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Diffuse large B-cell lymphoma (DLBCL), the most frequent
subtype of lymphoid malignancy, remains a significant
clinical challenge, as∼30% of patients are not cured. Over
the past decade, remarkable progress has been made in
the understanding of the pathogenesis of this disease,
spurred by the implementation of powerful genomic
technologies that enabled the definition of its genetic
and epigenetic landscape. These studies have uncovered
a multitude of genomic alterations that contribute to the
initiation andmaintenanceof the tumor clonebydisrupting
biological functions known to be critical for the normal
biology of its cells of origin, germinal center B cells. The
identified alterations involve epigenetic remodeling,
block of differentiation, escape from immune surveillance,

and the constitutive activation of several signal trans-
duction pathways. This wealth of new information offers
unique opportunities for the development of improved
diagnostic and prognostic tools that could help guide the
clinical management of DLBCL patients. Furthermore, a
number of the mutated genes identified are potentially
actionable targets that are currently being explored
for the development of novel therapeutic strategies.
This review summarizes current knowledge of the most
common genetic alterations associated with DLBCL
in relation to their functional impact on the malignant
transformation process, and discusses their clinical im-
plications for mechanism-based therapeutics. (Blood.
2018;131(21):2307-2319)

Introduction
Diffuse large B-cell lymphoma (DLBCL), the most common
lymphoid malignancy in adulthood, is a heterogeneous disease
that can arise de novo or from the histologic transformation of
more indolent lymphomas, most commonly, follicular lymphoma
(FL) and chronic lymphocytic leukemia (CLL).1 Although durable
remissions can be achieved in.50% of cases, even at advanced
stage, DLBCL remains a challenging clinical problem, with ap-
proximately one-third of patients not being cured by standard-
of-care immunochemotherapeutic regimens.2,3 Current limits to
effective treatment are related in part to the striking hetero-
geneity of this disease, which can be recognized at the mor-
phologic, genetic, immunophenotypic, and clinical level. Indeed,
modern genome-wide molecular analysis of DLBCL uncovered a
multitude of altered cellular pathways that play key roles in tumor
development and maintenance, as well as in the response
to therapy. These discoveries are set to provide a molecular
framework for the development of improved diagnostic and
prognostic markers, allowing the design of more effective
precision medicine approaches aimed at targeting oncogenic
addictions specific to distinct lymphoma subtypes. This review
focuses on the molecular pathogenesis of DLBCL not otherwise
specified (NOS),1 with emphasis on the nature of recurrently
involved genes/pathways that have been functionally charac-
terized or clearly interpreted, and their implications for the
development of novel targeted therapies. We refer the reader
to other reviews for a more detailed survey on the expanding
landscape of drugs targeting DLBCL,2,4 and a discussion on the
increasingly important role of the tumor microenvironment,

including its interplay with the lymphoma cells, in the patho-
genesis of these tumors.5

Cell of origin and classification
DLBCL results from the malignant transformation of mature
B cells that have experienced the germinal center (GC) reaction.
GCs are dynamic microanatomical compartments that form
when B cells are challenged by a foreign antigen, and represent
the primary site for clonal expansion and antibody affinity
maturation.6,7 These structures comprise two anatomically distinct
areas where B cells constantly recycle bidirectionally: thedark zone
(DZ), mostly composed of proliferating cells that mutate the var-
iable region of their immunoglobulin (IG) genes through the
process of somatic hypermutation (SHM); and the light zone (LZ),
where B cells are selected to become either a plasma cell or a
memory B cell based on their high affinity for the antigen, and also
undergo class switch recombination (CSR) (Figure 1).6,7 The central
role of the GC as the target structure of malignant transformation
in lymphoma is highlighted by multiple observations, including
evidence that DLBCLs carry somatically hypermutated IG genes,8

the occurrence of genetic lesions that are due to errors in GC-
specific DNA remodeling events,9 and the similarity between the
phenotype of the two major molecular subtypes of the disease
(see next paragraph) and transcriptional programs that are asso-
ciated with distinct functional phases of the GC.10,11

In 2001, the genome-wide analysis of gene expression profiles
obtained from primary DLBCL biopsies led to the identification
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of at least 2 phenotypic subgroups of DLBCL NOS, with a subset
of cases showing an intermediate, unclassifiable phenotype.10

Although both subtypes are more closely related to GC LZ
B cells,11 the germinal center B-cell-like (GCB) DLBCL lacks the
expression of early post-GC differentiation markers, whereas the
activated B-cell-like (ABC) DLBCL displays a transcriptional sig-
nature analogous to that observed in mitogenically activated
B cells or in a small subset of lymphocytes that are also located in
the LZ of the GC and are poised to plasma cell differentiation
(plasma blasts).10

DLBCL risk stratification according to cell of origin has prog-
nostic value in the context of the current cyclophosphamide,
doxorubicin, vincristine, and prednisone, plus rituximab–based
therapeutic regimens, with GCB-DLBCL showing amore favorable
course and ABC-DLBCL representing the most aggressive form of
the disease.12-14 Application of this classification to the routine
clinical practice has been facilitated by the development of novel
technologies allowing the analysis of formalin-fixed paraffin-
embedded tissue biopsies, such as the gene expression–based
Nanostring platform.15 Accordingly, the distinction in GCB- and
ABC-DLBCL has now been officially incorporated into the re-
vised World Health Organization classification of hematologic
malignancies.1

Other microarray-based gene expression profile studies cap-
tured an alternative taxonomy of DLBCL into groups that correlate
with different aspects of DLBCL biology, including the tumor
microenvironment, and are defined by the differential expression
of genes implicated in oxidative phosphorylation, B-cell receptor
(BCR) signaling, and host inflammatory responses.16

