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Cellular therapies play a major and expanding role in
the treatment of hematologic diseases. For each of these
therapies, a narrow therapeutic window exists, where
efficacy is maximized and toxicities minimized. This
review focuses on one of the most established cellular
therapies, hematopoietic stem cell transplant, and one

of the newest cellular therapies, chimeric antigen receptor–
T cells. In this review, Iwill discuss the current state of thefield
for clinical end point analysis with each of these therapeutics,
including their critical toxicities, and focus on the major
elements of success for each of these complex treatments
for hematologic disease. (Blood. 2018;131(24):2630-2639)

Introduction
The scope of cellular therapeutics is broad and expanding.
Although adoptive T-cell therapeutics (in particular, chimeric
antigen receptor T [CAR-T] cells) have garnered the lion’s
share of attention in the past several years, these newly US
Food and Drug Administration (FDA)-approved therapeutics
still represent a small proportion of the entire scope of cellular
therapies in clinical use, and those undergoing clinical investi-
gation for patients with hematologic diseases. Indeed, the cellular
therapy in widest use remains hematopoietic stem cell transplant
(HCT), with many new initiatives in graft manipulation designed to
increase efficacy and decrease transplant-associated complica-
tions. In addition to CAR-T therapies, there are also a number of
other T-cell therapies that do not involve CARs (most prominently
including antiviral T cells aswell as T-cell therapeutics using tumor-
specific T-cell receptors), as well other effector cells (particularly
natural killer cells) designed to reduce malignant relapse. Finally,
there are the regulatory cellular therapies, most prominently in-
cluding CD41FoxP31 regulatory T cells, as well as a number of
other suppressive cell-based therapies (including mesenchymal
stromal cells, myeloid-derived suppressor cells, and type 1 reg-
ulatory T cells, among others). For each of these therapies, a
critical therapeuticwindow exists, where efficacy ismaximized and
toxicities minimized. This review will focus on HCT and CAR-T-cell
therapies, in which this therapeutic window can be small, and in
which toxicities, when they occur, can be fatal. It will provide an
overview of the state of the art in monitoring clinical efficacy and
toxicity for each, and the surrogatemarkers that aremost useful for
interrogating their attendant risk-to-benefit ratios.

The elements of transplant success
HCT is a complex procedure with multiple stages, and at each
stage, critical elements exist that define success or failure. It is
useful to divide the transplant process into 4 phases: (1) trans-
plant conditioning; (2) day of transplant; (3) preengraftment;

(4) postengraftment. The gold standard of transplant success,
encompassing success at all of the stages, is a patient who, a year
posttransplant (and thereafter), is alive and in remission and has
successfully reconstituted protective immunity without graft-
versus-host disease (GVHD). The key clinical end points that en-
compass eachof thesemilestones and the accompanying surrogate
markers (if they exist) are discussed in the following sections.

Transplant conditioning
Conditioning for transplant can be divided into regimens that are
expected to completely (or nearly completely) ablate the recipient
marrow (“myeloablative”) and those that would be considered
nonmyeloablative and thus are not expected, in themselves, to
ablate the marrow. Of the myeloablative-conditioning strategies,
some are less toxic than others, with these less-toxic strategies
deemed “reduced-intensity” or “reduced-toxicity” conditioning,
in contrast to the standard myeloablative total body irradiation–
and high-dose chemotherapy–based strategies. Although con-
ditioning is a critical component to transplant, there are no
standard surrogate markers for conditioning success, other than
the eventual engraftment of donor marrow. However, a robust
comorbidity index exists that helps to stratify patients for their
risk of transplant-mediated toxicities and for transplant-related
mortality, thereby informing decision-making about condition-
ing intensity.1,2 The well-described impact of comorbidities on
nonrelapse mortality (NRM) and the increasing average age of
patients undergoing HCT (as well as the well-recognized in-
crease in NRM in patients younger than 1 year of age who are
often transplanted for genetic diseases) are driving research into
more targeted, less globally toxic conditioning regimens. One of
the most exciting strategies involves the use of targeted mono-
clonal antibodies, most prominently those targeting c-kit (CD117),
CD47, and CD45, studies of which have recently been published
by groups at the Fred Hutchinson Cancer Research Center,3-5

Stanford University,6 and Harvard University.7 Although these
antibodies are not specific for hematopoietic stem cells, off-target
toxicity has not been a major problem to date. Although clinical
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trials using these new agents are just beginning, the advent of
these antibody-based approaches represents a major advance,
and ushers in a new era of nongenotoxic transplantation.

