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KEY PO INT S

l Identification of genes
frequently mutated
in cHL, fostering
tumor growth in a
manner amenable to
pharmacological
targeting.

l Mutatedgenes include
the almost ubiquitous
targeting of JAK-STAT
pathway members, as
well as GNA13, XPO1,
and ITPKB.

Dissecting the pathogenesis of classical Hodgkin lymphoma (cHL), a common cancer in
young adults, remains challenging because of the rarity of tumor cells in involved tissues
(usually <5%). Here, we analyzed the coding genome of cHL by microdissecting tumor and
normal cells from 34 patient biopsies for a total of ∼50 000 singly isolated lymphoma cells.
We uncovered several recurrently mutated genes, namely, STAT6 (32% of cases), GNA13
(24%),XPO1 (18%), and ITPKB (16%), and document the functional role of mutant STAT6 in
sustaining tumor cell viability. Mutations of STAT6 genetically and functionally cooperated
with disruption of SOCS1, a JAK-STAT pathway inhibitor, to promote cHL growth. Overall,
87% of cases showed dysregulation of the JAK-STAT pathway by genetic alterations in
multiple genes (also including STAT3, STAT5B, JAK1, JAK2, and PTPN1), attesting to the
pivotal role of this pathway in cHL pathogenesis and highlighting its potential as a new
therapeutic target in this disease. (Blood. 2018;131(22):2454-2465)

Introduction
Classical Hodgkin lymphoma (cHL), a common cancer in young
adults, can be cured by chemotherapy and/or radiotherapy in
the majority of cases.1 However, about 20% of patients are re-
fractory to, or relapse early after, treatment, with consequent
suboptimal outcome, thus representing an unmet medical need.
Furthermore, the burden of late-onset therapy-induced toxicities
(eg, lung and heart dysfunction, secondary cancers, infertility) is
of increasing concern in all patients with cHL receiving che-
moradiotherapy at a young age.1

A deep understanding of cHL biology is therefore highly
desirable. However, the pathogenesis of cHL in general, and
its underlying genetic lesions in particular, have proven difficult
to elucidate because of the rarity of Hodgkin and Reed-
Sternberg (HRS) tumor cells in the involved lymph nodes.
HRS cells usually account for ,5% of the total cellularity, and
are embedded in an immune suppressive inflammatory back-
ground that is thought to be recruited by the HRS cells
themselves for fostering their growth and for evading the host
antitumor response.2,3

Progress in understanding the biology of cHL has therefore
required the laborious purification of HRS cells from tissues
(by microdissection or fluorescence-activated cell sorter sorting),

which led to clarifying the genetic origin of HRS cells from
normal germinal center B cells, despite the dramatic loss of the
typical B-cell phenotype.2,3 Various genetic lesions have then
been found to be recurrent in fractions of cHL cases, which
result in constitutive activation of the anti-apoptotic and pro-
inflammatory NF-kB and JAK-STAT signaling pathways (eg,
TNFAIP3 and SOCS1 disruption, respectively), as well as in
immune evasion (eg, PDL1/PDL2 copy number gain; B2M and
CIITA disruption).2,3

However, a comprehensive characterization of cHL by whole-
exome sequencing (WES), beyond that of a few cell lines4,5

and primary cases,6 is currently lacking. Here, we fill this gap
and identify several genes that are mutated at notable fre-
quencies and may represent new therapeutic targets in this
disease.

Materials and methods
Laser microdissection and WES
Full details are provided in the supplemental Data, available on
the Blood website, including a novel bioinformatics pipeline for
calling somatic mutations and the methodological approaches
(targeted sequencing and digital polymerase chain reaction)
used to validate it.
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Fluorescence in situ hybridization
Fluorescence in situ hybridization (FISH) for JAK2, TNFAIP3, and
B2M was performed according to standard protocols described
in the supplemental Data.

Functional experiments in cHL cell lines
L1236, HDLM2, L540, and L428 cells were subjected to lentiviral
transduction of anti-STAT6 short-hairpin RNAs (shRNA) or the
SOCS1 coding sequence, followed by monitoring of cell death,
as described in the supplemental Data. These data are shown in
the main text as raw percentages of viable cells (and in sup-
plementary figures as percentage of viable cells relative to the
corresponding infected negative control set at 100%) because
cHL cell lines are notoriously difficult to infect and their viability
often decreases after infection, which may potentially influence
the sensitivity of each cell line to different treatments.