Mechanisms of genetic alteration
The pathogenesis of DLBCL represents a multistep process
entailing the accumulation of multiple genetic lesions that alter

the structure and/or the expression pattern of proto-oncogenes
and tumor suppressor genes, as well as of other molecules of
pathogenetic significance. Analogous to most human tumors,
several mechanisms contribute to oncogenic dysregulation in
DLBCL, including somatically acquired non–silent point muta-
tions and gene copy number changes. In addition, the genome
of DLBCL is altered by two mechanisms of genetic damage that
are intimately connected to the physiologic IG DNA remodeling
processes operating in B lymphocytes: (i) chromosomal trans-
locations, due to errors occurring during VDJ recombination,
SHM, and CSR9; and (ii) aberrant somatic hypermutation (ASHM),
a byproduct of the activation-induced cytidine deaminase
(AID)-mediated SHM process.17 The importance of the GC and its
associated DNA remodeling events in the pathogenesis of lym-
phoma has been experimentally demonstrated in studies showing
that deletion of Aicda, the enzyme required for CSR and SHM,18,19

in lymphoma-prone mouse models is sufficient to prevent the
occurrence of MYC-IGH translocations and the development of
GC-derived lymphomas.20,21

Chromosomal translocations
At variance with what is commonly observed in acute leukemias,
DLBCL-associated chromosomal translocations do not typically
generate fusion proteins. Rather, they juxtapose heterologous
regulatory sequences (promoters or enhancers) derived from
partner chromosomes, often involving the IG loci, in the proximity
of the intact coding domains of proto-oncogenes, leading to
deregulated expression of their normal proteins.22 As a conse-
quence, proto-oncogenes that are tightly regulated in the
preneoplastic counterpart may become constitutively expressed
in the lymphoma cell (“homotopic deregulation”; eg, translo-
cations ofBCL6), whereas proto-oncogenes that are normally not
expressed in the tumor precursor cell may become ectopically
activated in the lymphoma cell (“heterotopic deregulation”; eg,
translocations of MYC and BCL2, which encode for 2 proteins
normally absent in most GC B cells23,24).

Naive
B cell

Plasma cell

Memory B cell

Plasmablast

Ag

Dark zone Light zone

T cell FDC

epigenetic modification 
immune escape 

proliferation 
apoptosis 

BCL6 deregulation 
terminal differentiation 

NF-B/BCR signaling 
DNA damage response 

cell cycle 
other 

GCB-DLBCL ABC-DLBCLGCB- and ABC-
DLBCL

SHM

CSR
Germinal Center

%
35

35

30

25

20

15

8

%
34

21

22

20

15

10

6-11

%
30

30

50

30

25

20

9FOXO1 M

MEF2B M

TP53 M

B2M/CD58 M/D

CREBBP/EP300 M/D

MLL2/MLL3 M

BCL6 Tx BCL2 Tx/M

GNA13 M

EZH2 M

TNFRSF14

BCL6 BSE1 M

MYC Tx

PTEN D

TNFAIP3 M/D

MYD88 M

CDKN2A/B D

BCL2 Amp

PRDM1 M/D

CD79A/B M

CARD11 M

Figure 1. Cellular origin and genetic lesions associ-
ated with distinct DLBCL subtypes. Schematic rep-
resentation of the GC reaction, and its relationship with
the 2 molecular subtypes of DLBCL NOS, GCB-DLBCL,
and ABC-DLBCL (unclassified DLBCL not shown). The
most common, functionally characterized genetic alter-
ations identified in this disease (including those shared
across different subtypes and those subtype specific) are
shown in the bottom panels, where blue indicates loss-
of-function events and red indicates gain-of-function
events; color codes on the left denote distinct cate-
gories, according to the subverted biological pathway.
Ag, antigen; Amp, amplifications; D, deletions; FDC, fol-
licular dendritic cells; M, mutations; Tx, chromosomal
translocations. Note that, at lower frequencies, muta-
tions affecting CARD11, TNFAIP3, and MYD88 residues
other than the L265 hotspot can also be observed in
GCB-DLBCL. CREBBP mutations can be found in all
subtypes, although frequencies are significantly higher
in GCB- (30%) than ABC- (15%) DLBCL. Modified from
Pasqualucci and Dalla-Favera135 with permission.
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ASHM
The term ASHM defines a mechanism of genetic damage leading
to the accumulation of multiple mutations around the 59 se-
quences of genes that are otherwise found unmutated in normal
GC B cells.17 The physiologic SHM activity relies on high-accuracy
repair mechanisms25 that counteract the ability of AID to bind
and mutate multiple DNA sequences across the genome.26,27 As
a result, only the IG loci as well as a few additional loci (eg, BCL6)
exhibit evidence of SHM in GC B cells. In contrast, over half of
newly diagnosed DLBCL samples, irrespective of their molecular
subtype (and, at lower frequencies, a fewother B-cell non-Hodgkin
lymphomas), show evidence of ASHM in.40 transcribed genes
outside the IG loci, including the proto-oncogenes PIM1 and
MYC.17,28 These mutations are biallelic, frequently multiple within
the same allele, and display hallmarks of the SHM process, in-
cluding the distribution within ;2 kb from the transcription initi-
ation site, the requirement for active transcription, a predominance
of transversions over transitions, the preferential targeting of
hotspot motifs, and frequencies that are several orders greater
than the backgroundmutation rate inmammalian cells.29 Depending
on the genomic configuration of the target gene, both coding
and noncoding regions can be affected. Thus, ASHM is con-
sidered a powerful mechanism of transformation that may cause
perturbations in gene expression as well as changes in the structural
and functional properties of numerous oncogenes or tumor
suppressor genes. Because of the complexity of the genetic
changes, a comprehensive assessment of the overall impact of
ASHM on the pathogenesis of DLBCL is still lacking. Interestingly,
recent work demonstrated that the sequences targeted by ASHM
and chromosomal translocations are not randomly distributed
across the genome, but are predominantly grouped within super-
enhancers or regulatory clusters in which sense and antisense
transcription converge, indicating that these elements are key
mediators of AID recruitment.30,31