Day of transplant
Transplant day (day 0) is the shortest phase of every transplant,
but potentially the most important in terms of determining
transplant success or failure. The prevailing graft sources (bone
marrow, peripheral blood stem cells, cord blood) and the
spectrum of HLAmatching all make a major impact on transplant
outcome, but are beyond the scope of this review. This review
will focus on graft engineering, as it is this maneuver that ties
HCT most closely with other cellular therapies.

One of the major strategies for graft manipulation, which has
been used for several decades, is T-cell depletion. Ex vivo T-cell
depletion was first applied to many graft types in the 1980s,8-18

and gained traction with HLA-haploidentical HCT, given the
significant risk of severe GVHD that occurred with haplo-HCT in
the pre-posttransplant cyclophosphamide era.19-22 This strategy
was initially performed by removal of T cells from the graft,23 and
is now accomplished by positive selection of CD341 cells.24 Al-
though this strategy has been highly effective in controlling
GVHD, other complications, including graft loss, malignant relapse,
and infectious complications remain significant issues, although
there are several important studies from groups in Perugia, Italy,
and at the Memorial Sloan Kettering Cancer Center (MSKCC)
in which relapse rates were not increased despite the control of
both acute and chronic GVHD.22,25-27

Given the ongoing concerns with whole-scale T-cell depletion
(especially without high-intensity pretransplant conditioning), re-
cent work has concentrated on a more nuanced approach, which
involves removal of the ab1 T cells28,29 (those that are most im-
plicated in alloreactivity) while preserving gd T cells, natural killer
cells, monocytes, and dendritic cells,28-30 thus better preserving
antimicrobial protective immunity and graft-versus-leukemia.31-34

Another approach that has been added to the ab2T-cell de-
pletion strategy has been the gene modification of T cells by the
gene encoding caspase-9, iC9,35,36 which renders them suscep-
tible to ablation with the dimerizing agent AP1903,36-39 and the
subsequent addition of titrated amounts of these ablatable T cells
posttransplant.40 Initial results have been encouraging41 and a
number of larger trials are ongoing to fully evaluate this approach.
The final strategy for graft engineering that will be discussed is
naive T-cell depletion. This approach was based on substantial
preclinical data supporting the critical role that naive T cells play
in GVHD in murine studies.42-44 Based on these results, several
groups have begun clinical investigations using this strategy.45-48

The results from the Fred Hutchinson Cancer Research Center
have documented a striking decrease in chronic GVHD despite
no substantial impact on acute GVHD when naive T-cell–
depleted peripheral blood stem cells were transplanted after a
high-intensity conditioning regimen.47,48 The impact on chronic
GVHD was encouraging, and larger, multicenter trials of this
graft-engineering approach are currently under way.

Preengraftment, hematologic engraftment, and
immune reconstitution
In the preengraftment period, there are a number of significant
risks, associated both with the ongoing toxicities of conditioning

and with the inherent risks of pancytopenia. In this phase of
transplant, the surrogate markers are well established, and in-
clude the day of neutrophil engraftment, the day of platelet
engraftment, and the degree of donor chimerism (with day 30
assessments standardly performed). Although the concept of
successful engraftment has historically been associated with the
rise in neutrophil count (and its attendant decrease in the risk
of serious bacterial and fungal infection), there has been less
certainty about what constitutes fully functional hematologic and
immunologic reconstitution. In particular, surrogate markers for
successful immunologic reconstitution, as it relates to lympho-
cyte engraftment, antiviral immunity, and the impact on late-
onset immune dysregulation have not yet been established.
Although historically a CD4 count of .200 3 103 cells per mL
had been implicated as at least partially protective against some
viral infections,49 our understanding of the pace and character of
effective immune reconstitution is becoming more compre-
hensive, as has been our understanding of the impact that latent
viruses can make on this reconstitution. Thus, recent work from
my laboratory and others in both unrelated donor and hap-
loidentical HCT has documented the significant quantitative and
qualitative effect that cytomegalovirus (CMV) reactivation can
make on posttransplant T-cell expansion.50,51 Of note, this work
has underscored the fact that, although CMV is the major driver
of the quantitative reconstitution of effector CD8 cells, this does
not necessarily equate to functional competence. Indeed, our
calculations of the number of deficits in the T-cell repertoire
in patients who reactivated CMV compared with those who did
not suggest that CMV-reactivating patients may have signifi-
cant defects in T-cell–mediated protective immunity.50 This
observation is consistent with a recent study from MSKCC,
which focused on T-cell–depleted HCT, and demonstrated that
functional competence of T cells after mitogen stimulation is
more predictive of survival advantage after HCT than quanti-
tative lymphocyte expansion.52 This functional competence,
and the diversity of the T-cell repertoire, can also be linked to
thymic health after transplant.53-59 The surrogate markers for this
competence are also becoming more sophisticated and include
T-cell receptor excision circle assays, naive T-cell regeneration,
and T-cell receptor repertoire diversity in both naive and antigen-
experienced CD4 and CD8 T-cell populations.54-59

