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KEY PO INT S

l ATL subtypes are
further classified into
molecularly distinct
subsets with different
prognosis by genetic
profiling.

l PD-L1 amplifications
are a strong genetic
predictor for worse
outcome in both
aggressive and
indolent ATL.

Adult T-cell leukemia/lymphoma (ATL) is a heterogeneous group of peripheral T-cell malig-
nancies characterized by human T-cell leukemia virus type-1 infection, whose genetic profile
has recently been fully investigated. However, it is still poorly understood how these alter-
ations affect clinical features and prognosis. We investigated the effects of genetic alterations
commonly found in ATL on disease phenotypes and clinical outcomes, based on genotyping
data obtained from 414 and 463 ATL patients using targeted-capture sequencing and single
nucleotide polymorphism array karyotyping, respectively. Aggressive (acute/lymphoma)
subtypes were associated with an increased burden of genetic and epigenetic alterations,
higher frequencies of TP53 and IRF4 mutations, and many copy number alterations (CNAs),
including PD-L1 amplifications and CDKN2A deletions, compared with indolent (chronic/
smoldering) subtypes. By contrast, STAT3 mutations were more characteristic of indolent
ATL. Higher numbers of somatic mutations and CNAs significantly correlated with worse
survival. In a multivariate analysis incorporating both clinical factors and genetic alterations,

the Japan Clinical Oncology Group prognostic index high-risk, older age, PRKCBmutations, and PD-L1 amplifications were
independentpoorprognostic factors in aggressiveATL. In indolentATL, IRF4mutations,PD-L1 amplifications, andCDKN2A
deletions were significantly associated with shorter survival, although the chronic subtype with unfavorable clinical factors
was only marginally significant. Thus, somatic alterations characterizing aggressive diseases predict worse prognosis in
indolent ATL, among which PD-L1 amplifications are a strong genetic predictor in both aggressive and indolent ATL. ATL
subtypes are further classified intomolecularly distinct subsets with different prognosis. Genetic profilingmight contribute
to improved prognostication and management of ATL patients. (Blood. 2018;131(2):215-225)

Introduction
Adult T-cell leukemia/lymphoma (ATL) is a distinct subtype of
peripheral T-cell neoplasms associated with human T-cell leu-
kemia virus type-1 (HTLV-1) retrovirus. Affecting 10 to 20 million

HTLV-1 carriers worldwide, especially in southwest Japan, the

Caribbean basin, Central and South America, intertropical Africa,

Romania, and northern Iran, HTLV-1 infection is associated with a

3% to 5% risk of ATL development, with a median age at
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diagnosis of 50 to 70 years.1-5 The clinical and pathological
presentation of ATL is highly variable, and patients are clas-
sified into 4 subtypes: acute, lymphoma, chronic, and
smoldering.1-4 The chronic and smoldering ATLs are usually
indolent tumors, for which combined interferon-a and zido-
vudine therapy or watchful waiting is the standard choice of
treatment, but many patients eventually progress to the acute
form of the disease.2-4 The acute and lymphoma subtypes are
highly aggressive diseases associated with very poor prog-
nosis and treated with intensive therapies, such as combination
chemotherapy and molecularly targeted agents against CCR4,
although allogeneic hematopoietic stem cell transplantation
(HSCT) remains the only potentially curative therapy.2-4 Be-
sides disease subtype, several clinical features, including age,
performance status, and laboratory parameters, have been
proposed to predict clinical course and prognosis in ATL, al-
though only a few of them were validated in independent
studies.2-4

Even though HTLV-1 infection is a hallmark of ATL and pre-
requisite for its diagnosis, the presence of a long latency period
before tumor onset suggests that HTLV-1 infection alone is not
enough for ATL development, and that additional genetic
events are required.6,7 Through an integrated molecular analysis
of a large number of ATL patients, we have demonstrated that
typical ATL has many driver alterations, with a median of
4 mutations and 10 focal copy number alterations (CNAs) per
case, which recurrently affect key components in T-cell receptor
and NF-kB signaling, chemokine receptors, transcriptional
and epigenetic regulators, and immune-related molecules.8