The mutational landscape of DLBCL
The implementation of next-generation sequencing technolo-
gies, coupled with genome-wide functional shRNA or CRISPR/Cas9
screens, has revealed a remarkable structural and functional
complexity in the DLBCL coding genome, compared with other
hematologic malignancies. On average, each DLBCL biopsy
displays 70 lesions affecting coding domains (including muta-
tions and copy number aberrations), with great interindividual
variability and a sizable fraction of genes foundmutated in,10%
of patients.32-36 Among these genes,;150 have been cataloged
as significant drivers based on recurrence and mutation features
in a recent most comprehensive analysis totaling ;1000 DLBCL
exomes.36 These figures may represent an underestimate of the
functionally significant DLBCL mutation load, because the much
greater noncoding portion of its genome remains largely un-
explored, including sequences involved in ASHM, long non-
coding RNAs, microRNAs, and other genomic regions with key
regulatory functions. Indeed, initial whole genome sequencing
analyses uncovered clusters of mutations at putative enhancers,
and several mutation hotspots were found in untranslated
regions.30,31 An additional layer of complexity that has only been
marginally addressed in this neoplasm is represented by its sig-
nificant intratumor subclonal diversity, with relapsed cases showing
a pattern of early- and late-divergent evolution based on analysis
of the rearranged IG variable region genes.37 Under the selective

pressure imposed by the environment, including chemotherapy,
this heterogeneity may give rise to the emergence of clones with
improved fitness and possibly acquired resistance to therapy.
Finally, the high number of genes that are mutated within a
single case and across all DLBCL cases analyzed to date opens
endless possibilities of cooperative interactions between ge-
nomic abnormalities, as well as between genetic lesions and cell
signaling pathways, the significance of which remains currently
unexplored. As we have only started to scratch the surface of this
remarkably complex scenario, the next sections of this review
cover the limited set of somatic genetic alterations that are most
commonly observed in this malignancy and havebeen functionally
interpreted. These include genomic abnormalities found in both
COO subtypes and alterations specifically associated with GCB-
or ABC-DLBCL. Of note, a study published while this review was
in press and based on the analysis of combinatorial mutation
patterns in;500 patients uncovered 4 genetic subgroups within
the present COO classification, including one preferentially
enriched in unclassified DLBCL.38 These groups display distinct
transcriptional and clinical outcomes, providing apotential taxonomy
for precision-medicine approaches. We note that a few germ
line variants have also been found associatedwith DLBCL,39,40 but
their contribution to heritable risk in the disease remains presently
understudied.

Programs dysregulated in both GCB-DLBCL
and ABC-DLBCL
Genetic lesions in histone/chromatin modifiers A consistent
theme in DLBCL genomic analyses has been the discovery of
recurrent mutations in genes that encode for histone/chromatin
modifiers, including methyltransferases, acetyltransferases, and
histones themselves32-34 (in particular, linker histone H1 family
members,41 some of which are targets of ASHM), as well as, at
low frequencies, ARID1A and TET2.36 Overall, alterations in
at least 1 of these genes can be found in 85% of all DLBCL
cases, and epigenetic modifiers comprised 11 of the 60 most
highly recurrent targets identified in this lymphoma upon analysis
of 1000 cases.36 Together, these findings point to a key role
for epigenetic remodeling in lymphomagenesis. Of note, investi-
gations aimedat reconstructing thehistory of clonal evolutionduring
FL transformation (tFL) revealed that mutations of epigenetic
modifiers represent early events introduced in a common an-
cestral clone before divergent evolution to FL or tFL.42-44 Because
epigenetic changes, different from genetic events, are re-
versible, it is conceivable that drugs targeting the epigenome
could provide therapeutic benefit to patients carrying these
mutations by restoring physiologic acetylation or methyl-
ation levels, provided the tumor cells remain addicted to such
modifications.

Inactivation of the methyltransferase KMT2D The KMT2D gene
(also known as MLL2) encodes a member of the SET1 family of
histone methyltransferases that induce an active chromatin
conformation by predominantly mono- and dimethylating the
lysine at position 4 of histone H3 (H3K4).45 In GC B cells, KMT2D
occupies chromatin domains at enhancers, as well as at a smaller
set of promoter regions, belonging to genes with key roles in
B-cell physiology, including those involved in the positive regu-
lation of apoptosis, in CD40 and BCR signaling, and in the control
of cell migration.46,47 Monoallelic and, less commonly, biallelic
somatic mutations of this gene are found in 30% of DLBCL cases,
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representing the single most frequent genetic aberration
associated with this disease.32,33 KMT2D mutations comprise
mostly truncating events that impair the protein enzymatic func-
tion by removing the C-terminal cluster of conserved domains,
including the SET domain32,33; additionally, missense mutations in
the same domains have been shown to suppress its ability to
catalyze H3K4 methylation in vitro.47 Conditional deletion of
Kmt2d in mouse pre-GC B cells, but not after antigen encounter (ie,
during GC formation), leads to a significant expansion of GC
B cells, supporting the notion derived from human tumors that
KMTD2 inactivation is an early event, probably requiring mul-
tiple cell divisions to implement chromatin remodeling and gene
expression changes.47 Mice with loss of Kmt2d coupled with BCL2
deregulation develop lymphoid malignancies that recapitulate
the spectrumof phenotypes observed during human FL to DLBCL
transition, demonstrating its tumor suppressor role in vivo.46,47

The demethylase involved in KMT2D-dependent modifications
is not known and additional studies will be needed to identify
vulnerabilities in KMT2D-mutated cells that could be therapeutically
exploited.

Inactivation of the acetyltransferase genes CREBBP/EP300 As
many as one-third of DLBCL samples, with a significant prevalence
in the GCB-DLBCL subtype, display somatic mutations and/or
deletions affecting the acetyltransferase genes CREBBP (;25%)
and, less frequently, EP300 (5%).48 These enzymes are pleiotropic
regulators of gene expression that catalyze the addition of acetyl
groups to specific lysine residues in histone and nonhistone pro-
teins, also including p53 (Figure 2).49,50 DLBCL-associated muta-
tions and small indels disrupt the function of the CREBBP/EP300
proteins either by removing the histone acetyltransferase do-
main or by introducing amino acid changes within this domain,
which cause diminished affinity for Acetyl-CoA, including a re-
current hotspot at R1446.48 In.80% of DLBCL cases, only 1 allele
is affected in the tumor cells, and the residual wild-type allele is
expressed, consistent with a haploinsufficient tumor suppressor
function. In support of a dose-dependent pathogenic effect
of these proteins, germ line loss of a single CREBBP (or EP300)
allele is the causative genetic event in a rare congenital disorder
knownasRubinstein-Taybi syndrome.51 Indeed, conditional deletion

of CREBBP in B cells accelerated the development of FLs in
several BCL2-driven mouse models.52-54