Postneutrophil engraftment
The period after neutrophil engraftment and through the first
year posttransplant is dominated by 2 major toxicities, each of
which there has been the subject of major initiatives to identify
surrogate markers to help guide preemptive and treatment
strategies. The first toxicity, GVHD, represents the major cause
of NRM for the vast majority of transplant paradigms. Although
clinical staging and grading of both acute and chronic GVHD are
well established, our ability to predict and develop accurate
prognoses for patients with GVHD is still in its infancy. Given
the importance of preventing and treating GVHD, over the past
decade, there has been a major emphasis on developing bio-
markers for this disease. For acute GVHD, much progress has
been made in identifying a panel of serum biomarkers that can
risk-stratify patients who develop acute GVHD.60-73 This work has
now matured to the point where clinical trials can incorporate
biomarkers as well as sophisticated clinical staging74 to risk-
stratify patients for treatment studies, representing a major
step forward for the field. The field of chronic GVHD is also
making strides in the areas of soluble biomarkers,75-85 although
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these are not yet as robust as those for acute GVHD, likely due to
the inherent complexity of chronic GVHD, in terms of its timing,
clinical presentation, and underlying immunopathologic drivers.
There is also a growing focus in the field in identifying cellular
biomarkers of this disease. This work has been driven by detailed
flow cytometric evaluation of the T- and B-cell subpopulations
driving both acute and chronic disease,86-102 as well as increasing
use of systems-based transcriptomic approaches to identifying
the pathways associated with GVHD, both in preclinical models
and clinical samples.50,103-107 This work is identifying a new cohort
of targetable pathways for GVHD control, many of which are
amenable for clinical translation.

Although GVHD is the most significant cause of NRM after HCT,
the primary cause of death after transplant for patients with
leukemia or lymphoma remains relapse of their primary disease.
The issue of disease relapse, and the development of strategies
to prevent and/or treat relapse has undergone an explosion of
activity in the 5 five years, based on the landmark success
of cellular therapies designed to eliminate malignancies. The
most striking successes have been with the CAR-T-cell therapies
targeting the CD19 antigen. However, as with other cellular
therapies, CAR-T cells are associatedwith a complex risk-to-benefit
profile.

CAR-T cells: new efficacy, new toxicities
For patients with relapsed leukemia, and for those with primary
refractory disease, the outlook with conventional chemotherapy
remains dismal. In the past 5 years, a subset of these patients,
predominantly including those with CD19-expressing acute
lymphoblastic leukemia (ALL), have been successfully treated
with CD19-redirected CAR-T cells, which has represented a
watershed moment for cellular therapeutics. This success has
been built on decades of research and the development of both
immune-engineering and gene transfer capabilities, with the first
successful trials published in pediatric B-cell ALL in 2013,108 with
multiple follow-up studies now completed. The striking efficacy
of this therapeutic strategy has led to the rapid approval of
2 CAR-T therapies: tisagenlecleucel and axicabtagene ciloleucel,
with more approvals expected. Although the vast majority of
CAR-T-cell trials for hematologic diseases have focused onCD19-
redirected T cells, there are a number of new trials targeting
other B-cell antigens (including CD20, CD22, CD30, and B-cell
maturation antigen109-112), T-cell antigens, as well as early trials
targeting antigens associated with acute myeloid leukemia.113-124

