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KEY PO INT S

l Skin GVHD targets
Lgr51 HFSCs in
association with
impaired hair
regeneration and
wound healing.

l Topical ruxolitinib,
unlike corticosteroids,
protects Lgr51 skin
stem cells and
maintains skin
homeostasis in skin
GVHD.

Graft-versus-host disease (GVHD) is the major complication after allogeneic stem cell
transplantation (SCT). Emerging evidence indicates that GVHD leads to injury of intestinal
stem cells. However, it remains to be investigated whether skin stem cells could be tar-
geted in skin GVHD. Lgr51 hair follicle stem cells (HFSCs) contribute to folliculogenesis and
have a multipotent capacity to regenerate all epithelial cells in repair. We studied the fate
of Lgr51 HFSCs after SCT and explored the novel treatment to protect Lgr51 HFSCs
against GVHD using murine models of SCT. We found that GVHD reduced Lgr51 HFSCs
in association with impaired hair regeneration and wound healing in the skin after SCT.
Topical corticosteroids, a standard of care for a wide range of skin disorders including
GVHD, damaged HFSCs and failed to improve skin homeostasis, despite of their anti-
inflammatory effects. In contrast, JAK1/2 inhibitor ruxolitinib significantly ameliorated skin
GVHD, protected Lgr51 HFSCs, and restored hair regeneration and wound healing after
SCT. We, for the first time, found that GVHD targets Lgr51 HFSCs and that topical rux-
olitinib represents a novel strategy to protect skin stem cells andmaintain skin homeostasis
in GVHD. (Blood. 2018;131(18):2074-2085)

Introduction
Allogeneic hematopoietic stem cell transplantation (SCT) is a
curative therapy for hematologic malignancies and bonemarrow
failure syndrome. Graft-versus-host disease (GVHD) remains a
major obstacle to performing SCT. Adult tissue stem cells have
emerged as targets of GVHD. Intestinal GVHD leads to loss of
Lgr51 intestinal stem cells (ISCs).1,2 ISC injury is associated with
profound damage of intestinal epithelium, impairing physio-
logical repair and causing refractory colitis in GVHD. Thus,
protection of ISCs will pave a new avenue to improving the
outcome of allogeneic SCT.1-3

The skin is the most frequently involved tissue in both acute and
chronic GVHD. Particularly, 15% of acute GVHD solely involves
skin without other organ manifestations.4 The skin is highly
dynamic tissue harboring several distinct populations of stem
cells to maintain homeostasis. In mice, the epidermis is main-
tained in discrete compartments during homeostasis. Hair fol-
licle stem cells (HFSCs) reside in the hair follicle bulge; hair germ
maintain lower hair follicles, whereas Lrig11 stem cells in isthmus
maintain the upper pilosebaceous units in steady state.5 How-
ever, both populations acquire lineage plasticity and make a
contribution to regenerative skin upon wounding.5 HFSCs are
the best-characterized stem cell population in the hair bulge

because of their expression of a set of distinct markers, such as
cytokeratin-15 (CK15) and CD34.6,7 Subsequent studies have
further specified the phenotypes and functions of HFSCs, dem-
onstrating that HFSCs with multipotent plasticity are enriched in
the Lgr51 cell fraction among them.5,8

Repair of severe skin injury requires skin regeneration from skin
stem cells. Therefore, damage of skin stem cells is associated
with prolonged skin injury and impaired skin homeostasis.
A series of previous experimental and clinical studies of skin
GVHD have shown that apoptotic cells accompanying donor
T-cell infiltration are spatially restricted to the sites harboring
stem-cell populations such as bulge regions of hair follicles,
human epidermal rete ridges, and the rete-like prominences
(RLPs) of murine tongue, as a surrogate of human rete ridges.9-15

Although previous studies demonstrated injury of CK151 stem
cells in RLPs of themurine tongue duringGVHD,11,12 it remains to
be elucidated whether, using modern sophisticated model
systems, Lgr51 HFSCs could be targets of GVHD and the dy-
namic process of damage and repopulation of HFSCs, which
play a pivotal role in the competitive race between tissue
damage and restoration during GVHD needs to be clarified.

Topical corticosteroids are the standard of care for a wide
range of skin disorders such as GVHD. However, besides their
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anti-inflammatory actions, long-term use of corticosteroids
induces adverse effects on skin such as skin atrophy and
delayed wound healing.16 Mechanisms of such adverse effects
are not well understood. In this study, we addressed these
issues using Lgr5 reporter mice and explored a novel strategy
to protect Lgr51 HFSCs to ameliorate skin GVHD with topical
administration of JAK1/2 inhibitor ruxolitinib.

Methods
Mice
The mouse strains used are described in the supplemental
Methods (available on the Blood Web site).