The mechanism by which CREBBP mutations contribute to lym-
phomagenesis involves the impairment of multiple biological
programs that are critical to the normal GC reaction, and par-
ticularly to the LZ. Especially important is the ability of CREBBP to
oppose the proto-oncogenic activity of BCL6 by a dualmechanism
entailing (i) direct acetylation of the BCL6 protein, which prevents
the recruitment of histone deacetylases (HDACs) and thus impairs
its transrepressor function48,55; and (ii) H3K27 acetylation at the
promoter/enhancer sequences of BCL6 target genes, which coun-
teracts the repressive effect of BCL6 by facilitating transcription53,54

(Figure 2). Therefore, CREBBP may be involved in the switching
between repressed and active chromatin states, allowingGCB cells
to rapidly reprogram upon signals that are delivered at the exit
of the GC. CREBBP-mediated acetylation is also required for the
activation of the p53 tumor suppressor, which is itself a target of
BCL6. Given that the amount of CREBBP in the cells is limited,
haploinsufficiency may tip this balance by favoring the proto-
oncogenic function of BCL6 over the tumor suppressor activity of
p53. Finally, CREBBPbinds andacetylates the regulatory sequences
of several genes involved in antigen presentation/processing, in-
cluding the CIITA transactivator and multiple major histocompati-
bility complex (MHC)-class II loci, thus contributing to tumor immune
escape53,54,56 (Figure 2 and “Escape from immune surveillance”).

The identification of histone acetyltransferase mutations sug-
gests that drugs targeting acetylation/deacetylation mecha-
nisms (eg, HDAC inhibitors) could be effective in patients with
CREBBP/EP300mutant DLBCL. Although initial trials with HDAC
inhibitors have yielded limited responses in unselected DLBCL
patients,2 the efficacy of these drugs should be reevaluated
in the context of proper patients stratification, and probably
in combination with agents targeting cooperating oncogenic
events. Also important will be the development of inhibitors
that are specific for the involved deacetylases; among these,
HDAC3 may represent an attractive therapeutic target in light
of recent studies documenting its recruitment by BCL6 to
repress transcription at shared chromatin targets.53
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Deregulation of BCL6 activity BCL6 is a transcriptional re-
pressor belonging to the BTB/Zinc finger family of transcription
factors.57,58 Inmature B cells, BCL6 is expressed exclusively in the
GC, including all DZ and most LZ B cells, whereas it is down-
regulated in a subset of LZ B cells primed toward plasmablastic
differentiation.59 BCL6 is an absolute requirement for the forma-
tion of GCs,60,61 where it negatively regulates multiple biological
programs,62,63 including (i) cell cycle arrest (eg, by suppressing
p21 expression,64 thus enforcing a highly proliferative program);
(ii) the sensing and response to DNA damage (by regulating p53,
ATR, and CHEK1,65-67 thus allowing to tolerate the physiologic
DNA breaks involved in SHM and CSR); (iii) antiapoptosis pro-
grams (eg, by suppressing BCL224); (iv) terminal differentiation
(by suppressing PRDM1/BLIMP168,69). These functions are restored
once BCL6 is downregulated in the LZ, an event that is required
for terminal differentiation. Approximately one-third of DLBCL
cases, with a 2:1 ratio in ABC vs GCB-DLBCL,70 carry chromosomal
translocations that prevent BCL6 downregulation by positioning
the intact codingdomainof thegenedownstream to heterologous
promoter sequences derived from.20 alternative chromosomal
partners (most commonly, the IG heavy and light chain loci),
leading to deregulation of BCL6 expression by a mechanism
known as “promoter substitution.”71 The common feature of
the promoters recruited by the translocations, which occur as
byproducts of CSR or SHM, is their continued activity during
post-GC differentiation. As a consequence, chromosomal trans-
locations induce constitutive BCL6 expression and the pathologic
maintenance of the GC phenotype, including tolerance to DNA
damage and block of terminal differentiation.

The BCL6 gene can also be altered by somatically acquired point
mutations that are distributed within a ;2-kb region down-
stream to its transcription start site, encompassing the first
noncoding exon (;75% of DLBCL).72,73 Although some of
these events reflect the physiologic activity of SHM in GC
B cells, selected changes appear to be restricted to lymphoma;
among these are mutations that abrogate a negative autor-
egulatory loop by which the BCL6 protein controls its own
transcription,74,75 or prevent IRF4-mediated transcriptional re-
pression induced by CD40 signaling in the GC LZ (Figure 3).76

Overall, as many as 35% of DLBCLs carry BCL6 genetic abnor-
malities of proven functional consequences, an estimate that may
further expand as whole genome sequencing studies could reveal
mutations in distant regulatory domains.

In addition to alterations that directly involve the BCL6 locus,
several other genetic lesions deregulate the expression of BCL6
by alternative, indirect mechanisms (Figure 3). As mentioned,
deleterious mutations of CREBBP/EP300 impair acetylation-
mediated inactivation of the BCL6 transrepressive function.48,55

Approximately 15% of cases display somatic mutations in the
MEF2B transcription factor,32,77 which is transcribed at high levels
in GC B cells and occupies a large number of proximal and distal
gene regulatory sequences (R.D.-F., unpublished data, 14 June
2017), among which is the BCL6 promoter/enhancer, upregu-
lating its transcription.77 MEF2B mutations enhance its trans-
activator function and consequently BCL6 expression either by
preventing physical interaction with the co-repressor CABIN1
(missense mutations in the N-terminal MEF/MAD domain), or by
removing phosphorylation- and sumoylation-mediated negative
regulatory motifs located in the C-terminal portion of the protein
(truncating mutations).77 Finally, deregulation of BCL6 expression
is achieved by a decrease in its catabolism in;5% of DLBCL cases
displaying loss-of-functionmutations and/or deletions of FBXO11,
a ubiquitin adaptor protein that normally targets BCL6 for pro-
teasomal degradation.78,79 Consistent with the functional in-
terpretation of the human genetics data, mice engineered to
recapitulate the chromosomal translocations involving BCL6,
or any of the indirect mechanismsderegulatingBCL6expression,
develop clonal lymphoproliferative disorders mimicking various
stages of human pathology.54,79,80 Clearly, the contribution of
MEF2B and FBXO11 mutations to the pathogenesis of DLBCL
will likely entail the dysregulation of other pathways in addition
to BCL6, given the multitude of substrates that have been (or
have yet to be) recognized for these molecules.