The same 4 cHL cell lines, as well as 2 additional ones (ie, SUPHD1
and UHO1), were also treated with the JAK2 inhibitor fedratinib
and/or the XPO1 inhibitor selinexor, and then monitored for
apoptosis and/or viability, as detailed in the supplemental Data.
The experiments with fedratinib, which were aimed at con-
firming pharmacologically the apoptosis induction observed
on genetic silencing of the JAK-STAT pathway with STAT6 sh-
RNAs, were performed with fedratinib concentrations in the low
micromolar range (1.5 and 3 mM), based on the drug concen-
tration (1.5 mM) previously established to cause 50% of maximal
growth inhibition (IC50) in the STAT6 wild-type cHL cell line
L428.7 The experiments with selinexor aimed at providing an
initial assessment of the potential dependency of HRS cells on
XPO1 and were performed at the dose of 100 nM, based on the
median IC50 value of 123 nM that was previously established in
23 hematological and solid tumor cell lines (including the B-cell
lymphoma line Ramos, where selinexor IC50 was also 123 nM).8

Western blotting was performed to verify STAT6 downregulation
and exogenous SOCS1 expression after lentiviral transduction,
as well as to analyze the phosphorylation status of STAT tran-
scription factors basally and after JAK2 inhibition, using the
procedures and reagents described in the supplemental Data.

All experiments were independently performed at least twice,
giving reproducible results.

Results
The cHL coding genome
To define the genetic basis of cHL, we laser-microdissected
HRS cells9 (n 5 1200-1800 per case), along with a similar number
of adjacent nonneoplastic cells, from hematoxylin/eosin-stained
frozen lymph node sections of 34 patients with cHL (supple-
mental Table 1; supplemental Figure 1). DNA from each tumor
andmatched normal sample was subjected in duplicate to whole-
genome amplification (WGA) and independent WES of the du-
plicates to control the bias introduced by the WGA reaction
through a novel bioinformatics pipeline ad hoc designed (sup-
plemental Data). Unamplified germline DNA from peripheral
blood cells was also included as control in 26/34 patients.

The median coverage depth in WGA-tumor, WGA-normal, and
unamplified normal samples was 99, 114, and 142, respectively

(supplemental Table 2; supplemental Figure 2). We identified a
median of 47 nonsilent somatic mutations per tumor that were
present at $20% variant allele frequency, and hence, pre-
sumably in the major tumor clone (median: 43 single-nucleotide
variants and 3 short indels per tumor; supplemental Figure 3;
supplemental Table 3). Deeper sequencing analysis of 150
candidate tumor-specific changes identified across 26 sam-
ples previously subjected to WES confirmed the presence of
139 mutations (93%), including 130/139 (94%) single-nucleotide
variants and 9/11 (82%) short indels, validating the high speci-
ficity of the approach (supplemental Table 4). Importantly, allele
frequency estimates of somatic mutations in the deep targeted
sequencing experiment were highly similar to those obtained
in the WES experiment (correlation, 0.88; P value , 2.2e-16;
supplemental Figure 4). Somatic mutations of selected genes
were also validated by Sanger sequencing on tumor vs normal
WGA-DNA (supplemental Table 5), and somatic variants of the
most recurrently targeted gene (STAT6) were also confirmed by
digital polymerase chain reaction to be present in unamplified
DNA from whole-tissue sections at frequencies (supplemental
Table 6) consistent with the low percentage of HRS cells typically
present in lymph node biopsies.

In addition to previously known targets of genetic lesions in cHL
(B2M, TP53; SOCS1, JAK2, and PTPN1; and the NF-kB pathway
inhibitors TNFAIP3 and NFKBIE),2,3,10 this analysis revealed
several recurrently mutated genes that had not been previously
implicated in the genetics of cHL or had not been functionally
assessed, the most common of which were STAT6 (32% of
cases), GNA13 (24%), XPO1 (18%), and ITPKB (16%) (Figure 1;
supplemental Table 3).