SCT
Mice were transplanted as previously described.17 Briefly, re-
combinant human granulocyte colony-stimulating factor (G-CSF;
Kyowa Hakko Kirin Co Ltd, Tokyo, Japan) was administered
subcutaneously to donor mice at 10 mg daily from day 26 to
day 21. Mice at 8- to 10-weeks-old received 10.5 Gy total-body
irradiation (TBI), split into 2 doses with a 4-hour interval, on day21,
followed by IV injection of 20 3 106 splenocytes from G-CSF–
treated syngeneic or allogeneic donors on day 0. Transplanted
mice were kept in a specific pathogen-free condition with normal
chow and autoclaved hyperchlorinated water. Survival of recipient
mice was monitored daily and clinical GVHD scores, incorporating
5 clinical parameters such as weight loss, posture, activity, fur
texture, and skin integrity, were assessed weekly as previously
described.18 Fur texture and skin integrity were assessed in the
undepilated skin, where no topical treatment was administered.

Reagents
Ruxolitinib ointment 0.5% was formulated by mixing ruxolitinib
phosphate salt (LC Laboratories, Woburn, MA) dissolved in di-
methyl sulfoxide with Vaseline. Vaseline with dimethyl sulfoxide
was used as a control ointment. For systemic administration,
ruxolitinib was dissolved in ethanol and diluted with phosphate-
buffered saline with 0.1% Tween 20, and orally administered at a
dose of 30 mg/kg to the recipient mice twice daily from day 11
after SCT. Prednisolone sodium succinate (Shionogi, Osaka,
Japan) in phosphate-buffered saline was orally administered at a
dose of 10 mg/kg to the recipient mice once daily from day 11
after SCT. Betamethasone valerate and clobetasol propionate
were obtained from Shionogi and Sigma-Aldrich (St. Louis, MO),
respectively.

Cell isolation and flow cytometry
The detailed protocols are described in the supplemental
Methods.

Skin incisional wounding
After anesthetization, a full-thickness round skin was removed from
the shaved back of C57BL/6, B6-Lgr5EGFP-cre/ER 3 R26tdTomato mice
using a 5-mm disposable punch biopsy instrument (DermaPunch;
Nipro,Osaka, Japan). Thewoundwas digitally photographed, and
the scale and area of skin wounds were assessed with NIH ImageJ
software (https://imagej.nih.gov/ij/). For the fatemapping of Lgr51

cells, 1 mg of tamoxifen was orally given to B6-Lgr5EGFP-cre/ER 3
R26tdTomato mice for 6 days before wounding.

Histology and immunofluorescent study
The detailed protocols are described in the supplemental
Methods.

Q-PCR
Total RNA from back skin was extracted using ISOGEN II (Nippon
Gene, Tokyo, Japan). Reverse transcription was conducted with
ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo
Life Science, Osaka, Japan). Quantitative real-time polymerase
chain reaction (Q-PCR) was performed with specific primer and
probe sets (Sigma-Aldrich; the sequences are listed in supple-
mental Table 2) and TaqMan Fast Advanced Master Mix (Thermo
Fisher Scientific,Waltham,MA) on the StepOnePlus real-time PCR
system (Thermo Fisher Scientific). All measurements were nor-
malized against the expression of the internal control 18S ribo-
somal RNA. Relative amounts of each messenger RNA were
calculated by the comparative D cycle threshold method.

Statistics
The Mann-Whitney U test or 1-way analysis of variance (ANOVA)
followed by the Tukey posttest was used to compare the data. The
Kaplan-Meier product limit method was used to obtain survival
probability and the log-rank test was used for the comparison
between survival curves. P ,.05 was considered statistically sig-
nificant, and all data represent the mean 6 standard error of
the mean (SEM). All tests were performed using the program
GraphPad Prism 6 (La Jolla, CA).

Results
Hair follicles in the skin and rete-like prominences in
the lingual epithelium are targets for GVHD
First, we evaluated whether GVHD could damage the hair fol-
licles and RLPs, where skin stem cells reside in well-established
mouse models of skin GVHD, in which transition from acute to
chronic GVHD in the skin could be observed.17 B6 mice were
lethally irradiated with 10.5 Gy TBI on day 21 and IV injected
with 203 106 splenocytes fromG-CSF–treated allogeneic BALB/c
or syngeneic B6 donors on day 0. Morbidity and mortality of

Figure 1. Hair follicles and rete-like prominences in the lingual epithelium are damaged in GVHD. Lethally irradiated B6 mice were transplanted with 20 3 106