Interestingly, transient deregulation of BCL6 expression in murine
hematopoietic stem cells has been shown to induce the devel-
opment of mature B-cell lymphomas lacking BCL6 expression,
supporting a hit-and-run model for BCL6-mediated oncogenesis81;
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Figure 3. Deregulation of BCL6 activity by multiple
mechanisms in DLBCL. Recurrent genetic alterations
deregulating the function of BCL6 in DLBCL, either directly
(by targeting the BCL6 gene) or indirectly (by targeting
modulators of its activity). Only representative biological
programs suppressed by BCL6 in the GC and disrupted as a
consequence of these lesions are shown. Symbols depict
loss-of-function (crosses) and gain-of-function (lightning bolt)
genetic alterations. Asterisk represents point mutations in the
BCL6 regulatory sequences, abrogating DNA binding sites
used by the IRF4 transcription factor or by the BCL6 protein
itself to negatively regulate BCL6 transcription. Reprinted
from Pasqualucci and Dalla-Favera135 with permission.
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however, such model may not recapitulate the pathogenesis of
the human tumors, because BCL6 translocations are mediated
by errors occurring during CSR and SHM (ie, in a mature, antigen
experienced B cell),9 and generally lead to variable levels of BCL6
expression.70,82 Overall, BCL6 continues to represent an attractive
therapeutic target in DLBCL, and promising results have been
obtained in vitro and in preclinical models with small-molecule
inhibitors or HSP90 inhibitors, which also destabilize BCL6.83,84

Escape from immune surveillance Approximately 60%ofDLBCL
samples fail to express MHC class I and are therefore expected
to evade cytotoxic T lymphocytes–mediated immune sur-
veillance, due to a variety of genetic and epigenetic mecha-
nisms. These include (i) biallelic inactivation and/or focal
homozygous deletions of the B2M locus, encoding for the
b2-microglobulin invariant subunit (29% of GCB- and 15% of
ABC-DLBCL cases), which is necessary for the formationof theHLA-I
complex on the cell surface; (ii) point mutations and genomic loss
of the HLA loci; (iii) lack of expression or aberrant cytoplasmic
localization of the B2M/HLA-I protein, in the absence of genetic
lesions (30% to 45% of cases), consistent with epigenetic silencing
or defects in the assembly and transport from the endoplasmic
reticulum to the cell surface.85 Supporting its relevance in DLBCL
pathogenesis, loss of HLA-I expression is infrequently observed
in other B-cell non-Hodgkin lymphoma types (L.P., R.D.-F., un-
published observation, 2 December 2014), but is often asso-
ciated with tFL.44,86 DLBCL also harbors recurrent genetic
alterations inactivating the CD58 gene (23% of ABC- and
12% of GCB-DLBCL),85 a member of the immunoglobulin
superfamily that functions as the ligand of the CD2 receptor
expressed on T cells and natural killer cells.87 Of note, loss of
HLA-I and CD58 expression are often concurrent in the same
cases, suggesting that tumors may coselect these lesions in order
to evade both cytotoxic T lymphocyte–mediated and natural killer
cell–mediated immune surveillance mechanisms.85

Downregulation of MHC class-II expression has been reported in
40% to 50% of DLBCL, where this finding correlates with poor
outcome.12,88 The mechanism underlying reduced MHC-II levels
is thought to involve in part the genetic inactivation of CIITA, the
gene encoding the MHC-II transactivator. CIITA represents a
common target of ASHM (23% of cases)44,89 and can also be
implicated in promiscuous chromosomal rearrangements leading
to gene disruption or to dominant negative fusion proteins (3% of
cases).90 Interestingly, CIITA is one of the functional targets
of CREBBP in theGC, and reduced levels ofMHC-II were observed
in the B cells of Crebbp knockout mice, suggesting that genetic
lesions of CREBBP may also contribute to this phenotype.53,54,56

Finally, gains, amplifications, and structural rearrangements of
the genes encoding for programmed death ligands (PD-Ls), a
common finding in primary mediastinal B-cell lymphoma and
Hodgkin lymphoma, have been detected in a small subset of
DLBCL-NOS (12%, 3%, and 4% of cases, respectively).91,92 These
cytogenetic alterations correlate with increased expression of
PD-L1, but not of PD-L2, and were more frequently observed in
the non-GCB subtype of DLBCL. Interestingly, stable ectopic
expression of wild-type PDCD1LG2 and the PDCD1LG2 fusions
showed significantly reduced T-cell activation in coculture ex-
periments. These findings suggest that treatments with PD:PD-L
immune-checkpoint inhibitors might benefit the small group of
patients carrying these lesions.

Mutations of FOXO1 The transcription factor FOXO1 is a key
player during B-cell differentiation, and its activity is negatively
regulated by the PI3K-AKT and mechanistic target of rapamycin
(mTOR) cascade. Within the GC, FOXO1 is expressed specifi-
cally in the DZ, consistent with the low level of PI3K signaling in
this compartment, and is required for sustaining the DZ program,
in part by cooperating with BCL6.93,94 FOXO1 mutations
were identified in 8% to 10% of all DLBCL cases and comprise
amino acid changes that cluster around a phosphorylation site re-
quired for AKT-mediated nuclear-cytoplasmic translocation.95 Thus,
mutations have been suggested to prevent the inactivation of
FOXO1 in response to PI3K signaling. However, a systematic
examination of the functional consequences of these muta-
tions in the context of B cells is still lacking. The occurrence of
FOXO1 mutations appears to be associated with inferior prog-
nosis and was enriched in GCB-type relapse/refractory DLBCL
(36% of cases),96 although larger studies investigating sequential
diagnostic/relapsed cases, and addressing the entire spectrum of
FOXO1 aberrations, will be needed to conclusively determine
the clinical impact of these events.