However, the relevance of these genetic alterations on disease
phenotypes and clinical outcomes is largely unknown, except
for the negative impacts of TP53 mutations and CDKN2A
deletions.9,10 Understanding the clinical effects of these genetic
alterations might improve the prognostic prediction for patients
and inform the selection of specific therapies, as demonstrated
in other hematologic malignanices.11-13

In the present study, we investigated possible associations
between these genetic/epigenetic alterations and clinical/
pathological phenotypes in a large set of ATL patients, focus-
ing on the influence of mutations and CNAs on clinical outcome.

Methods
Patient samples
We evaluated a total of 463 patients who had been diagnosed
with ATL between 1984 and 2017, of which 410 were previously
reported.8 All patients were analyzed by single nucleotide
polymorphism array karyotyping, and 414 were also investigated
by targeted sequencing (Figure 1A). Diagnosis was based on the
World Health Organization classification, and the patients were
classified into acute (n 5 224, 48%), lymphoma (n 5 104, 22%),
chronic (n 5 105, 23%), and smoldering (n 5 30, 6%) subtypes,
according to the International Consensus Meeting proposal.1,2

HTLV-1 infection was documented in all patients. In the entire
cohort, the median age was 62 years, and 53% were male. The
other clinical characteristics are summarized in Table 1. This
study was approved by the institutional ethics committees of the
Graduate School of Medicine, Kyoto University and other par-
ticipating institutes and was performed in accordance with the
Declaration of Helsinki.

Single nucleotide polymorphism array karyotyping,
DNA sequencing, and data analysis
The molecular status of these patients, including somatic mu-
tations and CNAs, was analyzed as previously reported.8 Briefly,
genomic copy numbers were determined for all 463 tumor
samples using the Affymetrix GeneChip Human Mapping 250K
NspI Array (n5 319) or the Illumina Human610-Quad BeadChip
(n5 144) with the copy number analyzer for GeneChip (CNAG)/
allele-specific copy-number analysis using anonymous refer-
ences (AsCNAR)14,15 and allele-specific copy number analysis of
tumors (ASCAT)16 software for Affymetrix and Illumina array data,
respectively. Significant focal CNAs were identified using GISTIC
2.0.17 Mutation analysis was performed by deep sequencing of
targeted exons using a custom SureSelect library (Agilent)
designed to capture 88 genes with sufficient read coverage
(supplemental Figure 1, available on the Blood Web site).8 Se-
quence alignment, mutation calling, and downstream data
analysis were performed using the Genomon pipeline, where the
overall validation rate was .99.0%.8 Detailed methods are de-
scribed in the supplemental Methods. We analyzed the associ-
ations between clinical phenotypes and significant somatic
alterations, namely mutations in 50 genes, 26 focal amplifications,
and51 focal deletions (supplemental Table 1).Of 463patients, 83,
57, and 109 also had whole-exome/genome and transcriptome
sequencing andmethylation array data, respectively.8 Sequencing
data have been deposited in the European Genome-phenome
Archive under accession number EGAS00001001296.

Statistical methods
Statistical analyses were performed with R version 3.1.3 software
(R Foundation for Statistical Computing). The molecular features
of the aggressive and indolent subtypes were compared by
using the Brunner-Munzel and Fisher’s exact tests for continuous
and categorical variables, respectively, with the Benjamini–
Hochberg correction (Q value). Survival analysis was performed
for 226 patients who were previously untreated at the time of
sampling and whose clinical information, including age, sex,
subtype, and well-known clinical prognostic factors, was avail-
able. These clinical prognostic factors included treatment con-
tent and Japan Clinical Oncology Group prognostic index
(JCOG-PI) based on calcium level and performance status in
aggressive ATL, and albumin, blood urea nitrogen (BUN), and
lactate dehydrogenase (LDH) levels in indolent ATL.2-4,18,19