Pervasive mutational targeting of JAK-STAT
pathway genes in cHL
Themost prominent genetic hallmark of cHL was represented by
mutations in the JAK/STAT signaling pathway (supplemental
Figure 5), with STAT6 and SOCS1 being the 2 most commonly
affected targets (32% and 59% of cases, respectively). Missense
mutations (n 5 18) of the STAT6 DNA binding domain were
found in 11/34 (32%) cases (Figures 1 and 2), including a highly
recurrent hotspot at the N417 residue (9/18 mutations) and
2 additional hotspots at D419 and N421 within the same binding
loop region (3/18mutations each). These variants largely overlap
with those reported in primary mediastinal B-cell lymphoma,
relapsed-refractory germinal center B-cell type diffuse large B-cell
lymphoma, and follicular lymphoma, where their role as gain-of-
function or loss-of-function events with respect to STAT6 tran-
scriptional activity is controversial.11-14Mutations were heterozygous
in all cases, except 1 (no. 8) showing an 83% variant allele
frequency, possibly indicating loss of the wild-type allele or, as
already shown to occur in cHL, amplification of themutant allele.12,15

In 6 cases, the same allele was targeted by multiple mutations
affecting up to 3distinct codons (Figures 2A; supplemental Figure 6).

Because gains/amplifications of JAK2 and mutations of the
JAK-STAT pathway inhibitor SOCS1 are frequent in cHL,2,16-18

we examined the distribution of these lesions relative to STAT6
mutations across the 34 cases. JAK2 copy number increase,
detected in 11/33 evaluable cases, was not preferentially as-
sociated with STAT6 mutations (4/10 STAT6 mutated cases
[40%] vs 7/23 wild-type cases [30%]; P value 5 .69, Fisher’s exact
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test). Conversely, SOCS1mutations, composed predominantly of
frame-shifting and non-sense events, were significantly enriched
in STAT6-mutated cases (n 5 9/10 vs 7/17 STAT6-unmutated
lymphomas; P5 .018) (Figure 1). This preferential association was
significant even when considering only SOCS1 disruptive variants
(n 5 8/10 vs 6/17; P 5 .046) and suggests a genetic interaction
between STAT6mutations and SOCS1-inactivating events in cHL.

Besides STAT6 and SOCS1 mutations, multiple genetic lesions
predicted to activate transducers of JAK-STAT signaling (JAK1,
JAK2, STAT3, STAT5B) or to inactivate its inhibitor PTPN1 were
found in 8 additional STAT6 wild-type cases lacking (or not
evaluable for) SOCS1 (Figure 1; supplemental Tables 3 and 5).
Thus, 87% (26/30) of the evaluable cHL cases carried genetic
lesions in members of the JAK/STAT cascade (Figure 1). To-
gether, these findings point to a key pathogenetic role for this
signaling pathway in cHL through pervasive genetic targeting of
its members (supplemental Figure 5).

Genetic and functional cooperation between STATs
mutation and inactivation of the JAK-STAT
inhibitor SOCS1
STAT transcription factors become activated on phosphorylation
by JAK tyrosine kinases that transduce cytokine receptor signals,
leading to STATs dimerization and translocation to the nucleus19

(supplemental Figure 5). In cHL, phosphoSTAT6 expression by
primaryHRS cells is observed in the vastmajority of cases (;80%),20-22

suggesting constitutive activation of this transcription factor down-
stream of JAK signaling. To assess the relevance of STAT6 and
SOCS1 mutations in the growth and survival of the cHL clone, we
independently tested the consequences of STAT6 silencing or
SOCS1 reconstitution on cell viability, using 3 phosphoSTAT61 cHL
cell lines harboring STAT6 and SOCS1 alleles in different configu-
rations (ie, L428 and HDLM2, both carrying inactivating SOCS1
mutations and wild-type STAT6, and L1236, carrying an inactivating
SOCS1 mutation and expressing an amplified N417Y-STAT6
mutant allele but not wild-type STAT612), whereas the L540
cHL cell line, which lacks mutations in both genes and shows no
STAT6 phosphorylation, was used as control.4-7,12,20

ShRNA-induced knockdown of total (and phospho) STAT6 with
either of 2 independent shRNAs consistently caused marked
apoptosis in the STAT6-mutated L1236 cells, whereas it had no
or a less pronounced effect in the 3 STAT6 wild-type cell lines,
independent of whether they showed STAT6 phosphorylation
(Figure 3; supplemental Figure 7). Thus, STAT6 mutations may
contribute to sustaining the growth of cHL cells through a
mechanism that is distinct from (and beyond that) of STAT6
phosphorylation.