Genetic lesions associated with GCB-DLBCL
Chromosomal translocations of BCL2 and MYC BCL2 is a key
antiapoptotic molecule expressed in most tissues but absent in
theGC, due to BCL6-mediated suppression of its transcription,24,63

and consistent with the need of GC B cells to maintain a default
proapoptotic program. This regulatory axis is disrupted in;30%
of GCB-DLBCL by the t(14;18) translocation,12,97 which brings the
BCL2 coding exons under the control of the IG locus, resulting in
its ectopic expression (Figure 4). In line with its ability to confer
survival advantage, deregulation of BCL2 has been associated
with an inferior outcome, particularly when coupled with MYC
deregulation.98 Small-molecule inhibitors targeting the BCL2
protein (eg, venetoclax) have demonstrated promising efficacy
in lymphoid malignancies and are currently under investigation
in combination with standard immunochemotherapy regimens.2,4

The MYC gene encodes for a transcription factor that controls
numerous biological functions, including proliferation, cell growth,
telomerase activity, energy metabolism, differentiation, and
apoptosis,99 as well as DNA replication independently of its
transcriptional activity.100 In most DZ and LZ B cells, MYC tran-
scription is suppressed by BCL6, whereas its expression is re-
activated in a subset of LZ B cells destined to recirculate into the
DZ.23 MYC is ectopically and constitutively expressed in 10% to
14% of GCB-DLBCLs,101 often as the result of chromosomal trans-
locations that join its intact coding domain to the IG heavy or
light chains loci (Figure 4).22 Analogous to BCL2, the presence of
MYC translocations has been linked toworse prognosis in DLBCL.102

Although the MYC oncogene has long been considered a partic-
ularly compelling target for cancer therapy, theMYC protein itself is
not easily “druggable.” However, potent and selective inhibition
of MYC has been obtained in preclinical studies by targeting BET
bromodomain-promoter interactions, including the BRD4 transcrip-
tional coactivator that epigenetically regulates MYC expression,
and led to significant antiproliferative effects in lymphoma.2,4

In 5% to 10% of DLBCL, chromosomal translocations ofMYC and
BCL2 (or, less commonly, BCL6) coexist.103 These “double-hit
lymphomas” (DHLs) have gained increasing attention due to their
aggressive clinical course and particularly poor prognosis,103

although more recent prospective studies are starting to reveal
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comparable overall survival. Consistent with the highly prefer-
ential distribution of both translocations in GCB-like DLBCL, DHLs
belong to this molecular subtype, even though the proposed
revision of theWorld Health Organization classification recognizes
them as distinct categories designated “high-grade B-cell
lymphomas.”1 Owing to the rarity of the disease, a comprehensive
characterization of the genetic makeup of DHL is still lacking.

DHL should be kept separate fromDLBCL showing coexpression
of MYC and BCL2 in the absence of chromosomal translocations,
also a strong predictor of poor clinical outcome.103 The so-called
double-expresser lymphomas presumably involve distinct un-
derlying mechanisms, including BCL2 amplifications and con-
stitutive activation by the NF-kB transcription complex, and
appear to be primarily of the ABC subgroup, suggesting that
they should be studied separately in a therapeutic perspective.
Targeted intervention for DHL and “double expresser” may
include anti-BCL2 and candidate anti-MYC compounds.2,4

Mutations of the EZH2 methyltransferase EZH2 encodes a
SET-domain histone methyltransferase that is responsible for
trimethylating the lysine 27 residue of histone H3 (H3K27me3),

an epigenetic mark associated with transcriptional repression.104

As a component of the polycomb repressive complex-2, EZH2
is required for the formation of GCs, where it controls the
expression of multiple genes, including those involved in cell
cycle regulation (CDKN1A) and terminal differentiation (IRF4,
BLIMP1) (Figure 4).105,106 Approximately 22%ofGCB-DLBCLdisplay
heterozygous EZH2 genemutations, which inmost cases replace
a single evolutionarily conserved residue (Y641) within the protein
SET domain,107 enhancing its ability to catalyze the addition of
the H3K27me3 mark.108 Expression of the mutant EZH2Y641 allele
induces GC hyperplasia in mice, and when combined with BCL2
deregulation accelerates the development of mature B-cell
lymphomas.105,106 Notably, small-molecule inhibitors of EZH2 have
shown specific activity in preclinical models of GCB-DLBCL,
independently of the presence of somatic mutations,105,109,110

supporting their early clinical testing for relapsed DLBCL.2,4

Mutations affecting B-cell migration The confinement of
B cells within the B-cell follicle is modulated by the activity of two
GC-specificGprotein–coupled receptors: sphingosine-1-phosphate
receptor 2 (S1PR2)111 and the orphan purinergic receptor
P2RY8.112 In response to lipid ligands, these receptors recruit
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Figure 4. Disrupted signaling pathways in GCB-DLBCL. Genetic lesions preferentially associated with GCB-DLBCL include (i) chromosomal translocations of BCL2 (up to
35% of cases) and/or MYC (;10% of cases), which lead to their ectopic expression in part by allowing them to bypass BCL6-mediated transcriptional repression; (ii) truncating
mutations of the TNFRSF14 receptor, leading to weakened T-cell responses; (iii) gain-of-function mutations of EZH2 (;20% of cases), which induce transcriptional silencing of
various antiproliferative and tumor suppressor genes, including targets common to BCL6 (eg, CDKN1A and BLIMP1); (iv) point mutations in the BCL6 autoregulatory sequences
(10% of cases). In addition, loss of PTEN expression is observed in as many as 55% of cases, as a consequence of genetic deletions (15%) and amplifications of miR17-92 (29%),
resulting in activation of the PI3K/Akt/mTOR signaling pathway. Targeted agents currently in clinical trial (or, for BCL6, demonstrating activity in preclinical settings) are shown in red.
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two closely related G proteins (Ga12 and Ga13) and stimulate
RHOA activity through specific guanine nucleotide ex-
change factors, to ultimately suppress pAKT signaling and cell
migration. GCB-DLBCL, but not ABC-DLBCL, displays recurrent
inactivating mutations in several components of this pathway,
including the S1PR2, GNA13, and, more rarely, ARHGEF1 and
P2RY8 genes (overall, ;30% of cases) (Figure 4).112,113 Accord-
ingly, deletion of these genes in the mouse is associated with
disruption of the GC architecture, followed by dissemination of
GC B cells to the peripheral blood and bone marrow, eventually
leading to the development of lymphomas that exhibit features
of GCB-DLBCL.112,113