Overall survival (OS) was calculated from the time of diagnosis,
and observations were censored at the time of HSCT or last
follow-up. For cases in which a sample was collected at the time
of disease progression, OS was recalculated from that time. The
mean follow-up was 25.1 months for surviving patients, and 107
patients were alive at the last follow-up. Older age was defined
as$70 years according to the previous publication.20 Frameshift
and stopgain mutations in CCR4 were not discriminated in this
study because, in contrast to a previous report,21 no significant
differences for OS between both mutation types were seen
(supplemental Figure 2). The Kaplan-Meier method was used for
estimating OS, and the log-rank test was used to assess dif-
ferences in OS between patient groups. The effects of mutation
status on OS were evaluated by Cox proportional hazards re-
gression modeling and adjusted for clinical factors using the
survival package in R. Model simplification was performed in
a stepwise selection of variables relying on the Akaike Informa-
tion Criterion using the MASS package in R, where genetic
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alterations having a univariate Cox P value , .10 and clinical
factors were considered. All P values were calculated with the use
of 2-sided tests, where P , .05 was considered statistically
significant.

Results
Spectrum of mutations and CNAs in aggressive and
indolent ATL
Overall, 396 (96%) of 414 and 407 (88%) of 463 ATL patients
carried $1 mutation and CNA, respectively. When evaluated
together, 402 (97%) of 414 ATL patients harbored $1 somatic
alteration. PLCG1 (36%), PRKCB (32%), CCR4 (30%), CARD11
(24%), STAT3 (22%), VAV1 (17%), TP53 (16%), and TBL1XR1
(16%) exhibited the highest mutation frequency. TP53mutations
and 13q32 (GPR183) and 16q23 (WWOX) deletions were more
frequent in older patients ($70 years of age) (Figure 1B), al-
though there was no significant difference in age among
subtypes.

Genetic and epigenetic profiles were substantially different
between aggressive and indolent diseases, suggesting a distinct
molecular pathogenesis therein. Aggressive subtypes were as-
sociated with higher numbers of mutations (Figure 2A-B) as well
as focal amplifications and deletions, hyperploid status
(Figure 2C-E), and cytosine guanine dinucleotide island hyper-
methylation (Figure 2F) compared with indolent subtypes,
suggesting that the accumulation of genetic and epigenetic

changes drives tumor progression in ATL. With respect to the
frequency distribution of each driver alteration, 7 mutations
and a number of focal CNAs, including 9p24 (PD-L1) amplifi-
cations, were more common in aggressive ATL (Figure 2G-H).
In accordance with previous reports, TP53 mutations as well as
CDKN2A and CD58 deletions were more frequent in aggres-
sive ATL compared with indolent ATL.9,22,23 Stepwise logistic
regression analysis showed that IRF4 mutations and focal
deletions involving 9p21 (CDKN2A), 10p11 (CCDC7), and
13q32 (GPR183) were independently associated with the ag-
gressive subtypes compared with the indolent subtypes
(Figure 2I).

Among these, the most significant were IRF4 mutations, which
predominantly affected the 3 amino acid residues located
within the DNA-binding domain (K59, L70, and S114).8 IRF4
mutations showed lower allelic burden and were considered
more frequently subclonal than clonal, suggesting that these
mutations are more likely to be late events than founder al-
terations (Figure 3A). By contrast, STAT3 mutations were sig-
nificantly associated with indolent ATL, being present in ;40%
of indolent cases compared with 15% of aggressive cases.
Frequent STAT3 mutations have previously been reported in
large granular lymphocytic leukemia (LGL), chronic lympho-
proliferative disorders of natural killer (NK) cells, and ana-
plastic large cell lymphoma.24-26 The distribution of mutations
was largely similar between ATL and the latter lymphoid ma-
lignancies. However, in addition to the hotspot mutations
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Figure 1. Genetic alterations associatedwith older age in ATL. (A) Relationship of ATL patients for which CNA, mutation, and survival data were available. (B) Comparison of
frequencies of driver mutations and focal CNAs between younger (,70 years) and older ($70 years) patients (Fisher’s exact test with Benjamini–Hochberg correction). Re-
currently mutated genes (n 5 28) present in .3% of ATL cases and highly significant (residual Q , 10213) focal amplifications (n 5 4) and deletions (n 5 20) are shown.
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affecting Y640 and D661, which were frequently observed
across different diseases and shown to result in an enhanced
STAT3 transcriptional activity,24,26 mutations involving S614,
E616, and G618 and an in-frame deletion (616_617del) were
also observed frequently in ATL cases (Figure 3B). Localized in
close proximity to the phosphotyrosine binding pocket within the
SH2 domain (Figure 3C-D), the latter alterations were also con-
sidered gain of function.