The elements of success with
CAR-T therapies
As with HCT, CAR-T-cell therapies are composed of multiple
stages, and at each stage, critical elements exist that contribute
to success or failure. It is useful to divide CAR-T cellular therapies
into 4 distinct stages: (1) patient selection and cell manufacturing;
(2) preinfusion chemotherapy; (3) remission-induction and CAR-
T–associated toxicities; and (4) postremission therapeutic strate-
gies. Given the early stage of the field of CAR-T cellular
therapeutics, there is still considerable debate about what con-
stitutes success in this field. Thus far, the definition of success has
focused on remission induction, with many patients receiving
CAR-T cells going on to have further consolidative therapy (most

commonly including HCT). Indeed, the reimbursement strategy
for the first FDA-approved CD19-CAR-T product, tisagenlecleucel,
includes charging for this therapy only if successful remission (but
not long-term cure) is achieved. However, as CAR-Ts are more
widely used, and used earlier in the treatment pipeline, these
definitions of successwill need to evolve, and critical questions about
the acceptability of CAR-T–associated toxicities, and the need
for additional treatment after CAR-T therapy (and how to select
patients that do or do not need further treatment) will need
further refinement.

Cell manufacturing and patient selection
Although there is growing interest in the development of uni-
versal, “off-the-shelf” CAR-T products,125,126 the prevailing
paradigm for CAR-T-cell manufacture currently relies on the
creation of a patient-specific product. To manufacture this
product, T cells need to be obtained from the patient (usually by
apheresis) and then expanded ex vivo to reach the desired in-
fusion dose. This process can be challenging, especially in the
heavily pretreated patient populations currently being treated
with CAR-Ts. Although the first studies of CAR-Ts included a
relatively high rate of failure to successfully manufacture a CAR-T
product (and included a preexpansion feasibility assessment,
which eliminated significant numbers of prospective patients),127

newer studies have documented high rates of success (.95%
for ALL and .89% for neuroblastoma in the largest study of
manufacturing efficacy to date).128

The composition of CAR-T-cell products has also evolved, al-
though there is not yet a recognized gold standard. Two key
elements of CAR-T composition need to be considered: (1) the
structure of the CAR construct itself, and (2) the cellular com-
position of the infused product. (1) The structure of the CAR
transgene has evolved from a “first-generation” structure, which
expressed the CD3-z signaling domain, to “second-generation”
CARs, in which one of many possible costimulatory signals (the
2 most common being CD28 and 41BB signals) were added
to CD3-z, to “third-generation” CARs, which contain 2 costim-
ulatory signals in tandem (CAR construct structure reviewed
in June et al129). Although the identity of the costimulatory
domains have gained the most attention of late, there are
multiple other considerations in engineering an optimal CAR
construct, and a comprehensive discussion of these is beyond
the scope of this review. These engineering considerations have
been recently reviewed by Srivastava and Riddell, Gomes-Silva
and Ramos, and Lim and June.130-132 (2) The cellular composition
of the CAR-T-cell infusion is similarly complex and is also rapidly
evolving. The original CAR-T infusions contained unselected
products from expansion cultures; thus, patient-specific vari-
ability in terms of CD4:CD8 ratio, naive/central/effector memory
composition, and the proportion of CAR-T–transduced cells en-
sued. Given the enhanced ability of central memory T cells to
expand and persist after adoptive transfer,133-136 several studies
have enriched CAR-T products for this subpopulation. Although
current CAR-T infusion strategies often do not include the puri-
fication of specific memory subpopulations, CAR-T culture con-
ditions optimized separately for CD4 and CD8 expansion have
been developed that are also geared toward producing a cell
product with a defined CD4:CD8 ratio, and with optimized
expansion and persistence characteristics.137,138 Although many
strategies for defining and optimizing CAR-T products exist, a gold
standard for this aspect of CAR-T preparation has not been
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established, with wide variation in the culture conditions and final
composition of CAR-T-cell products. It is also important to consider
the fact that in any CAR-T production process, not all T cells are
successfully transduced with the CAR-T construct. Therefore, most
manufacturing processes now include enrichment and/or selection
for the transduced cells, such that the infused product does not
contain a surfeit of non-CAR-Ts. Importantly, although boutique
manufacturing processes have, in the past, been able to handle the
demand for CAR-Ts, as the number of products needed grows,
more industrial, “untouched” manufacture processes will be re-
quired, and creating a system for CAR-T manufacturing that can
more closely resemble a blood bank than a research laboratory
(without compromising efficacy) will be a critical area of future
development.