We then transduced wild-type SOCS1 alleles in the same 4 cell
lines. As expected, exogenous SOCS1 expression significantly
suppressed STAT6 phosphorylation in the 3 pSTAT61 cells
(Figure 4, top). However, this was accompanied by significant
apoptosis only in the 2 cell lines harboring concurrent mutations
of SOCS1 and STAT family members; that is, L1236 and HDLM2
(Figure 4, bottom), with the latter carrying an activating het-
erozygous D661Y hot-spot mutation of the STAT3 SH2 domain
(COSMICv76 database; Hudnall et al5). The D661Y mutation is
recurrent in T/NK-cell neoplasms and was previously shown to
be associated with both STAT3 constitutive phosphorylation and

increased transcriptional activity.23 Indeed, western blot analysis
confirmed basal STAT3 phosphorylation in this cell line, which
was abrogated on enforced expression of exogenous SOCS1
(supplemental Figure 8).

Consistent with these findings, treatment with the JAK2 selective
inhibitor fedratinib was toxic to L1236 and HDLM2, but not to
L428, despite efficient dephosphorylation of STAT6 and STAT3
(Figure 5).

Collectively, these data suggest a cooperative activity between
mutations of STAT family members and genetic inactivation of
SOCS1 in sustaining cHL growth. In support of thismodel, 2/8 cHL
tumors with SOCS1 disruptive mutations and wild-type STAT6
alleles carried activatingmutations in other STAT familymembers,
including a T628S substitution in the SH2 domain of STAT5B
(also described in T-cell prolymphocytic leukemia)24 and a D661Y
substitution of STAT3 (Figure 1; supplemental Tables 3 and 5).

Recurrent GNA13 mutations in cHL
A second target of recurrent mutations in cHL was GNA13,
encoding the Ga13 subunit of heterotrimeric G-proteins
(n5 8/34 cases [24%]; Figures 1 and 6A; supplemental Table 5).
By transmitting signals from the G-protein-coupled receptors
S1PR2 and P2RY8 that result in inhibition of AKT phosphoryla-
tion, Ga13 ensures the proper confinement of proliferating
germinal center B cells within secondary lymphoid follicles and
at the same time constrains their expansion by facilitating ap-
optosis in this potentially dangerous niche.25-27

GNA13 variants in cHL were mostly heterozygous and included non-
sense, frame-shifting, and missense mutations. This pattern overlaps
with that observed in Burkitt lymphoma and diffuse large B-cell lym-
phoma of the germinal center B-cell type, and is compatible with loss
ofGa13signalingactivity.25,27-32MutationsofGNA13 incHLwerestrongly
associated with STAT6mutations, being detected in 7/11 STAT6-
mutated samples (64%) compared with 1/25 STAT6-unmutated
patients (4%; P value 5 .0003, Fisher’s exact test; Figure 1).

Frequent inactivating mutations of ITPKB in cHL
Four (16%) of 25 evaluable case harbored heterozygous somatic
mutations in ITPKB (Figure 6B; supplemental Table 5). ITPKB
encodes for a kinase converting the second messenger inositol
trisphosphate (IP3) to IP4, a soluble antagonist of the AKT-
activating PI3K-product IP3.33 All 4 ITPKB-mutated lymphomas
showed disruptive frame-shifting variants predicted to generate
truncated proteins lacking the kinase domain and, therefore, to
boost PI3K-AKT signaling, a characteristic and growth-promoting
feature ofHRS cells that is amenable topharmacologic inhibition.34,35

In addition, 1 of these 4 cases harbored 3 missense mutations in the
gene exon 2, the significance of which remains to be established.

Recurrent hot spot mutations of XPO1 correlating
with cHL cell vulnerability to the clinical XPO1
inhibitor selinexor
Heterozygous missense mutations of XPO1 at the hot-spot
residue E571 were found in 6/34 patients (18%; Figures 1 and
7A; supplemental Table 5); this amino acid is known to contact
a prototypic nuclear export signal (NES)36,37 and is also recurrently
targeted by somatic mutations in primary mediastinal B-cell
lymphoma and, at a lower frequency, in chronic lymphocytic
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leukemia.14,38 E571-XPO1 mutations have been also detected in
whole biopsies of cHL cases, although formal proof of their
actual presence in HRS cells was missing.39 XPO1 (alias CRM1)
shuttles outside the nucleus over 200 cargo proteins harboring
a NES, including known tumor suppressors involved in cHL lym-
phomagenesis and functioning in the nucleus (eg, TP53 and
NFKBIA).2,36,40-43 XPO1 is overexpressed in various cancers, and
inhibition of its activity appears more toxic to tumor cells than
normal cells.42-44 We thus tested the antitumor effect of selinexor, a
clinical compound that inhibits XPO1 function by covalently binding
to the C528 residue in its NES-binding groove,45 in 6 cHL cell lines
with wild-type or mutated XPO1 alleles. Interestingly, selinexor
reduced growth and caused apoptosis in 2 cHL cell lines carrying
the E571K mutation (SUPHD1 and UHO1), but not in 4 cell lines