G-CSF–mobilized splenocytes from syngeneic (Syn) B6 or allogeneic (Allo) BALB/cmice on day 0, except for (G,P) using B6-Lck-Cre3 R26tdTomato and for (K) using B6-Il17aCre3 R26eYFP

as donors. (A) Clinical GVHD scores from3 experiments (n5 11 per group). (B) Survival curves from 6 independent experiments (n5 20 per group). (C) Serum levels of IFN-g onday114
after SCT from3 independent experiments (n5 8-10 per group). (D-F) The back skins were harvested on day114 (D) and128 (E-F) after SCT. The representative images of hematoxylin
and eosin (H&E) staining (D-E) and pathological GVHD scores (F) from 3 independent experiments. The arrowhead indicates dermal epidermal detachment. (G) Immunofluorescent
images of tdTomato1donor T cells (red) with 49,6-diamidino-2-phenylindole (DAPI) nuclear staining (blue) in the skin harvested on day110 after SCT. Dashed line shows the epidermal-
dermal junction. (H-L) Flow cytometric analysis of skin-infiltrating cells on day114 after SCT. The absolute numbers of donor T cells (H), CD11b1myeloid cells (I), IFN-g1T cells (J), IL-17
eYFP1 T cells (K), and mean fluorescence intensity (MFI) of CXCR3 on T cells (L) from 2 experiments (n 5 8-10 per group). (M-N) Total RNA was extracted from the whole skin (M) or
purified CD451 cells and CD452 cells from the back skin (N) on day 114 after SCT and the expression of Cxcl9 was evaluated by Q-PCR (n 5 8-10 per group from 2 independent
experiments). H&E staining (O) and immunofluorescent staining of tdTomato1donor T cells (red) withDAPI (blue) staining (P) of lingual samples harvested onday17 after SCT.Dashed
line shows the junction of epithelium and lamina propria. Original magnification320 (D,G,O,P) and310 (E). Scale bar, 50 mm. TheMann-WhitneyU test or 1-way ANOVA followed by
the Tukey posttest was used to compare the data (*P , .05; **P , .01; ***P , .005). Data represent the mean 6 SEM. rRNA, ribosomal RNA.
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GVHDwere significantly higher after allogeneic SCT than those
after syngeneic SCT (Figure 1A-B). Serum levels of IFN-g were
significantly elevated after allogeneic SCT (Figure 1C). Skin
histology on day 114 showed the acute phase of skin GVHD,
such as mononuclear cell infiltration into the epidermal-dermal
junction and hair follicles, as well as dermal epidermal de-
tachment (Figure 1D). Subsequent skin histology on day 128
showed standard pathological features of chronic GVHD, in-
cluding mononuclear cell infiltrates, atrophy of hair follicle
and fat layer, and dermal fibrosis (Figure 1E). Skin pathology
scores17 were significantly higher in allogeneic mice than those
in syngeneic controls (Figure 1F).

We then focused on the acute phase of skin GVHD. When B6-Lck-
cre 3 R26tdTomato mice were used as donors to specifically label
donor T cells with tdTomato, immunofluorescent studies showed
that the epidermal-dermal junction and hair follicles were
preferentially infiltrated with donor T cells 10 days after allogeneic
SCT (Figure 1G). Flow cytometric analysis of the skin showed sig-
nificant accumulation of donor T cells and CD11b1myeloid cells on
day 114 after allogeneic SCT (Figure 1H-I). Intracellular cytokine
staining showed skin infiltration of interferon-g (IFN-g)–producing
donor T cells after allogeneic SCT (Figure 1J).When interleukin-17A
(IL-17A) fate-mapping mice,19,20 in which IL-17A–producing cells
and their progenies were visually labeled, were used as donors, skin
infiltration of enhanced yellow fluorescent protein–positive (eYFP1)
donor T cells was significantly increased in allogeneic mice com-
pared with syngeneic controls (Figure 1K). Donor T-cell CXCR3
plays an important role in T-cell migration to the skin in GVHD.21

After allogeneic SCT, expression of CXCR3 in skin-infiltrating
donor T cells and its ligand Cxcl9 in the skin was upregulated
(Figure 1L-M). We found that Cxcl9 expression was predominantly
upregulated in the CD452 cell fraction and, to amuch lesser extent,
in CD451 cells, indicating that CD452 nonhematopoietic cells are
the major producer of CXCL9 after allogeneic SCT (Figure 1N).

Because mouse skin is devoid of rete ridges, where epider-
mal stem cells reside in human, we assessed RLPs in the mouse
dorsal tongue as the surrogates for human rete ridges.11,12

Histopathological analysis of RLPs showed evidences of GVHD,
including tdTomato1 donor T-cell infiltration, hyperkeratosis,
and blurring of rete-like structures (Figure 1O-P). Altogether, we
conclude that this SCT model is appropriated to analyze the fate
of skin stem cells and explore the impact of therapeutic in-
tervention on those cells.