Preinfusion chemotherapy
To optimize CAR-T-cell expansion after infusion, a state of
lymphodepletion is usually induced prior to cell delivery. This
approach capitalizes on the well-documented phenomenon of
homeostatic T-cell proliferation, which leads to T-cell expansion,
activation, and memory differentiation.139-141 Initial studies often
used cyclophosphamide alone for lymphodepletion, but en-
hanced expansion and persistence has been documented when
cyclophosphamide is combined with other agents, most com-
monly including fludarabine. Although there has been some
concern that fludarabine may have increased the risk for neu-
rotoxicity (given its known association with neurologic events
at very high doses), which is observed after CAR-T therapy (dis-
cussed in “CRES”), the predominance of the data argues against
this association being causative,142,143 and cyclophosphamide/
fludarabine chemotherapeutic regimens are widely used with
both CD19-directed and other CAR-T therapies. The goal of
preinfusion chemotherapy is twofold: (1) to deplete endogenous
T cells that might increase the risk of T-mediated rejection of
CAR-T cells,144 and (2) to enhance CAR-T expansion in the
lymphodepleted host.139-141

Remission induction and associated toxicities
One of the most remarkable results observed with CAR-T-cell
therapies against B-cell malignancies has been the high rates of
complete remission (CR) that have been observed (over 90% in
some studies),108,136-138,144-155 which are particularly striking
given the high-risk patient populations that have been treated.
However, despite the successful remission induction with CD19
CAR-Ts, these cells have also been associated with significant
toxicities. These include both a cytokine release syndrome (CRS)
and a neurotoxicity syndrome (newly termed CAR-T–related
encephalopathy syndrome [CRES]). CRS was the first major
toxicity measured in patients treated with CD19-CAR-T cells,
and remains the most commonly observed toxicity.108 This entity
encompasses a large number of signs and symptoms, which
range from low-grade fever and constitutional symptoms to life-
threatening multiorgan dysfunction, high fever, and hypoten-
sion. Neurotoxicity, or CRES, is the more rare, but most deadly
complication of CAR-T cells, and is characterized by confusion,
delirium, language disturbance, seizures, and cerebral edema.
Given the potential severity of both of these complications, there
have been significant efforts made in recent years in defining
these toxicities and testing potential prevention or treatment
modalities, including the formation of toxicity working groups156

to define cross-institution standards for diagnostic criteria and
treatment algorithms. Although significant advances have been

made, universal consensus has not been reached,157 and remains
a critical unmet need in the field, especially in the setting of FDA
approval, as these therapies move from specialized centers to
more broad implementation.

CRS CRS begins with the activation of T cells, when the CAR
engages its cognate antigenonbothmalignant andnonmalignant
cells. The active mechanisms causing CRS include the release
of cytokines and chemokines by the CAR-Ts themselves (promi-
nently including interleukin-6 [IL-6], IL-2, soluble CD25, interferon
g) along with activated “bystander” immune cells (including
monocytes and macrophages) that secrete multiple inflammatory
mediators.137,152,158-161 Although all of the risk factors for severe
CRS have not been determined, patients at higher risk have been
found to have higher CD19 antigen load (either from disease
or normal B cells), and to develop CRS earlier after cell infusion
(usually ,3 days after infusion138,152,161,162). Surrogate markers
for severe CRS that are both sensitive and specific are still be-
ing elucidated, with these studies garnering increasing statistical
power and predicative capability as increasing numbers of pa-
tients are treated with CAR-T cells. Two robust correlative markers
of severe CRS have been (1) the degree of expansion (and
the peak levels) of CAR-T cells measured in the peripheral
blood and (2) the presence of highly elevated serum IL-6
levels.137,138,142,152,156,159 Moreover, the functional association
of IL-6 levels with clinical disease has been demonstrated by the
ability of the anti-IL6R antibody tocilizumab (FDA approved for
CAR-T-cell therapy in 2017) and the anti-IL-6 monoclonal anti-
body siltuximab to effectively treat symptoms of CRS.138,152,162-165