that lacked this mutation (L428, L540, HDLM2) or had a lowmutant
allele burden (L1236) (Figure 7B; supplemental Figure 9).

Other recurrently mutated genes
Genes encoding inhibitors of the NF-kB pathway (in particular
NFKBIE, NFKBIA, and TNFAIP3) are known to be recurrently tar-
geted by inactivating mutations and/or deletions in cHL.6,15,46-50

Accordingly, disruptive somatic mutations of the NF-kB pathway
inhibitor NFKBIE (encoding IkBe) were identified in 5/34 (15%)
cases (supplemental Figure 10; supplemental Tables 3 and 5).
Although we observed monoallelic deletions of TNFAIP3 in 12/33
(36%) evaluable cases by FISH, no mutations were detected in
this gene by WES, and targeted deeper sequencing (performed
on 28/34 cases) only identified a non-sense mutation in 1 case
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Figure 1. Recurrently mutated genes in the tumor cells of cHL. (Top) Total number of nonsilent somatic mutations present in each of the 34 cHL cases, identified by their
identification number and annotated based on histological subtype (ld, lymphocyte depletion; lr, lymphocyte-rich;mc,mixed cellularity; nc, not classifiable; ns, nodular sclerosis).
EBV infection status, presence/absence of JAK2 copy number gains, and the status of 3 JAK-STAT pathway genes (PTPN1, STAT3, and STAT5B) that were found mutated in
,3 cases are provided for individual cases (columns) in the heat map below, along with the mutation pattern of genes found mutated in $ 3 cases (rows). Color codes at the
bottom denote the type of mutation. The bar plots on the right give the percentage and absolute number of cases showing the feature displayed in the corresponding row
across all samples.
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DIGITAL PCR FOR STAT6 N417Y
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(validated by Sanger sequencing; supplemental Table 5). The low
frequency of TNFAIP3mutations in our series does not seem to be
explained by insufficient coverage depth, as themean percentage
of TNFAIP3 coding nucleotides with$203 coverage in the targeted
deep-sequencing data of the tumor samples was 87% (interquartile
range, 83%-94%). The NFKBIA gene, encoding another NF-kB
pathway inhibitor (ie, IkBa) less frequently mutated (17% of cHL
cases48,51-53), was also not affected in our series, both on WES and
on targeted deeper sequencing (average percentage of coding
nucleotides with $203 coverage in tumor samples, 76%; inter-
quartile range, 63%-95%). Overall, genetic lesions in negative reg-
ulators of the NF-kB pathway (NFKBIE, TNFAIP3, TNIP1; Figure 1,
supplemental Tables 3 and 5) occurred in 53% of cHL cases (18/34),
confirming their important role in the pathogenesis of this disease.

In agreement with a previous study,6 somatic mutations of B2M,
encoding a protein indispensable for major histocompatibility
complex class I expression on the cell surface, were observed in
9/34 (26%) cases, including 7 with disruptive variants (non-sense,
frame-shifting, splice site or start-codon loss) and 2 with missense

variants (Figure 1; supplemental Tables 3 and 5). Monoallelic
deletion of B2M was observed in 2/29 evaluable cases, 1 of which
(no. 2) also carried a splice site mutation of the other allele. One
additional case (no. 29) had a heterozygous splice site inactivation
of NLRC5 (supplemental Table 3), which encodes for the master
major histocompatibility complex class I transactivator CITA and
has been shown tobe a target of immuneevasion in solid cancers.54

In cHL, another geneticmechanismof immuneescape is represented
by relative copy number gain or amplification of 9p24,55 which we
observed by FISH in 11/33 (33%) evaluable cases (Figure 1). The
gained/amplified region includes, in addition to JAK2, the PDL1
and PDL2 genes encoding surface ligands that inhibit activation
of T cells expressing the PD1 receptor. Overall, genetic lesions
fostering immune evasion (mutations/deletions of B2M orNLRC5;
copy number gain/amplification of 9p24) were observed in
53% (18/34) of cases (Figure 1; supplemental Table 3), con-
firming their important contribution to cHL lymphomagenesis.