Lgr51 HFSC injury is associated with impairment of
wound healing and hair regeneration
Next, we examined the fate of Lgr51 HFSCs posttransplant
in Lgr5 reporter B6-Lgr5EGFP-cre/ER mice, in which Lgr51 cells were

labeled with enhanced green fluorescent protein (EGFP). Lgr51

HFSCs reside in the lower bulge lesion of hair follicles and are
CK151. Double-immunofluorescent staining of EGFP and CK15
of the skin harvested 14 days after SCT showed that Lgr51HFSCs
residing at lower bulge persisted after syngeneic SCT, but were
markedly reduced after allogeneic SCT (Figure 2A). Lgr51CK151

cell numbers per follicle were significantly fewer after allogeneic
SCT, in contrast to more committed progenitors, Lgr52CK151

cells, which were not decreased in GVHD (Figure 2B-C). The
kinetic study of the fate of Lgr51 HFSCs showed that numbers of
Lgr51 HFSCs decreased both in syngeneic and allogeneic mice
on day17 after SCT, when donor T-cell infiltration had not been
evident. Thereafter, numbers of HFSCs recovered to normal
levels by day 121 after syngeneic SCT, but remained low after
allogeneic SCT in association with massive infiltration of donor
T cells in the skin (Figure 2D-E). These results demonstrate that
TBI injures Lgr51 HFSCs and that the physiologic process of
HFSC repopulation is inhibited by donor T cells in GVHD after
allogeneic SCT. CK151 basal epithelial cells in RLPs were also
decreased on day 17 after allogeneic SCT, as previously
shown11,12 (Figure 2F).

We then focused on the chronic phase of skin GVHD. SOX9 serves
as a marker of HFSCs and is a master regulator for maintenance of
HFSCs and hair-cycle progression into the growing phase, called
“anagen,”22,23 whereas Ki-67 is a marker of proliferating cells. Five
weeks after syngeneic SCT, hair follicles elongated and reached
a subcutaneous fat layer with strong expression of both SOX9
(Figure 2G) and Ki-67 (Figure 2H), indicating that hair follicles were
at the anagen phase. In contrast, hair follicles in allogeneic mice
remained at the resting phase, called “telogen,” with only a
few SOX91 and Ki-671 cells, indicating hair-cycle arrest during
GVHD. Allogeneic mice developed hair follicle loss and alopecia
(Figure 2I-J).

In addition to the critical role in folliculogenesis and hair re-
generation during homeostasis, Lgr51 HFSCs have the capacity
to reproduce all epithelial lineages and contribute to tissue
regeneration after injury.5,24,25 We then tested whether HFSC
loss could be associated with impairment of wound healing after
SCT. To confirm the contribution of HFSCs to wound healing,
Lgr5 fate-mapping B6-Lgr5EGFP-cre/ER 3 R26tdTomato mice, in which
Lgr51 cells and their progenies were labeled with tdTomato,
were wounded with a 5-mm disposable punch-biopsy instru-
ment. Immunofluorescent study of the skin samples 10 days after
wounding showed significant emergence of tdTomato1 kerati-
nocytes derived from Lgr51 HFSCs in the regenerating epi-
thelium, but not in the intact skin of the samemice (supplemental
Figure 1A-B). Wounding experiments were then performed
in recipient mice 14 days after SCT. Significant numbers of

Figure 2. GVHD reduces tissue stem cells in the skin and lingual epithelium and impairs hair and skin regeneration. Lethally irradiated B6 or B6-Lgr5EGFP-cre/ER mice were
transplanted as in Figure 1. Back skins from B6-Lgr5EGFP-cre/ER recipients were harvested on day 114 after SCT. (A) Representative immunofluorescent images of EGFP
(green), CK15 (red), and DAPI (blue). Original magnification 340. Scale bar, 25 mm. Numbers of Lgr51CK151 (B) and Lgr52CK151 (C) cells per hair follicle from
2 independent experiments (n 5 6-8 per group). (D) The numbers of Lgr51 HFSCs (n 5 5-6 per group) and (E) infiltrating T cells in the back skin (n 5 4-6 per group) on
day 17, 114, 121 after SCT from 2 independent experiments. (F) Immunofluorescent staining of CK15 (red) and DAPI (blue) in lingual sections on day 17. Original
magnification 320. Scale bar, 50 mm. (G-H) Representative images of immunofluorescent staining with anti-SOX9 (G) or anti-Ki-67 (H) mAbs (red) with DAPI (blue) in the
skin samples harvested on day135 after SCT. Original magnification310. Scale bar, 100 mm. (I-J) Numbers of hair follicles from independent 2 experiments (I, n5 8-9 per
group) and macroscopic images of recipient mice (J) on day 135 after SCT. (K-M) Full-thickness round skin was removed from the shaved back of B6-Lgr5EGFP-cre/ER 3