In addition to IL-6 blockade, corticosteroids have also been used
to treat CRS,163,165,166 but their use has been viewed with caution,
given concerns that this treatment might blunt the antileukemia
efficacy of CAR-T-cell therapy. Despite the understandable con-
cerns, several studies have observed that use of steroids did not
appear to affect CR rates nor durability of CAR-T cells, although
extensive follow-up has not yet been completed.138,156,159,160

CRES Less prevalent than CRS, but clinically more concerning,
is CRES, the toxic encephalopathic syndrome that can accom-
pany CD19 CAR-T therapy.137,142,144,155,167,168 Although often
self-limiting, the syndrome can also be severe, and result in
seizures, obtundation, increased intracranial pressure, and ce-
rebral edema, which has, in a small proportion of patients, led
to death.137,142,144,155,161,167-169 Given the severity and potential
morbidity/mortality associated with CRES, there has been a
significant effort made to understand its pathophysiology.
Several hypotheses have been put forth. The first focuses on the
inflammatory cytokine milieu that accompanies CD19 CAR-T
therapy, and the accumulation of these cytokines in the brain in
the setting of high serum levels.151,156,159,160,165 The second fo-
cuses on direct T-cell infiltration into the cerebral spinal fluid
(CSF) and brain.108,151,152,165,170 Compelling new data also im-
plicate breakdown of the blood-brain barrier (BBB) in CRES,
supported by both histopathologic evidence and by the mea-
surement of systemic biomarkers for endothelial disruption
during CRES.142,168 A recent study by Gust et al has proposed a
pathophysiologic model of the interplay between CAR-Ts, cy-
tokines, the BBB, and CRES.142 In this model, the inflammation
associated with CRS leads to activation of endothelial cells in the
central nervous system (CNS), which drives release of 2 key
mediators of the ensuing BBB disruption. These are ANG2 and
von Willebrand factor, which together drive endothelial cell
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activation and BBB disruption as well as the coagulopathy that is
often observed during CRES. The BBB disruption results in a
“feed forward” loop in which more cells and cytokines can cross
into the CNS, leading to further activation of endothelial cells
and thus further CNS inflammation. This has important clinical
implications, as it suggests that therapeutic strategies that re-
store normal ANG2 or von Willebrand factor levels may be able
to prevent or treat CRES. Given the concern that corticosteroids
may impair long-termCARefficacy, findingmore targeted agents,
such as those that target ANG-2, would be a major advance
for the field.

Although the clinical studies are now starting to yield impor-
tant clues to the pathophysiology of CRES, one of the major
barriers to understanding the molecular pathobiology of CAR-
T–mediated neurotoxicity has been the lack of animal models for
this disorder. To address this, my research group, in collabo-
ration with Michael Jensen’s laboratory, has recently developed
the first nonhuman primate (NHP) model of CRS and neurologic
toxicity, using CD20 CAR-T cells in rhesus macaques171 and
Bruce Blazar’s group has recently developed a mouse model of
CAR-T toxicity, in which human CD19-specific mouse CAR-
T cells were adoptively transferred into mice whose normal
B cells express a hCD19 transgene at hemizygous levels.172

Using the NHP model, we demonstrated CAR-T-cell expansion
and B-cell aplasia, as well as CRS and neurotoxicity that closely
mirrors what has been observed clinically.171 Thus, this model
induces elevations in the serum of multiple cytokines, and has
documented disproportionately high concentrations of several
cytokines in the CSF. Importantly, it has also been able to re-
capitulate clinical and histopathologic neurotoxicity. Coincident
with the clinical neurotoxicity, we identified significant en-
cephalitis, which was characterized not only by the accumulation
of CAR-T cells, as expected, but also by the accumulation of
non–CAR-T cells that infiltrated both the CSF and brain pa-
renchyma. The results of the NHP model and of the new clinical
studies suggest that neurotoxicity is associated with a complex
program of immune activation, which encompasses multiple
cellular and soluble mediators, which include (1) an increase
in multiple cytokines in the CSF compared with the serum and
(2) the development of encephalitis, in which both CAR and
non–CAR-T cells accumulate in both the CSF and the brain. The
NHPmodel thus also suggests that the breakdown in the integrity
of the BBB is key to clinical neurotoxicity and that strategies
designed to protect this barrier may be key to protecting patients
from this major complication of CAR-T-cell therapy.