Association of genetic features with
clinical outcomes
We assessed the effects of somatic lesions on the prognosis of
226 untreated ATL patients, including acute (n 5 125, 55%),
lymphoma (n5 27, 12%), chronic (n5 59, 26%), and smoldering
(n 5 15, 7%) patients, for whom survival data were available
(Table 1). The number of somatic alterations significantly af-
fected prognosis (Figure 4A). Thus, the 3-year OS rate was
54% for patients with 0 to 1 mutation, 39% for those with 2 to
5mutations, and only 19% for those with$6mutations (P, .001).
Similarly, a higher number of CNAs were significantly associated
with a shorter 3-year OS rate: 61%, 26%, and 27% for patients
carrying 0 to 4, 5 to 9, and $10 CNAs, respectively (P , .001),
suggesting the prognostic impact of genetic alterations on
survival. We next evaluated the effects of individual alterations
on clinical outcomes that were present in $10% of patients in
the entire cohort. In a univariate analysis, somatic mutations

Table 1. Clinical information of ATL patients

CNA
(n 5 463)

Mutation
(n 5 414)

n % n %

Sex
Male 245 53 218 53
Female 218 47 196 47

Subtype
Acute 224 48 222 54
Lymphoma 104 22 73 18
Chronic 105 23 99 24
Smoldering 30 6 20 5

Age
,70 y 249 54 244 59
$70 y 88 19 88 21
Not available 126 27 82 20

Survival (n 5 226)

Aggressive
subtypes
(n 5 152)

Indolent
subtypes
(n 5 74)

n % n %

Sex
Male 83 55 30 41
Female 69 45 44 59

Subtype
Acute 125 82 — —

Lymphoma 27 18 — —

Chronic — — 59 80
Smoldering — — 15 20

Age
,70 y 107 70 55 74
$70 y 45 30 19 26

Treatment
CHOP/CHOP-like 72 47 — —

VCAP-AMP-VECP 61 40 — —

Others 15 10 — —

Not available 4 3 — —

HSCT during follow-up
(–) 119 78 59 80
(1) 33 22 15 20

Anti-CCR4 antibody
during follow-up
(–) 119 78 62 84
(1) 33 22 12 16

High calcium
(‡2.75 mmol/L)
(–) 125 82 — —

(1) 27 18 — —

Performance status — —

0-1 92 61 — —

2-4 60 39 — —

Table 1. (continued)

Survival (n 5 226)

Aggressive
subtypes
(n 5 152)

Indolent
subtypes
(n 5 74)

n % n %

JCOG-PI — —

Moderate-risk 84 55 — —

High-risk 68 45 — —

Low albumin (<LLN)
(–) — — 61 82
(1) — — 13 18

High BUN (>ULN) — —

(–) — — 71 96
(1) — — 3 4

High LDH (>ULN) — —

(–) — — 36 49
(1) — — 38 51

Unfavorable factor — —

(–) — — 30 41
(1) — — 44 59

Clinical information of ATL patients, for which CNA, mutation, and survival data were
available. JCOG-PI high-risk was defined as having high a calcium level and/or poor
performance status. Unfavorable factor (1) was defined as having any of 3 clinical factors:
low albumin, high BUN, and high LDH levels.