R26tdTomato mice after Cre recombination with tamoxifen treatment after SCT. (K) Representative immunofluorescent images of tdTomato (red), and DAPI (blue) 12 days
after incision. The regenerated epithelium was marked with double-headed arrows and dot lines show epidermal-dermal junction. Original magnification320. Scale bar,
50 mm.Macroscopic images (L) and relative wound area (M) from 2 independent experiments were combined (n5 6 per group). TheMann-Whitney U test or 1-way ANOVA
followed by the Tukey posttest was used to compare the data (**P , .01; ***P , .005). Data represent the mean 6 SEM. dpw, days postwounding.
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tdTomato1 keratinocytes emerged in the regenerated skin of
syngeneic mice, whereas only a few tdTomato1 keratinocytes
were observed in allogeneic mice (Figure 2K). When the tempo
of wound healing after SCT was assessed by measuring the
wound areas, wound healing was significantly delayed in allo-
geneic mice (Figure 2L-M). Altogether, we concluded that Lgr51

HFSCs were quantitatively and functionally damaged in skin
GVHD.

Topical corticosteroids fail to protect Lgr51 HFSCs
against skin GVHD
Topical corticosteroids are broadly used to treat skin GVHD. We
evaluated effects of corticosteroid ointments on skin GVHD.
Betamethasone or clobetasol were administrated onto shaved
back skin at the clinically used concentrations, 0.12% and 0.05%,
respectively, once daily after allogeneic SCT. They suppressed
donor T-cell infiltration in the skin (Figure 3A) but failed to restore
hair regeneration (Figure 3B) and chronic GVHD pathology, such
as hair follicle loss and fat atrophy (Figure 3C-E). Furthermore,
topical corticosteroids failed to mitigate Lgr51 HFSC loss in
GVHD (Figure 3F). We hypothesized that the discordant effects
of corticosteroids on donor T cells and skin pathology could be
due to their adverse effects on the skin. To test this hypothesis,
betamethasone ointment was administered after syngeneic SCT
for 3 weeks. It caused significant loss of hair follicles and fat-layer
atrophy (Figure 3G-H). Numbers of Lgr51 stem cells were sig-
nificantly reduced only in the treated skin, but not in untreated
skin of the same mice, suggesting direct toxicity of topical
corticosteroids to Lgr51 HFSCs (Figure 3I-J).

Topical ruxolitinib suppresses donor T-cell
infiltration, protects HFSCs, and ameliorates skin
GVHD after allogeneic SCT
Given the potential adverse effects of topical corticosteroids, we
explored a novel topical therapy to protect HFSCs in GVHD. In
this study, we demonstrated elevation of serum levels of IFN-g
and upregulation of CXCR3 and its ligands in skin GVHD, as
previously reported21,26 (Figure 1C,L-M). IFN-g plays an impor-
tant role in accumulation of CXCR31 T cells in inflamed tissue27,28

and thereby disrupts the immune privilege of hair bulge in lichen
planopilaris, localized scalp hair loss.29 We hypothesized that
inhibition of IFN-g receptor signaling by topical administration of
JAK1/2 inhibitor ruxolitinib could prevent donor T-cell infiltration
in the skin and protect HFSCs from IFN-g–induced immune
privilege collapse of hair bulge. Topical administration of rux-
olitinib ointment prevented CXCL9 upregulation in the skin of
naive mice administered with IFN-g, confirming efficacy of this
ointment (supplemental Figure 2). When administered onto the
shaved back skin of recipient mice once daily after SCT, rux-
olitinib significantly suppressed skin infiltration of donor T cells,
including IFN-g–producing T cells and IL-17A–producing T cells
and their progenies, which play an important role for the
pathogenesis of skin GVHD30 (Figure 4A-C), without inducing
any skin side effects, such as bruises or infectious lesions,

detected by visual inspection and histological examination of
the skin. Ruxolitinib suppressed skin infiltration of CXCR3-
expressing donor T cells (Figure 4D) and skin expression of
CXCR3 ligands, Cxcl9, Cxcl10, and Cxcl11 on day114 after SCT
(Figure 4E). Ruxolitinib subsequently ameliorated GVHD pa-
thology and suppressed the fat-layer atrophy on day 128 after
SCT (Figure 4F). In sharp contrast to topical corticosteroids,
ruxolitinib protected Lgr51 HFSCs against GVHD and induced
hair regeneration (Figure 4G-I).