Mutations of TNFRSF14 TNFRSF14 (also known as herpesvirus
entry mediator [HVEM]) encodes for a member of the tumor
necrosis factor–receptor superfamily that is expressed in both
T and B cells and can deliver opposing signals based on its
specificity for diverse ligands.114 Deletions and mutations of
TNFRSF14, including missense (;50%), nonsense (;40%), and
frameshift (2.5%) events confined to the exons encoding for its
ectodomain, are recurrently found in DLBCL and exquisitely seg-
regatewith theGCB subtype (30%of cases) (Figure 4). Although the
functional consequences of individual amino acid changes have not
been studied, the observed mutation pattern (significant number
of truncating events) and the existence of cases showing biallelic
mutations/deletions indicate a strong selection against the function
of this receptor during DLBCL development. The tumor suppressor
role of TNFRSF14 has been documented in vivo in a FL-prone
BCL2-driven mouse model, where silencing of this gene led to
cell autonomous activation of B-cell proliferation and increased
development of GC-derived lymphomas.115 One mechanism
underlying the tumorigenic effect of TNFRSF14 loss is the in-
hibition of cell-cell interactions between this receptor and its
ligand BTLA, which induces a tumor-supportive microenviron-
ment marked by exacerbated lymphoid stroma activation and
increased recruitment of T-follicular–helper cells.115 Consis-
tent with this model, a mutually exclusive association has been
reported in FL, but not yet inDLBCL, betweenTNFRSF14mutations
and BTLA downregulation, indicating that these two alterations
may converge to create a favorable environment. These findings
provide the rationale for therapeutically restoring this circuit by
administration of the HVEM ectodomain protein. Indeed, soluble
HVEM was able to bind BTLA and cause significant growth in-
hibition in BTLA-expressing lymphoma cells in vitro; moreover, it
restored tumor suppression in established lymphomas in vivo, when
produced locally and continuously by modified chimeric antigen
receptor–T cells.115

Genetic lesions associated with ABC-DLBCL
The core biology of ABC-DLBCL is defined by alterations in
genes encoding multiple signal transducers and adaptor mole-
cules downstream of the BCR and Toll-like receptor (TLR). While
these receptors can trigger a variety of signaling pathways, all of
the lesions identified converge onto the constitutive activation
of the NF-kB transcription complex, the expression of which is
required for ABC-DLBCL survival. Alterations in NF-kB pathway
components are complemented by lesions blocking terminal
B-cell differentiation (Figure 5). In addition, ABC-DLBCL is char-
acterized by recurrent amplifications of the BCL2 locus (;30% of
cases),12,116 homozygous loss of CDKN2A/B (;50% of cases),33,116

and gains or amplifications of a genomic region spanning the SPIB
locus on chromosome 19q (27% of cases).116

Alterations leading to constitutive activation of NF-kB
Mutations in the BCR signaling pathway ABC-DLBCL displays a
“chronic, active” form of BCR signaling that is sustained by
genetic alterations affecting proximal members of the pathway.117

In 21% of cases, these are gain-of-function mutations in the im-
munoreceptor tyrosine-based activation motifs of the IG su-
perfamily member CD79B (or, rarely, CD79A),117 which maintain
BCR signaling by attenuating a negative feedback involving
the phosphorylation-mediated activation of the Lyn kinase. In
;9% of cases, mutations involve the gene encoding CARD11,118

a component of the “signalosome” complex that needs to be
assembled for the proper transduction of BCR signaling.119 These
two types of lesions enhance the amplitude of BCR signaling, but
do not initiate this cascade de novo; thus, they cannot explain
alone the dependency of ABC-DLBCL on chronic BCR signaling,
which is also observed in a fraction of wild-type tumors following
the knockdown of several proximal and distal subunits.117 In-
deed, recent analyses revealed a role for self-antigens in the
survival of ABC-DLBCL cells, consistent with the expression of a
restricted IG variable region repertoire and with the demon-
stration that ABC-DLBCL cell lines rely on the ability of their
BCR to interact with autoantigens.120 The dependence of
ABC-DLBCL from the BCR signaling pathway is underscored by
recent clinical studies reporting successful results with the use of
agents that inhibit Bruton’s tyrosine kinase (BTK), a molecule
linking signaling from the BCR toNF-kB selectively in patients with
this molecular subtype and even in the absence of mutations
(30%of those showing response).121Ofnote, BCRemanates signals to
multiple downstream effectors besides canonical NF-kB, including
PI3K,MAPK/ERK, andNF-AT, all of whichmayplay important roles
in the neoplastic transformation of ABC-DLBCL cells. These vul-
nerabilities offer a unique opportunity for the development of
combinatorial therapeutic strategies, as suggested by the co-
operative toxicity observed upon combined inhibition of NF-kB
and PI3K118 (Figure 5).