AMP, doxorubicin, ranimustine, and prednisone; CHOP, cyclophosphamide, doxorubicin,
vincristine, and prednisone; LLN, lower limit of normal; ULN, upper limit of normal; VCAP,
vincristine, cyclophosphamide, doxorubicin, and prednisone; VECP, vindesine, etoposide,
carboplatin, and prednisone.
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Figure 2. Higher frequencies of somatic alterations in aggressive than indolent ATL. Aggressive (acute and lymphoma subtypes) ATL shows (A) a higher number of coding
mutations identified in whole-exome/genome sequencing (n5 83), (B) a higher number of significant mutations in targeted capture sequencing (n5 414), (C) increased ploidy
(n 5 463), higher numbers of (D) significant focal amplifications and (E) deletions (n 5 463), and (F) hypermethylation at promoter-associated cytosine guanine dinucleotide
islands (n 5 109) compared with indolent ATL (chronic and smoldering subtypes). P , .001 for all comparisons between aggressive and indolent subtypes by Brunner-Munzel
test. Comparison of frequencies of (G) driver mutations and (H) focal CNAs between aggressive and indolent ATL (Fisher’s exact test with Benjamini–Hochberg correction).
Recurrently mutated genes (n 5 28) present in .3% of ATL cases and highly significant (residual Q , 10213) focal amplifications (n 5 4) and deletions (n 5 20) are shown. (I) A
multivariate logistic regression analysis identifying independent significant factors (present in .10%) for aggressive subtypes (vs indolent subtypes) in 414 ATL cases. CI,
confidence interval; OR, odds ratio; SNV, single nucleotide variant.
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involving PRKCB and IRF4 were significantly associated with a
poor outcome (Table 2; supplemental Figure 3). In contrast,
STAT3mutations were predictive of a favorable prognosis, even
when analyzed in patients with other genetic alterations (Table 2;
supplemental Figures 3 and 4). In addition, focal amplifications
in 9p24 (PD-L1) and 4 deletions in 6p22 (ATXN1), 6q21 (PRDM1),
9p21 (CDKN2A), and 13q32 (GPR183) were also significant
predictors of an inferior survival. After adjustment for disease
subtype and age, PRKCB and IRF4 mutations and PD-L1 amplifi-
cations remained significant (Table 2), suggesting a major role of
these alterations in the progression and aggressiveness of ATL.

Multivariate risk stratification of ATL patients
according to genetic alterations
Finally, we evaluated the relative effects of different mutations
and CNAs using Cox proportional hazards modeling with a

stepwise variable selection, incorporating age, disease subtype,
and molecular status as covariates. We found that disease
subtype (aggressive disease), older age ($70 years), PRKCB
mutations, and PD-L1 amplifications were independently asso-
ciated with a shorter OS, of which disease subtype (aggressive vs
indolent) was the most significant predictor of clinical outcome
of ATL patients (supplemental Table 2). Importantly, the effects
of genetic alterations strongly depended on disease subtype:
the number of somatic mutations and focal CNAs were signifi-
cantly correlated with an inferior outcome in indolent ATL, but
not in aggressive ATL (Figure 4B). In particular, PRKCBmutations
were associated with a shorter OS in aggressive subtypes, but
not in indolent subtypes (Table 2). By contrast, IRF4 mutations
and focal deletions in CDKN2A significantly predicted a worse
prognosis in indolent subtypes, but not in aggressive ones
(Table 2). In addition, several clinical prognostic factors have
been evaluated in aggressive and indolent diseases separately.
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In aggressive ATL, chemotherapy regimen and JCOG-PI were
reported to influence clinical outcomes,2-4,18,19 whereas the
presence of any of 3 clinical factors, including low albumin and
elevated BUN and LDH levels, has been shown to identify a
subset of indolent ATL showing worse OS.2-4 Indeed, these
clinical factors were or tended to be associated with OS in our
study (Table 2; supplemental Figure 5). Therefore, in the sub-
sequent multivariate analyses, we stratified patients according to
disease subtype, incorporating subtype-specific clinical prog-
nostic factors.