Posttransplant wound healing tested on day121 after SCT was
significantly improved in ruxolitinib-treated mice to the levels
of syngeneic controls, whereas betamethasone failed to fa-
cilitate wound healing (Figure 4J). When mice were wounded
on day 128, topical ruxolitinib again significantly facilitated
wound healing (supplemental Figure 3). We tested whether
topical ruxolitinib could attenuate the toxicity of topical cor-
ticosteroids when given concurrently with corticosteroids from
day11 after syngeneic SCT. The number of HFSCs and thickness
of fat layer were comparable between mice treated with beta-
methasone alone and those with betamethasone plus rux-
olitinib, indicating that topical ruxolitinib failed to mitigate the
steroid-induced toxicities on skin homeostasis (supplemental
Figure 4A-B).

We next evaluated impact of discontinuation of topical rux-
olitinib on skin GVHD. Discontinuation of ruxolitinib on day115
resulted in significant exaggeration of pathological cutaneous
GVHD and prompt loss of Lgr51 HFSCs in a week (Figure 4K-M),
and also exacerbated pathology of chronic GVHD such as
dermal fibrosis at a later time point (Figure 4N-O). These results
indicate that discontinuation of topical ruxolitinib results in GVHD
exaggeration in the absence of systemic immunosuppressive
treatment.

We also confirmed that systemic administration of ruxolitinib
protected HFSCs against GVHD (supplemental Figure 5A). How-
ever, there were no synergistic protective effects of systemic and
topical administration of ruxolitinib. Again, systemic steroids did
not protect HFSCs despite significant suppression of donor
T-cell infiltration in the skin after allogeneic SCT (supplemental
Figure 5A-B). As previously reported,31 systemic administration
of ruxolitinib significantly decreased serum levels of tumor ne-
crosis factor a, increased the number of regulatory T cells, and
ameliorated systemic GVHD scores after allogeneic SCT (sup-
plemental Figure 6A-C). On the other hand, topical ruxolitinib
had no effects on donor T-cell expansion in the spleens, immune
reconstitution as assessed by the numbers of CD41CD81

double-positive cells in the thymus, systemic clinical GVHD
scores, and pathological GVHD scores in the untreated skin,
liver, and gut (supplemental Figure 7A-D). These data indicate
that topical ruxolitinib ameliorates skin GVHD without affecting
systemic immunity. Ruxolitinib also protected CK151 epidermal
stem cells in the tongue, suggesting that ruxolitinib could protect

Figure 3 (continued) Scale bar, 100 mm. (F) EGFP1 cells in 50 follicles of treated skin on day114 after SCT from 2 independent experiments (n5 6-7 per group). (G-J) Lethally
irradiated B6 or B6-Lgr5EGFP-cre/ER mice were transplanted with 5 3 106 bone marrow cells and 5 3 106 splenocytes from syngeneic B6 mice and administrated daily with each
ointment onto back skin for 3 weeks after SCT. Numbers of hair follicles (G) (n 5 10 per group), thickness of fat layer (H) (n 5 10 per group), and numbers of EGFP1 cells in
50 follicles (I) (n5 7 per group) from 2 independent experiments were combined. (J) Representative immunofluorescent images of EGFP (green), CK15 (red), and DAPI (blue) of
the treated skin and nontreated skin of the syngeneic animal. Original magnification340. Scale bar, 50 mm. One-way ANOVA followed by the Tukey posttest was used to com-
pare the data (***P , .005; **P , .01). Data represent the mean 6 SEM.
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Figure 4. Topical ruxolitinib ameliorates skinGVHD, protects Lgr51HFSCs against skinGVHD, andpromotes hair regeneration andwound healing.B6orB6-Lgr5EGFP-cre/ER

mice were transplanted as in Figure 1. (A-J) Recipients were treated daily with Vaseline (Ctrl) or ruxolitinib (Ruxo) ointment on their shaved back skin from day 11 after SCT. (A-E)
Numbers of T cells (A), IFN-g1T cells (B), IL-17-eYFP1T cells (C) andMFI ofCXCR3onT cells (D), and expression levels ofCxcl9,Cxcl10, andCxcl11 (E)measuredbyQ-PCRonday114.
Data from 3 independent experiments (n 5 6-10 per group). (F) H&E staining of skin samples on day 128 after SCT. Original magnification 310. Scale bar, 100 mm. (G) Immu-
nofluorescent staining of the skin samples on day114 after SCT with EGFP (green), CK15 (red), and DAPI (blue). Original magnification340. Scale bar, 50mm. (H) Numbers of EGFP1

cells per 50 follicles from 2 independent experiments (n5 6-7 per group). (I) Macroscopic images of hair regeneration in the treated skin on day135 after SCT. The treated areas are
surroundedbydashed lines. (J)Micewere treatedwith eachointment fromday11 to day121 after SCT. Full-thicknesswoundsweremadeon theback skin of recipientmice on day121.
Wound areas of syngeneic (Syn; blue), allogeneic control (Allo; red), allogeneic plus BMV (green), and allogeneic plus ruxolitinib (Ruxo; orange) from 2 independent experiments. (K-O)
Ruxolitinib ointment was stopped on day115 (Stopped) or continued thereafter (Continued). The representative images of H&E staining (K; scale bar, 100 mm), pathology skin GVHD
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other tissue stem cells than Lgr51 HFSCs against GVHD (sup-
plemental Figure 8).

