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RUNX1 mutations in pediatric acute myeloid leukemia
are associated with distinct genetic features and an
inferior prognosis
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Science, The University of Tokyo, Tokyo, Japan; 12Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm,
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Acute myeloid leukemia (AML) is a complicated disease charac-
terized by the uncontrolled proliferation of hematopoietic pre-
cursors and the loss of differentiation ability caused by various
genetic alterations. Recent advances in massively parallel
sequencing technologies have identified several gene mu-
tations associated with the pathogenesis of AML, including
mutations in NPM1, DNMT3A, IDH1/2, and TET2.1-6 However,
the rarity of some of mutations, such asDNMT3A, IDH1/2, and
TET2, in pediatric AML7,8 necessitates exploring additional
biomarkers to stratify pediatric patients with AML. Remarkably,
the 2017 European LeukemiaNet recommendations incorporated
RUNX1 mutations to the group of markers, suggesting adverse
risks in adult AML.9 However, the low frequency ofRUNX1mutations
renders the prognosis of pediatric patients with AML uncertain.10-12

Thus, this study aims to investigate RUNX1 mutations and their

correlation with other gene aberrations to elucidate the prog-
nostic impact in 503 pediatric patients with de novo AML.

In this retrospective cohort study, we recruited patients with
de novo AML (age, ,18 years) who participated in either the
AML99 clinical trial of the Japanese Childhood AML Coop-
erative Study (January 2000 to December 2002) or the AML-05
clinical trial of the Japanese Pediatric Leukemia/Lymphoma
Study Group (November 2006 to December 2010).13,14 Overall,
we enrolled 503 patients with available leukemic samples
in this study comprising 134 of 280 from the AML99 trial and
369 of 485 from the AML-05 trial (supplemental Table 1,
available on the Blood Web site). We observed no significant
differences in the overall survival (OS) between the available and
unavailable samples in the AML99 or AML-05 trial (supplemental
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Tables 2 and 3). Patients with Down syndrome and acute pro-
myelocytic leukemiawere excluded. Details of these protocols are
available elsewhere.13-15 This study was approved by the in-
stitutional review board of Gunma Children’s Medical Center and
was conducted in accordance with the Declaration of Helsinki
guidelines.

We extracted genomic DNA from leukemic samples using
the ALLPrep DNA/RNA Mini kit (Qiagen, Hilden, Germany). In

addition, targeted deep sequencing of RUNX1was performed in
503 pediatric patients with de novo AML using the next-generation
sequencing (details of the study methodology, additional mo-
lecular and cytogenetic analyses, and statistical analyses are
described in supplemental Methods).

We identified RUNX1 mutations in 2.8% (14 of 503) of pediatric
patients with de novo AML, 64% (9 of 14) of whom had frameshift/
nonsensemutations, and 36% (5 of 14) of whomhad heterozygous
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Figure 1. A gene diagram and prognostic impact in pediatric AML patients with RUNX1mutations. (A) A gene diagram depicting RUNX1mutations in pediatric patients
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point mutations that resulted in translational changes (Figure 1A).
Figure 1B shows variant allele frequencies (VAFs) of RUNX1
mutations. Notably, none of the 14 patients with RUNX1 mu-
tations had thrombocytopenia, history of myelodysplastic syn-
drome, or family history of AML. Based on previous studies and
The Cancer Genome Atlas database (TCGA), 3 point muta-
tions (G108D, D171N, and R174X) in the Runt domain were
confirmed as somatic mutations.16-18 Among 3 missense mu-
tations (D185G, L415P, and V425G) that were not confirmed
to be somatic, we detected 2 types (D185G and V425G) both at
diagnosis and complete remission (CR). Despite not being able to
assess the remaining 1 type (L415P) owing to a lack of samples at
CR, it was anticipated as a germ line mutation because VAF was
nearly 50% (46.6%).19 In addition, these 3mutations were located in
theC-terminal negative regulatory region forDNAbinding (NRDBc)
or the C-terminal negative regulatory region for heterodimerization
(NRHc; Figure 1A).20 Although roles of these domains remain un-
clear, a study reported that missense mutations in the C-terminal
region, including NRDBc and NRHc, are uncommon in pedigrees
with familial platelet disorder/AML.21 As these 3 patients with
RUNX1 mutations reported no episode suggestive of familial
platelet disorder/AML, we excluded these 3 mutations from this
study. Thus, we finally analyzed only 11 patients with RUNX1 muta-
tions. Table 1 summarizes the characteristics of the study
cohort.