For aggressive ATL, PRKCBmutations and PD-L1 amplifications,
together with JCOG-PI high-risk (high calcium level and/or poor
performance status) and older age ($70 years), were in-
dependently associated with an adverse outcome (Figure 5A).
Providing that JCOG-PI high-risk was confirmed to be a strong
predictor for worse prognosis, as previously reported,18 we
assessed the prognostic values of other risk factors within pa-
tients stratified by the JCOG-PI. Of the 152 patients with ag-
gressive ATL, 68 (45%) belonged to the JCOG-PI high-risk
category, and 100 (65%) had $1 other risk factor (Figure 5B).
Based on the number of these relevant risk factors (older age,
PRKCB mutations, and PD-L1 amplifications) they had, patients
with aggressive ATL were classified into 3 categories showing
significantly different 1-year OS rates (P , .001): 58% for those
with no risk factor, 45% for those with 1, and 16% for those with
$2 risk factors (Figure 5C). This classification remained signifi-
cant even when JCOG-PI moderate-risk and high-risk patients
were analyzed separately (Figure 5C). Moreover, the prognostic
impact of this classification was maintained when analyzed
only for patients who did not undergo HSCT (supplemental
Figure 6A). Thus, the evaluation of the molecular status of
PRKCB mutations and PD-L1 amplifications, as well as patient
age and JCOG-PI classification, would be informative in prog-
nostication of aggressive ATL.

Multivariate modeling of the patients with indolent ATL showed
that IRF4 mutations, PD-L1 amplifications, and CDKN2A
deletions were among the independent predictors of a poor
prognosis, although the unfavorable chronic subtype was mar-
ginally not significant (hazard ratio [HR], 0.96-6.78; P 5 .060)
(Figure 5A). Nearly one-fourth of the patients (n 5 18, 24%)
carried $1 of these driver alterations, accounting for 59% of the
total deaths (within 3 years) in the patients with indolent ATL
(Figure 5B). All of these alterations were more frequent in ag-
gressive ATL (Figure 2G-H), among which IRF4 mutations and
CDKN2A deletions were independently enriched in aggressive
ATL in the multivariate logistic regression model (Figure 2I).
More importantly, based on these risk factors, patients with
indolent ATL can be classified into 2 categories showing re-
markably different prognosis, where the 3-year OS rate was 82%
vs 30% for patients without and with risk factors (P , .001)
(Figure 5D). In addition, for patients with the unfavorable chronic
subtype, the presence of these factors highlighted a subset with
significantly shorter OS (3-year OS rate, 67% vs 31%). The
prognostic power of this classification remained significant when
evaluated only in patients who did not receive HSCT (supple-
mental Figure 6B). Our results suggest that patients with in-
dolent ATL harboring a genetic feature of the aggressive
subtypes might clinically and biologically represent a distinct
subset with a worse prognosis, and would be better managed if
they were considered to have aggressive disease.

Discussion
On the basis of large-scale genotyping data, we are the first to
demonstrate the clinical effects of genetic abnormalities,
pointing to the significance of genetic profiling in terms of better
classification and prognostication in ATL. Among the recurrent
alterations, PD-L1 amplifications were a powerful predictor for
an adverse outcome in both aggressive and indolent ATL.
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Conspicuously, a molecular profile pathognomonic of aggres-
sive subtypes (IRF4 mutations, PD-L1 amplifications, and
CDKN2A deletions) significantly predicted a poor prognosis in
indolent ATL. These data enable us to identify a subset of pa-
tients who would likely benefit from more intensive treatment,
such as combined chemotherapy and/or allogeneic HSCT. The
identification of the same molecular alterations recognized by
different analyses on disease subtype and patient survival
confirms the malignant phenotype conferred by these alter-
ations and their biological significance as a poor prognostic
indicator. Taken together, these findings suggest that somatic
alterations in specific genes help account for the clinical het-
erogeneity of ATL and that the identification of these abnor-
malities would improve the prediction of prognosis in ATL
patients.