Postremission therapeutic strategies
One of the key unanswered questions in CAR-T-cell therapeu-
tics, even for the most efficacious CD19-CAR-T products, is how
best to manage patients after successful remission induction.
The first wave of studies enrolled patients who were at very
high risk of imminent death from their primary disease: these pa-
tients had been refractory to standard treatment approaches or
had relapsed (often multiple times). They had very few, if any,
alternatives among the more conventional therapeutic ap-
proaches. In these patients, the achievement of a CR was amajor
achievement. However, although the successful induction of CR
is critical, this is not, in itself, a sufficient end point to determine
the ultimate success or failure of CAR-Ts. Longer follow-up,
focused on the stability of CR for years after infusion, is begin-
ning to be reported and provides both reason for celebration

and also a mandate for further optimization of these ther-
apeutics.138,144,152,173 Thus, recent work from multiple centers
in the United States and China have documented high CR
rates as well as sustained remissions in patients treated with
CD19-CAR-T cells, both with and without additional consolida-
tion,108,111,136-138,144-155,173 striking results given the high-risk patient
populations that have been treated. However, it is now clear that
for most patients, the CR is not followed by long-term remission,
with more than half of patients ultimately relapsing following
CAR-T therapy. Thus, several recent studies continue to document
high (;70% to 90%) remission rates in pediatric and adult patients
with B-cell ALL,144,145,151,152,162,174-176 but with significant relapse
rates, even in short-term follow-up, and with a recent long-term
analysis by the MSKCC group documenting event-free survival of
6.1 months and overall survival of 12.9 months in patients treated
with CAR-T therapy.173 Markers that distinguish a high risk of
relapse vs long-term relapse-free survival after CAR-T therapy are
actively being sought. Although greater persistence of CAR-
T cells has been correlated with long-term survival in some studies
(especially in studies of 4-1BB–containing CARs),137,138,144,155 this
is not a universal finding, and, especially with CD28-containing
CARs, long-term survival was most strongly correlated with the
development of “deep” minimal residual disease–negative re-
mission after CAR-T therapy and a lower disease burden at the
start of treatment.173 Given the early stage of most of the CAR-
T-cell studies, additional long-term studies and the discovery
of surrogate markers of a sustained response to CAR-Ts are in-
creasingly critical, as they will help inform decision-making about
risk stratification post-CAR-T therapy. This risk stratification is
of central importance in making decisions about what other
therapies (if any) to offer patients who have been treated with
CAR-Ts. Perhaps themost commonof thesepostremission strategies
is HCT. And, of note, although the MSKCC long-term data
described similar outcomes for patients treated and not treated
with HCT after CAR-T-cell therapy,173 this was a retrospective, not
randomized-controlled analysis. However, these data and those
from other trials suggest that carefully designed randomized trials
of post–CAR-T-cell therapies (including determining whether
post-CAR-T-cell HCT improves outcomes) are nowwarranted. These
trials, as well as moving CAR-Ts earlier in the treatment paradigm
for ALL represent the critical next phase of CD19-CAR-T clinical
investigation. When discussing postremission therapeutic strate-
gies for CAR-Ts, it is also critical to carefully consider the types of
relapse that occur with the current generation of CAR-T
products. In B-cell ALL, these relapses are both of CD191

leukemia (indicating lack of long-term efficacy of the CARs) and
of CD192 clones, indicating mutational escape as a pivotal
event in disease relapse.111,112,137,138,144,152,154,155,173,175-177 The
next generation of CARs is tackling both of these modes of
treatment failure, and if successful, could further reduce the
need for postremission therapies.

Summary
In this review, one of the oldest (HCT) and one of the newest
(CAR-T) cellular therapies have been discussed, each of which
plays a critical role in the treatment of patients with hematologic
diseases. The reality of cellular therapeutics is that they have
a narrow therapeutic window, with significant toxicities that
often accompany their efficacy. Understanding the mechanisms
driving both of these processes, and identifying surrogates to
help optimize the risk-to-benefit ratio of these and other cellular
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therapies, will be critical to their successful implementation in
patients with hematologic diseases.
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