Notably, somatic mutations of the chromatin-modifying genes
KMT2D (aliasMLL2),CREBBP, EP300, and EZH2, which are frequent
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Figure 2 (continued) lymph node biopsy (left), but not in the DNA of a peripheral blood sample analyzed as a negative control (right); the same mutation had been originally
identified byWES in theWGA-DNA of microdissected tumor vs normal cells. The low variant allele frequency (0.9%) reflects the known paucity of cHL tumor cells in the involved
tissues (see supplemental Table 6 for the full results of digital polymerase chain reaction validation).
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in diffuse large and follicular B-cell lymphoma,30,56,57 were only
occasionally observed in cHL (supplemental Table 3) and included
a heterozygous hotspot mutation R1446H affecting the CREBBP
acetyl-transferase domain in 1 case (no. 37).

Finally, the tumor suppressor TP53 harbored somatic missense
mutations of its DNAbinding domain in 3/34 (9%) cases (Figure 1
and supplemental Table 3).58

EBV-associated variation in somatic
mutation burden
Despite representing a very small subset in our panel, the 4 cHL
cases with latent Epstein-Barr virus (EBV) infection of the tumor
cells3 showed a strikingly lower number of somatic mutations
(nonsilent, 0-33; silent/noncoding, 0-31) compared with the
30 EBV2 cases (median, 50 and 60, respectively; P value , .01)
(supplemental Figure 11A). In particular, 3 EBV1 cases, all of the
mixed cellularity histological subtype (MC; Figure 1), had no
(patients 32 and 33) or only 3 (patient 35) somaticmutations in total
(nonsilent and silent/noncoding). This finding was not a result of
technical differences in the exome sequencing coverage between
the 30 EBV1 cases and the 4 EBV2 cases, as coverage metrics

for these 2 groups were comparable (supplemental Table 2). We
confirmed the association between low somatic mutation burden
and EBV infection of the tumor cells when we restricted the
analysis to the MC histological subtype, as the 6 EBV2 MC cases
harbored 48 to 144 mutations (median, 111) whereas the
3 EBV1 MC cases showed 0 to 3 mutations (P value 5 .024;
supplemental Figure 11B). Conversely, no significant differ-
ence was observed when comparing the 6 EBV2 MC cases with
the 20 EBV2 cases of the most frequent histologic subtype
(nodular sclerosis; median of total somatic mutations, 107) (sup-
plemental Figure 11B), suggesting that histology is unlikely to be
correlated with mutation burden in cHL. Similarly, the 4 EBV2

cases previously exposed to chemotherapy had a comparable
number of total somatic mutations (79-215) as the 26 EBV2

cases studied before chemotherapy (median, 142; supple-
mental Figure 11C).

Although the number of EBV1 cases we studied is small (n 5 4)
and more cases should be analyzed to confirm these findings,
these data may suggest a link between latent EBV infection and
low somatic mutation burden in HRS cells. Because EBV is known
to provide critical signals that promote early cHL lymphomagenesis

100

Liv
e 

ce
lls

 (%
)

90
80
70
60
50
40
30
20
10
0

SOCS1 vector Empty vector

0 1 2 3 0 1 2 3 0 1 2 0 1 2 3DAYS:

SOCS1 mutation:
STAT6 mutation:
STAT3 mutation:

L540
-
-
-

myc-SOCS1

STAT6

1.0

Em
pty

ve
ct

or
SO

CS1

ve
ct

or

0.7

0.0 0.0

pSTAT6

L428
+
-
-

Em
pty

ve
ct

or
SO

CS1

ve
ct

or

1.0 0.78

1.0 0.0

Em
pty

ve
ct

or
SO

CS1

ve
ct

or

1.0 1.13

1.0 0.1

HDLM2
+
-
+

Em
pty

ve
ct

or
SO

CS1

ve
ct

or

1.0 0.81

1.0 0.0

L1236
+
+
-

-tubulin

Figure 4. Reconstitution of wild-type SOCS1 causes cell death in cHL lines carrying concurrent mutations of SOCS1 and STAT genes. (Top) Western blot analysis of
phosphoSTAT6 after lentiviral transduction of myc-tagged SOCS1 in 4 cHL cell lines (1 representative experiment per cell line is shown, of 2-4 independently performed, that
gave reproducible results); b-tubulin is used as loading control, and the normalized levels of total and phosphoSTAT6, quantified by densitometry, are shown below the
respective blots. (Bottom) Raw percentage of live cells (based on forward/side scatter parameters by flow cytometry) over time (day 05 48 hours after SOCS1 transduction). Error
bars (standard error of the mean) refer to at least 3 independent experiments per cell line per time point (except HDLM2/d 1, n5 2 replicates). The induction of cell death on
SOCS1 transduction in HDLM2 and L1236 is statistically significant (P values, .05 for each cell line based on 2-way ANOVA). Supplemental Figure 14 shows the same data after
normalizing the percentage of live cells in the SOCS1-vector sample to the corresponding empty-vector control sample (set at 100%).

2460 blood® 31 MAY 2018 | VOLUME 131, NUMBER 22 TIACCI et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/22/2454/1468551/blood814913.pdf by guest on 08 June 2024



by rescuing pre-apoptotic GC B cells,3 it is conceivable that its
expression may relieve the pressure toward selection for exome-
wide mutagenic mechanisms.

Discussion
Here we provide a comprehensive analysis of the cHL coding
genome based on a relatively large number of primary cases
(n5 34), uncovering frequent mutations in several genes that
are likely to have relevant pathogenetic functions and could
be amenable to targeted therapeutic strategies. Key in our
effort was the successful overcoming of 2 technical chal-
lenges, that is, the purification of the rare HRS cell from tissue
samples through microdissection and an efficient bio-
informatics control of the bias introduced by the WGA re-
action, when applied to a few cells, through independent
sequencing of duplicate WGA reactions. Although this bias
was successfully overcome with regard to the correct calling of
point mutations and short indels, it did complicate a reliable
exome-wide calling of somatic copy number alterations (sup-
plemental Materials and Methods), which represents a limitation
of our work.

A main finding of our study is the almost ubiquitous (;90% of
cases) genetic targeting of a variety of JAK-STAT pathway
members, which goes beyond previous estimates based on the
presence of copy number gains of JAK2 and the mutational
disruption of the SOCS1 and PTPN1 inhibitors2,3,10 and includes
activating mutations of JAK1 and of multiple STAT transcription
factors (STAT3; STAT5B), together with highly recurrent muta-
tions of STAT6 (32% of cases). Although necessarily limited
to cell lines, the observation that genetic and pharmacologic
inhibition of STAT6 elicited significant apoptosis in STAT6-
mutated but not in STAT6wild-type HRS cells, even if expressing
phosphorylated (ie, activated) STAT6, suggest that STAT6 variants
may promote thegrowth of the cHL clone in amanner distinct from
STAT6 phosphorylation. Because mutations clustered in the DNA
binding domain, a possible mechanism by which STAT6 mutants
could confer survival advantage to HRS cells might imply an aberrant
target gene recognition and transactivation after the phosphorylation-
dependent nuclear translocation of mutant STAT6, a hypothesis
that will need to be tested in future research. Although the bio-
chemical consequences of STAT6 mutations toward DNA binding
and target gene transcription are controversial,12,13 the fact that
both pharmacological blockade of phosphorylation and genetic
silencing of STAT6 induced marked apoptosis of L1236 cHL cells,
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whichonly express themutantN417Yallele, is consistentwith a gain
of function of this mutant toward tumor clone growth down-
stream of JAK-STAT pathway activation.

Interestingly, STAT6 mutations and activating mutations of
STAT3 and STAT5B were enriched in cHL cases harboring
disruptive mutations of the SOCS1 inhibitor. The observation
that exogenous SOCS1 restoration, as well as selective JAK2
inhibition downstream of SOCS1, proved selectively toxic to
SOCS1-disrupted HRS cells that concomitantly carried a mutant
STAT family member suggests functional dependence between
the activities of these mutant alleles in sustaining tumor growth.

The pervasive targeting of JAK-STAT signaling genes in cHL
makes clinically available JAK or STAT inhibitors59,60 an attractive
therapeutic approach in this disease in the context of a com-
prehensive targeted genotyping of patients.