Topical ruxolitinib improves established skin GVHD
and protects Lgr51 HFSCs
Given the therapeutic effects of systemic ruxolitinib on estab-
lished systemic acute GVHD (supplemental Figure 9A-B), we
finally evaluated efficacy of topical ruxolitinib to treat established
skin GVHD. Ruxolitinib ointment was administered onto the
shaved back skin from day110 after SCT, when acute skinGVHD
with significant donor T-cell infiltration had already been ob-
served (Figure 1G). Analysis of the skin samples harvested on
day 121 after SCT showed that topical ruxolitinib suppressed
T-cell expansion in the treated skin, improved pathological
scores, and protected Lgr51HFSCs against GVHD (Figure 5A-C).
T-cell proliferation assessed by Ki-67 staining of donor T cells
was significantly suppressed after 5-day treatment with topical
ruxolitinib, whereas apoptosis assessed by Annexin V staining
was not changed by ruxolitinib. These data suggest that topical
ruxolitinib ameliorated established skin GVHD by suppressing
local proliferation of donor T cells without inducing T-cell ap-
optosis (Figure 5D-G).

Discussion
Emerging data indicate that GVHD causes damage to ISCs.1,2 In
the skin, various types of stem cells or progenitor cells in hair
follicle and interfollicular epithelium maintain homeostasis of
distinct compartments of the skin in steady state.5,7,8,24,25 The
best-characterized stem cell population in the skin is HFSCs;
HFSCs with lineage plasticity and the multipotent capacity to
reproduce epidermis in repair are Lgr51.5,8,24,25 Previous studies
showed that apoptosis and donor T-cell infiltration were spatially
restricted to the sites harboring stem cell populations such
as bulge regions of hair follicles and human epidermal rete
ridges.9-15 In this study, we affirm the long-held assumption that
HFSCs may be targets for GVHD.10

Loss of stem cells was functionally associated with delayed
wound repair and alopecia that were independent of condi-
tioning regimen. Although it is well appreciated that chemo-
therapy and irradiation damage hair follicles and induce
alopecia, hair loss is also one of the distinguished features of
clinical chronic GVHD.32,33 The hair follicles undergo a cyclical
regression and regeneration process consisting of 3 phases:
anagen, catagen, and telogen.34 Because proliferation of HFSCs
is essential for hair follicles to enter the anagen phase,35 it
seems that loss of HFSCs is associated with hair-cycle arrest in
the telogen phase in GVHD. We observed delayed wound
healing in GVHD in this study. Poor wound healing is also a
clinical manifestation of skin GVHD.32 HFSCs play a significant
role in wound healing; in the early phase of wound healing,
they give rise to keratinocytes that contribute to wound re-
epithelization.24,36 The tempo of wound healing is significantly
delayed in the hairless skin, where HFSCs are lacking, com-
pared with the haired skin.37

Target cell injury in GVHD is mediated by both effector
functions of donor cytotoxic T cells and inflammatory cytokines.
Cytotoxic T cells induce epidermal injury in GVHD and satel-
litosis showing that lymphocytes surrounding an apoptotic
target cell are a hallmark of skin GVHD pathology. Thus, it is
highly likely that donor T cells directly kill HFSCs. On the other
hand, inflammatory cytokines secreted from donor T cells may
directly induce apoptosis of HFSCs as previously shown in
CK151 epidermal stem cells in the RLPs.11,38 Further com-
prehensive studies are required to address effector mecha-
nisms of skin stem cell injury.

Interestingly, Lgr51CK151 HFSCs were more susceptible to
GVHD than Lgr52CK151 progenitors. Differential cell-cycle
status or differential susceptibility to cytotoxic effectors be-
tween stem cells and differentiated cells may be associated with
this phenomenon. A previous study showed that proinflam-
matory cytokines preferentially induce expression of proa-
poptotic molecules in CK151 stem cells in RLPs during GVHD,
resulting in selective apoptosis of these cell population, while
sparing mature epithelium.38 Recently, it was proposed that the
difference of “tissue tolerance,” the tissue-specific capacity to
maintain parenchymal-tissue homeostasis during inflammation
could be associated with differential susceptibility of tissues to
diseases.39 High sensitivity of the skin and ISCs to inflammatory
milieu during GVHD may explain the high incidence of skin and
gut involvement in acute GVHD.