Through a comprehensive analysis of molecular profiles in ATL,
we found that IRF4 and TP53 mutations and many focal CNAs,

such as PD-L1 amplifications and CDKN2A deletions, were
characteristic of aggressive subtypes, suggesting that acquisi-
tion of these somatic alterations contributes to acute trans-
formation of indolent ATL. By contrast, significantly enriched in
the indolent ATL subtypes, STAT3 mutations suggest a distinct
molecular pathogenesis between aggressive and indolent
forms. In addition, frequently observed in other mature T- or
NK-cell neoplasms, including T-LGL and chronic lymphoprolifera-
tive disorders of NK cells, STAT3 mutations are characterized by
indolent clinical and biological behavior.24,25 Therefore, activating
STAT3mutations are implicated in the slowly progressive expansion
of clonal mature T and NK cells.

Among the significant predictors of a poor prognosis in ATL,
PD-L1 amplifications are of particular therapeutic value, be-
cause they might be a plausible target of immune checkpoint
blockade using anti-PD1/PD-L1 antibodies, which has demon-
strated excellent efficacy in a variety of human malignancies.27,28

Table 2. HRs for OS according to the presence of each genetic alteration in ATL

Variable

Univariate Adjusted

HR 95% CI P HR 95% CI P

Whole group (n 5 226)
Age $70 y 1.84 1.27-2.68 .001
Subtype: aggressive 4.12 2.66-6.38 ,.001
PRKCB mutations 1.46 1.01-2.12 .046 1.59 1.08-2.34 .019
STAT3 mutations 0.60 0.38-0.95 .028 1.05 0.64-1.72 .837
IRF4 mutations 2.20 1.37-3.54 .001 1.86 1.13-3.05 .015
Amp (9p24): PD-L1 2.33 1.47-3.71 ,.001 2.24 1.41-3.58 .001
Del (6p22): ATXN1 1.91 1.19-3.08 .008 1.16 0.71-1.90 .564
Del (6q21): PRDM1 1.71 1.05-2.81 .033 1.36 0.82-2.24 .230
Del (9p21): CDKN2A 1.78 1.21-2.62 .004 1.22 0.81-1.82 .342
Del (13q32): GPR183 2.06 1.36-3.13 .001 1.14 0.73-1.79 .562

Aggressive subtype (n 5 152)
Age $70 y 1.77 1.16-2.70 .009
JCOG-PI high-risk 3.61 2.30-5.67 ,.001
Treatment

VCAP-AMP-VECP 0.63 0.40-1.00 .051
Other 1.04 0.52-2.05 .917

PRKCB mutations 1.50 0.98-2.28 .060 1.84 1.16-2.93 .010
Amp (9p24): PD-L1 1.72 1.01-2.94 .047 1.75 1.02-3.01 .042
Del (10p11): CCDC7 0.59 0.36-0.96 .034 0.74 0.44-1.24 .253

Indolent subtype (n 5 74)
Age $70 y 1.57 0.69-3.57 .285
Subtype: unfavorable chronic 3.74 1.51-9.26 .004
PLCG1 mutations 2.26 1.07-4.80 .033 1.98 0.93-4.22 .077
VAV1 mutations 2.44 0.96-6.24 .062 1.69 0.65-4.38 .282
IRF4 mutations 4.23 0.93-19.15 .061 4.97 1.09-22.67 .038
Amp (9p24): PD-L1 5.09 1.93-13.42 .001 4.47 1.68-11.87 .003
Del (7q34): TRB 2.55 1.17-5.59 .019 2.12 0.95-4.74 .067
Del (9p21): CDKN2A 6.35 2.45-16.50 ,.001 4.26 1.60-11.36 .004