In this study, we compared the clinical and molecular charac-
teristics between patients with and without RUNX1 mutations
(supplemental Table 4). No significant differences were observed
in age, sex, and white blood cell counts at diagnosis between
both groups. In addition, RUNX1 mutations were associated with
the French-American-British M0 morphology (P 5 .026), which
corroborates previous pediatric10,12 and adult17,22-25 studies. Al-
though 6 of 11 RUNX1 mutations (55%) were determined in
patients with a normal karyotype (P 5 .012), the remaining 5
mutations were detected in 2 patients with RUNX1-RUNX1T1
and 1 each with monosomy 7, trisomy 8, and complex kar-
yotype (Table 1). Although exclusive correlations between
RUNX1-RUNX1T1 and RUNX1 mutations have been report-
ed,22 we observed similar RUNX1 mutations in patients with
RUNX1-RUNX1T1 to those described in latest studies using next-
generation sequencing in adult AML.17,25 Furthermore, RUNX1
mutations were associated with KMT2A–partial tandem duplica-
tion (P, .001) andweremutually exclusive withNPM1 andCEBPA
mutations; these genetic features of patients with RUNX1 muta-
tions are consistent with those previously described in adult AML
cases.17,22-25

Remarkably, RUNX1 mutations exhibited a high prevalence
of non-CR (6 of 11, 55% vs 49 of 492, 10%; P , .001). Seven of
11 patients with RUNX1 mutations died, and 3 of 4 survivors
required stem cell transplantation (SCT). Remarkably, the OS
and event-free survival (EFS) were significantly poorer in patients
with RUNX1 mutations than in those without RUNX1 muta-
tions (5-year OS, 30% vs 72%, P , .001; 5-year EFS, 9% vs 55%,
P , .001; Figure 1C-D). Based on the location of mutations, we
observed no difference in outcomes in this study, which is consis-
tent with previous adult AML studies.23,24 We used Cox regression
models for univariate and multivariate analyses (supplemental
Table 5). Besides RUNX1mutations, we used FLT3-ITD and some
cytogenetic groups, such as t(8;21)(q22;q22)/RUNX1-RUNX1T1,
inv(16)(p13q22)/CBFB-MYH11, 5q deletion, monosomy 7, and

t(16;21)(p11;q22)/FUS-ERG, as expounding variables in the multi-
variate analysis; these cytogenetic aberrations were used for risk
classification in theAML99andAML-05 trials.13,14 In addition,RUNX1
mutations were significantly associated with inferior OS (univariate
[hazard ratio (HR), 4.020; 95% confidence interval (CI), 1.873-8.625;
P, .001]; multivariate [HR, 2.572; 95%CI, 1.185-5.582; P5 .017])
and EFS (univariate [HR, 4.351; 95% CI, 2.292-8.259; P , .001];
multivariate [HR, 3.678; 95% CI, 1.924-7.030; P , .001]).

Furthermore, this study presents clinical features and prognosis
of 14 patients, including the 3 excluded ones (supplemental
Figure 1; supplemental Tables 6 and 7) because the significance of
these 3 variants remains uncertain. Accordingly, both multivariate
and univariate analyses revealed that the presence of RUNX1
mutations correlated with the worse OS and EFS in this study.

In line with adult AML, RUNX1 mutations in our cohort were as-
sociatedwith adverse outcomes.17,22-25 Although previous research
on pediatric AML could not establish the prognostic impact of
RUNX1 mutations because of the limited number of patients and
lack of integrated treatment regimens (supplemental Table 8),10-12

our study had a considerable sample size that confirmed the
prognostic impact of RUNX1mutations. Perhaps our research and
other recent studies using next-generation sequencing couldmore
precisely reveal the frequency and outcomes of RUNX1mutations
unlike previous studies using direct sequencing.10-12,17,22-25 Al-
though this study did not completely confirmmutations as somatic
mutations, the fact that patients with RUNX1 mutations demon-
strated a significantly poor prognosis is crucial. Thus, this study
suggests that RUNX1mutations might be a poor prognostic factor
in the risk classification for pediatric AML and clinicians should
consider the adaptation of SCT after first CR for patients with
RUNX1 mutations.
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