Mutations of MYD88 Approximately 30% of ABC-DLBCLs
harbor mutations leading to a hotspot L265P substitution in
the hydrophobic core of the MYD88 TIR domain. This adaptor
molecule is critical for relaying signals from the TLR (particularly,
TLR9) (Louis M. Staudt, American Association for Cancer Research
annual meeting, 3 April 2017) to the NF-kB transcription complex,
as well as the interferon and JAK/STAT3 signaling cascade,
another phenotypic trait of ABC-DLBCL cells required for their
survival.122,123 The oncogenic potential of MYD88 L265P was
documented in mice, where its B-cell–specific expression leads
to the development of lymphoproliferative diseases, including a
fraction of clonal lymphomas.124 Interestingly, although DLBCLs
carrying the MYD88 mutant isoform did not respond to BTK
inhibition in a recent clinical trial, exceptional responses were
observed in tumors with concurrent MYD88 and CD79A/B mu-
tations, suggesting that these pathways may be functionally
coupled.121 A cooperative activity between MYD88 and CD79B
mutations has indeed been shown in themouse, where enforced
expression of these proteins enabled the development of self-
reactive B cells.125

Mutations of TNFAIP3 Nearly 30% of ABC-DLBCL cases display
biallelic truncating mutations and/or focal deletions inactiva-
ting the TNFAIP3 gene,126,127 which encodes a dual function
ubiquitin-modification enzyme (also called A20) involved in
the negative regulation of NF-kB responses triggered by TLR
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and BCR signaling.128 Inactivation of TNFAIP3/A20 may thus
contribute to lymphomagenesis by inducing inappropriately
prolonged NF-kB responses.126,127 Reexpression of functional
TNFAIP3/A20 in DLBCL cell lines leads to cytoplasmic relocal-
ization of NF-kB and apoptosis,126,127 supporting a role for this
gene as a tumor suppressor. Consistent with its activity down-
stream of the BCR proximal signalling, patients with TNFAIP3-
mutated DLBCL do not respond to BTK-inhibitors.121

Genetic lesions preventing terminal differentiation Genetic-driven
constitutive activation of NF-kB in ABC-DLBCL is frequently
complemented by lesions blocking terminal B-cell differentia-
tion (Figure 5). In particular, 25% of cases display biallelic loss-of-
functionmutations/deletions of PRDM1/BLIMP1,129 a transcriptional
repressor induced in a subset of LZ B cells committed to plasmacytic
differentiation and required for plasma cell development. BLIMP1
functions by suppressing the expression of GC master genes,
including its direct targets PAX5 and BCL6.69 In addition, a variety
of genetic and epigeneticmechanisms abrogate BLIMP1 function
in ABC-DLBCL cases lacking alterations of its gene, including
direct transcriptional repression by constitutively active BCL6
alleles.129 Confirming the tumor suppressor role of BLIMP1,
conditional GC-specific Prdm1 deletion in the mouse leads to the
development of DLBCL with ABC-like phenotype and synergizes
with the constitutive activation of the canonical NF-kB pathway to
accelerate lymphomagenesis.130,131

DLBCL deriving from the transformation of FL
and CLL
Genomic analysis of sequential pre- and posttransformation
biopsies from CLL and FL patients revealed that the trans-
formation of CLL to DLBCL (known as Richter syndrome) derives
from the dominant CLL clone through a linear pattern of progression
that involves the maintenance of the original CLL-associated lesions
and the acquisition of new genetic alterations affecting NOTCH1
(mutated in 35% of cases), CDKN2A/B (homozygously deleted
in 30% of cases), TP53 (genetically inactivated in as many as
60% of cases), and MYC (amplified or translocated in ;30% of
cases).132 Conversely, FL and tFL arise through divergent evolution
from a common mutated precursor clone that has acquired in-
dependent genetic aberrations to become an FL or a DLBCL.44

Whereas the common precursor clone is dominated by the
presence of the BCL2 translocation and by inactivation of chro-
matin modifiers (KTMD2 and CREBBP), the DLBCL clone features
lesions typical of high-grade malignancies such as CDKN2A/B
loss, TP53 loss, MYC translocations/amplifications, ASHM, and
HLA class-I loss. Genomic analysis of these tumors also showed
that, although morphologically undistinguishable from de novo
DLBCL, Richter syndrome and post-FL DLBCL are each charac-
terized by a partially different mutational landscape and gene
expression profile.44,132 This distinction has critical implications
for the development of rationally designed combinatorial
therapies.
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Future directions
The revolutionary improvement in the understanding of the
genetic basis of DLBCL achieved during the last decade is poised
to have relevant implications for patient diagnosis, prognostica-
tion, and therapy. Nonetheless, only a few of the lesions identified
have been adopted as routine diagnostic, prognostic, or pre-
dictive markers in the clinical settings, partly because of their
heterogeneity (which requires larger studies providing robust
correlates), and also due to limitations in accessing fresh tumor
material from tissue biopsies. Significant advances in this respect
may come from the use of circulating tumor DNA, which proved
to be a reliable surrogate for simultaneously tracking multiple so-
matic mutations in DLBCL, with high specificity and sensitivity.133,134

This approach outperformed conventional IG sequencing and
radiographic imaging for the detection of minimal residual dis-
ease and was independently predictive of clinical outcome.134

Moreover, circulating tumor DNA genotyping allows the iden-
tification of distinct patterns of clonal evolution, which makes it
a valuable tool in the setting of transformation or relapse, by
informing individualized therapy. The discovery of genes and
pathways that are recurrently disrupted in DLBCL reveals vul-
nerabilities in the lymphoma cells that are often uniquely associ-
atedwith distinct lymphoma subtypes and could thus be exploited
for the design of more effective, targeted therapeutic approaches.
Indeed, the information gained from these studies is already being
translated into the development and clinical testing (or reposi-
tioning) of novel drugs or drug combinations directed against
specifically dysregulated programs in DLBCL. This is the case for
small-molecule inhibitors of EZH2 and BCL2, as well as inhibitors
of BCR and NF-kB activity.2,4 Among these drugs, the BTK in-
hibitor ibrutinib is rapidly emerging as a novel paradigm for
the treatment of ABC-DLBCL.2 It is expected that additional
therapeutic targets will be identified as more mutational events
become functionally dissected. Although these strategies are

expected to impact the standard of care for this malignancy, the
multitude of the dysregulated circuits, the overall complexity of
the disease (whichmay also involve non-geneticmechanisms), and
the interplaywith the microenvironment underscore the need of
precise patient stratification in order to identify those that are
most likely to respond.
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