Top, HRs for OS associated with age (,70 years vs$70 years), subtype (aggressive vs indolent), and genetic alterations in 226 ATL patients by univariate analyses. Values adjusted for disease
subtype and age are also shown. Middle, HRs for OS associated with age, JCOG-PI category (high-risk vs moderate-risk), treatment content (VCAP-AMP-VECP or others vs CHOP/CHOP-like),
and genetic alterations in 152 aggressive ATL patients by univariate analyses. Values adjusted for age, JCOG-PI, and treatment content are also shown. Bottom, HRs for OS associated with
age, subtype (unfavorable chronic vs favorable chronic and smoldering), and genetic alterations in 74 indolent ATL patients by univariate analyses. Values adjusted for age and subtype are also
shown. Recurrently mutated genes (n 5 13), as well as focal amplifications (n 5 4) and deletions (n 5 16) present in .10% of ATL cases were examined, and only significant alterations in
univariate analyses are shown. The prognostic impact on OS was evaluated by univariate and multivariate Cox regression analyses.

Amp, amplification; AMP, doxorubicin, ranimustine, and prednisone; CI, confidence interval; Del, deletion; VCAP, vincristine, cyclophosphamide, doxorubicin, and prednisone; VECP,
vindesine, etoposide, carboplatin, and prednisone.
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Figure 5. Multivariate risk classification of patients with aggressive and indolent ATL. (A) Cox proportional hazards model identifying independent significant risk factors for
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Importantly, we have recently reported that elevated PD-L1
expression in ATL is strongly associated with a 39-UTR trunca-
tion of the PD-L1 gene, which is caused by a variety of structural
variations, frequently accompanied by gene amplifications af-
fecting the relevant locus.29 Currently, the relationship between
PD-L1 amplifications and PD-L1 39-UTR–involving structural vari-
ations remains to be elucidated. However, given that an excellent
response has been obtained for Hodgkin lymphoma, which fre-
quently harbors PD-L1 amplifications, targeting PD-L1 expression
using anti–PD-1/PD-L1 antibodies should be a promising thera-
peutic strategy for ATL.30,31 Because HTLV-1–derived proteins,
such as tax, are highly immunogenic, escape from immune sur-
veillance is thought to be crucial for ATL cells.6,7 Represented by
PD-L1 aberrations, thegenetic alterations associatedwith immune
modulation are likely to play a critical role in ATL progression and
therapeutic resistance, although their precise roles, including those
against antitumor immunity in HSCT, need to be clarified.

IRF4 mutations, more frequently found in subclones, were the
strongest indicator of worse prognosis in indolent ATL. Along
with the observations that IRF4 (also known as MUM1) expres-
sion is associated with inferior outcome in a variety of non-
Hodgkin lymphomas, including ATL,32,33 these results indicate
the pivotal role of IRF4 in clonal evolution and therapeutic re-
sistance not only in B-cell lymphomas, but also in ATL. These
mutations are also an attractive therapeutic target, because
lenalidomide was reported to kill activated B-cell–like diffuse
large B-cell lymphoma cells through the downregulation of
IRF4.34 In addition, a recent clinical trial of lenalidomide mono-
therapy has shown meaningful antitumor activity in patients
with relapsed or recurrent aggressive ATL.35 Therefore, lenali-
domide may overcome the poor prognosis conferred by IRF4
mutations.

In conclusion, based on comprehensive genetic profiling, we
have demonstrated that the known subtypes of ATL could be
further classified into genetically and biologically distinct subsets
of tumors characterized by discrete sets of genetic lesions
and substantially different prognosis. Our results suggest that
molecular profiling using next-generation sequencing and/or
microarrays could potentially improve the prediction of prog-
nosis in ATL patients and better guide therapy options, such as
early intervention with combined chemotherapy and/or allo-
geneic HSCT in indolent ATL. Further independent studies,
particularly those in other ethnic populations, are warranted to
validate the clinical utility of molecular profiling in ATL.
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