The second most commonly mutated gene was GNA13 (24% of
cases). The G-protein subunit encoded by GNA13 transduces
critical signals that constrain GCB cells within secondary lymphoid
follicles but also favor their apoptosis as a balance to the risk
for genomic instability posed by the high rate of cell proliferation
and DNA damage physiologically occurring during the germinal
center reaction to ensure proper affinity maturation and class
switch recombination of immunoglobulin genes.25-27,61 Because
the GNA13 mutation pattern resembles that observed in other
GC B-cell-derived lymphomas and is consistent with loss of
function,25,27,29-32 GNA13 is likely to play a tumor suppressor
function in cHL. GNA13 is also recurrently mutated in primary
mediastinal B-cell lymphoma,14 which shares several clinico-
pathological, molecular, and genetic features with cHL.9,62 Con-
versely,GNA13mutations are rare in theABC-type of diffuse large
B-cell lymphoma,25,27,29-32 suggesting a specific pathogenetic role

inGCB-cell-derived aggressive lymphomas. In the context of cHL,
inactivatingGNA13mutationsmay facilitate lymphomagenesis by
rescuing crippled GC B cells (the proposed HRS cell precursors2)
from apoptosis and by promoting their dissemination outside
the lymphoid follicles, where HRS cells are indeed observed on
analysis of lymph nodes with early, partial involvement by cHL.63

We also identified missense mutations of the XPO1 nucleo-
cytoplasmic shuttling protein recurring in 18% of cases at the
hotspot residue E571. Intriguingly, exposure of cHL cell lines to
a low dose of the specific, clinically available XPO1 inhibitor
selinexor reduced growth and caused apoptosis in a manner
correlated with the XPO1 mutant allele burden. This finding
points to XPO1-E571 mutations as potential gain-of-function
events on which HRS cells may depend for survival. Although the
functional consequences of E571 mutations in cHL need to be
mechanistically worked out, our data suggest a vulnerability
that could be exploited therapeutically, considering the clinical
feasibility of XPO1 inhibition64,65 and the likely larger therapeutic
window afforded in cHL by the greater sensitivity to selinexor
shown by XPO1-mutated HRS cells.

Finally, ITPKB was disrupted in 16% of cHL cases by truncating
mutations that eliminate its protein kinase domain and, as a
consequence, are predicted to blunt its antagonistic activity
toward the AKT kinase.33 Although the function of ITPKB and the
pathways that may be modulated by its activity have not been
studied in normal GC B cells, ITPKB inactivation may provide a
genetic basis to the aberrant PI3K-AKT signaling activity that is
known to support HRS cells viability and that is, again, potentially
susceptible of pharmacologic inhibition.34,35

We did not observe any grossly evident enrichment of specific
mutated genes in samples analyzed at relapse vs initial diagnosis,
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with the limitation of the small number of relapsed cases ana-
lyzed (n5 6). Similarly, although certain genes (eg, B2M,GNA13,
STAT6, SOCS1) appear more frequently mutated in nodular
sclerosis than mixed cellularity cHL tumors, this was not statis-
tically significant. However, the small number of MC cases in our
series (n 5 9) prevents a robust comparison, and larger studies
focused on relapsed and MC cases will need to be performed
to reliably determine whether specific genes are preferentially
mutated/unmutated in these groups.

In summary, our analysis of the cHL coding genome uncovered
recurrent mutations in several genes, most notably GNA13,
XPO1, ITPKB, STAT6, and multiple other members of the JAK-
STAT signaling pathway, pointing to a critical role for these genes
in the pathogenesis of cHL. The high frequency of mutations in
JAK-STAT pathway genes provides a genetic explanation for the
constitutive activation of this cascade in almost 90% of cases.
Although additional studies will be needed to mechanistically
document the dependency of the mutated cHL cell lines on the
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affected genes, the observed association between the presence
of specific gene mutations and the susceptibility to targeted
pathway inhibition suggests new therapeutic targets in this
common lymphoma. Finally, the landscape of recurrently mu-
tated genes we have defined in cHL can be harnessed to de-
velop liquid biopsy strategies for noninvasive monitoring of the
response to therapy.66 This could improve the imperfect prog-
nostic accuracy of PET imaging in guiding treatment escalation
or de-escalation,67 and thereby reduce the overall toxicity bur-
den associated to chemo-radiotherapy.
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