affiliated BC Children’s Hos-
pital Research Institute. Five subjects received 1 dose of plerixafor at
240 mg/kg per day subcutaneously and PB and BM samples were
harvested prior to administration and at 4 and 24 hours after plerixafor
administration. The subsequent 4 participants each received 4 daily
doses of G-CSF at 5 mg/kg per day for 4 days, followed by a dose
of plerixafor on day 5. To minimize the impact of circadian rhythm,
PB and BM samples were collected between 9 AM and noon, prior to
G-CSF administration, afterG-CSF completion, and at 4 and24hours
after plerixafor administration. We performed a focused analysis on
CD56bright NKreg cells in these samples using multiparametric flow
cytometry. Nucleated cells isolated from peripheral blood and bone
marrow samples were stainedwith CD3, CD8, perforin, granzyme B,
CD56 antibodies conjugated to fluorescein isothiocyanate, phyco-
erythrin, PB, Flow-Check 770 fluorospheres, and allophycocyanin,
respectively. Stained cells were acquired by LSR II cytometer (BD)
and the data were analyzed by FlowJo v10. The immunophenotype
of NKreg cells is CD3-, CD56bright, perforin- and granzyme-B-.

Plerixafor significantly mobilized nucleated cells to PB after
4 hours of treatment, whereas no significant difference was ob-
served after 24 hours of treatment (Figure 1A). Furthermore, longer
treatment time resulted in a significantly lower cell number indicating
that plerixafor’s action peaked at 4 hours after administration. The
magnitude of mobilization observed 4 hours after plerixafor ad-
ministrationwas similar to that seen in the previous phase II clinical
study.7 Interestingly, plerixafor did not alter the nucleated cell
number in the bone marrow (Figure 1A). Four daily injections of
G-CSF followed by plerixafor administration significantly mobi-
lized more nucleated cells to PB than either treatment alone
(Figure 1B). However, the two agents mobilized similar number of
nucleated cells to PB separately. Therefore, plerixafor mobilized
nucleated cells to peripheral blood more rapidly than G-CSF.
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