The bulge region in the hair follicles is a site of relative immune
privilege with less antigen presentation and expression of im-
munosuppressive molecules in immunological conditions such
as skin allograft.40,41 It is possible that the inflammatory milieu
after allogeneic SCTmay break immune privilege of hair follicles.
Interestingly, stress-induced chemokine upregulation in the hair
follicles recruits the precursor of Langerhans cells, the major
antigen-presenting cells in skin GVHD, into the hair follicles.42-44

Similarly, we and others recently showed that alloreactive donor
T cells could infiltrate to immune-privilege tissues, such as the
ovary and testis, in the inflammatory milieu in GVHD.45,46

Current standard therapy for a variety of skin diseases is topical
administration of corticosteroids.47,48 However, pathogenic T cells
often resist corticosteroid-induced apoptosis,49 and long-termuse
of topical corticosteroids induces adverse effects on the skin such
as skin atrophy and delayed wound healing by inhibiting kera-
tinocyte proliferation.16,50 Our study further demonstrates that
topical corticosteroids induce loss of Lgr51HFSCs and suchHFSC
damage may be a potential mechanism of adverse effects of
corticosteroids on the skin.

JAK1/2 relays multiple cytokine signals and plays an important
role in activation and migration of antigen-specific T cells.51,52 It
has been demonstrated that systemic administration of JAK1/2
inhibitor ruxolitinib is effective in treatment of steroid-refractory
acute and chronic GVHD.53,54 Topical ruxolitinib may have sig-
nificant advantages that help avoid frequent complications of

Figure4 (continued) scores (L) and thenumbers of Lgr51HFSCs in the treated skin (M) onday121 after allogeneic SCT from2 independent experiments (n5 5-6 per group)were shown.
Representative images ofMasson trichrome staining (N; scale bar, 100mm) and dermal thickness of treated skin (O; n5 6-7 per group) on day135 from 2 independent experiments. The
Mann-Whitney U test or 1-way ANOVA followed by Tukey posttest was used to compare the data (*P , .05; **P , .01; ***P , .005). Data represent the mean 6 SEM.
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systemic ruxolitinib use such as cytopenias and opportunistic
infections. We found that topical ruxolitinib ameliorated skin
GVHD by suppressing infiltration of donor Th1 and Th17 cells
equivalently to topical corticosteroid, as demonstrated in studies
of systemic administration of ruxolitinib.31,51,55 Recent studies
demonstrated that topical ruxolitinib attenuated IFN-g signaling,
inhibited T-cell infiltration in the skin, and ameliorated experi-
mental alopecia areata.56,57 Topical ruxolitinib is now being in-
vestigated in clinical trials for alopecia areata and psoriasis.58

A recent study demonstrated that ruxolitinib promoted hair
growth by activating mesenchymal cells in dermal papilla.59 Our
study further demonstrates that in sharp contrast to cortico-
steroids, topical ruxolitinib protects Lgr51 HFSCs and their
putative niche, fat tissue,60,61 thereby maintaining skin homeo-
stasis and regeneration, suggesting that topical ruxolitinib has
significant advantage over topical corticosteroids for treatment
of inflammatory skin diseases.

In summary, our study demonstrates a novel mechanism of skin
injury in GVHD and proposes potentially superior therapeutic

strategy over corticosteroids, the long-term standard of care for
a variety of skin diseases. Topical administration of JAK inhibitors
is a promising therapeutic strategy for skin GVHD and other
autoimmune diseases in the skin without adverse effects on the
skin and skin stem cells.
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Figure 5. Therapeutic administration of topical rux-
olitinib ameliorates established skin GVHD and pro-
tects HFSCs. (A-G) Lethally irradiated B6 mice were
transplanted as in Figure 1. Recipient mice were treated
with ruxolitinib ointment from day 110 after allogeneic
SCT. Number of donor T cells (A), pathological skin
GVHD scores (B) (n 5 7-9 per group), and numbers of
EGFP1 cells in 50 follicles on day 121 (C; n 5 6 per
group). (D-G) Ki-67 staining (D-E) and Annexin V assay
(F-G) of donor T cells from the treated skin were per-
formed on day 115 after allogeneic SCT (n 5 8-9 per
group). Data from 2 independent experiments were
combined and shown as the mean 6 SEM. The Mann-
Whitney U test was used to compare the data (*P , .05;
**P , .01; ***P , .005). ns, not significant; TCR, T-cell
receptor.
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