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KEY PO INT S

l We have established
a novel culture
system for long-term
proliferating murine
lymphoid progenitors
without any genetic
manipulation.

l The cultured lymphoid
progenitors can
differentiate to
lymphoid and myeloid
lineages in vitro and
in vivo.

Common lymphoid progenitors (CLPs) differentiate to T and B lymphocytes, dendritic cells,
natural killer cells, and innate lymphoid cells. Here, we describe culture conditions that, for
the first time, allow the establishment of lymphoid-restricted, but uncommitted, long-term
proliferating CLP cell lines and clones from a small pool of these cells from normal mouse
bone marrow, without any genetic manipulation. Cells from more than half of the cultured
CLP clones could be induced to differentiate to T, B, natural killer, dendritic, and myeloid
cells in vitro. Cultured, transplanted CLPs transiently populate the host and differentiate
to all lymphoid subsets, and to myeloid cells in vivo. This simple method to obtain robust
numbers of cultured noncommitted CLPs will allow studies of cell-intrinsic and environ-
mentally controlled lymphoid differentiation programs. If this method can be applied to
human CLPs, it will provide new opportunities for cell therapy of patients in need of
myeloid-lymphoid reconstitution. (Blood. 2018;131(18):2026-2035)

Introduction
T and B lymphocytes, dendritic cells (DC), natural killer (NK)
cells, and recently identified innate lymphoid cells (ILCs) all
originate from a type of cell, the common lymphoid pro-
genitors (CLPs).1-6 The small number of CLPs (0.03% of bone
marrow hematopoietic cells) develop from long-term repopulating
hematopoietic stem cells via multipotent progenitors and
lymphoid-primed multipotent progenitors (LMPPs).7 LMPPs
and CLPs have lost megakaryocyte-erythrocyte potential and
are uncommitted intermediates with plasticity and flexibility
to develop to all subsets of differentiated lymphoid cells in vivo
as well as in vitro.

Hematopoietic progenitor cell lines with lymphoid and myeloid
lineage differentiation potential in vivo have been successfully
generated in vitro by transgenic overexpression of genes
encoding Hoxb88 or Id3,9 or by genetic loss of Pax5,10 Ebf1,11 or
E2A12 that all lead to developmental arrest of the cells resulting
in sustained proliferation in an appropriate culture condition.
Although CLPs from normal mouse bone marrow have never
been maintained as proliferating cells with stable differentiation
potential,6,13,14 our previous results with Pax52/2 progenitors and
our experience with serum-free cultures of pre-BI cells from fetal
liver and bone marrow encouraged us to attempt long-term
culturing of CLPs under serum-free conditions.

Here, we describemethods that, for the first time, allow the long-
term proliferation and cloning of stably uncommitted CLPs
in vitro of normal mice without any genetic modifications. The
cultured CLPs, which we named “cCLPs,” require the combined
stimulation by Flt3L and low doses of interleukin-7 (IL-7), in the
presence of CXCL12-producing stromal cells for long-term
maintenance and proliferation in serum-free medium. These pro-
genitors can be efficiently transduced with retroviral vectors.
Moreover, cCLPs are clonable with high efficiencies, allowing an
easy isolation of single transduced cCLPs. Clones of cCLPs retain
the potential to differentiate in vitro with high (1 in 2) cloning ef-
ficiencies to T and B cells, and tomyeloid cells, but not to erythroid
and megakaryocytic lineage cells. When transplanted into sub-
lethally irradiated recipient mice, these cCLP lines and clones
differentiate to mature lymphoid, and subsets of myeloid cell
lineages.

CLPs play essential roles in health and disease of the hemato-
poietic cell system. Our cCLP lines and clones can be expanded
to large quantities. This opens new opportunities for large-scale
genomic, proteomic, metabolomics, and physiological analyses
of intracellular signaling and gene expression programs during
lymphoid cell commitment, and of environmental influences
on these programs. Thus, our cCLPs should be ideal targets
for molecular, genetic, and cellular studies not only of normal
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lymphoid differentiation from early, uncommitted CLPs to later,
lineage-committed lymphoid cells but also of deregulated states
of differentiation in immune-deficiencies, autoimmune diseases,
and lymphoid tumor development.

Materials and methods
Preparation of culture medium
Culture medium was prepared in Iscove modified Dulbecco
medium (Gibco) supplementedwith 3.02 g/L ofNaHCO3 (Sigma)/
50 mM b-mercaptoethanol (Gibco)/0.03% primatone (Quest In-
ternational)/13 kanamycin (Gibco)/13 nonessential amino acid
(Gibco) together with 2% fetal bovine serum (FBS; Sigma) as con-
ventional serum-containingmedium (CM) or 1mg/mL of delipified
bovine serum albumin (Sigma), 10 mg/mL of human transferrin
(Sigma), and 0.005% fatty-acid supplement (Sigma), which we
designated as Kawano’s modified–Iscove’s modified–Dulbecco’s
modified–Eagle’s minimum essential medium (KIDMEM).

Cell culture
Lin2IL7R1Flk21CD271Ly6d2 CLP population was isolated from
bone marrow of 6- to 8-week-old mice, and 1 3 103 cells were
cultured in 0.2 mL of CM or KIDMEM with 25 ng/mL of Flt3L and
different concentrations of IL-7 (0.1 or 1 ng/mL) in 96-well flat-
bottom plates precoated with OP9 stromal cell lines. Cultured
cells were passaged on every 3 or 4 days to another well. Full
details are described in the supplemental Methods, available on
the Blood Web site.

In vitro cell differentiation
Lin2IL7R1Flk21CD271Ly6d2 cells purified from cCLPs cultured
for 2months were cultured in the appropriate conditions for B, T,
NK, DC, and myeloid cell differentiation.

Details for all other procedures are described in the supple-
mental Methods.

Results
Establishment of genetically unmodified cell lines
from CLP of bone marrow in serum-free cultures
Uncommitted CLPs were fluorescence activated cell sorting
(FACS)–enriched from bone marrow of C57BL/6 mice as Lin2

IL7R1Flk21CD271Ly6d2 cells15 and cultured on OP9 cells either
in our modified serum-free medium, designated as KIDMEM, or
in serum-containing CM, in the presence of Flt3L (25 ng/mL) and
IL-7 at either 0.1 or 1 ng/mL. We examined Notch1 and CD19
expression on the cells after culture as markers for simple dis-
crimination of CLP and precursor B cells as Notch1hiCD192 and
Notch1loCD191, respectively. Within 10 days, the number
of cells increased between 1 and 3 3 103-fold, irrespective of
KIDMEM or CM culture conditions and different concentrations
of IL-7 (Figure 1A; supplemental Figure 1A). However, within the
proliferating cells, the proportion of Notch1hiCD192 cells declined
more rapidly in the CM than in the KIDMEM culture conditions,
whereas Notch1loCD192 intermediates and Notch1loCD191

B cells proportionally increased within 2 weeks (Figure 1B-C;
supplemental Figure 1B-C,E). These findings reconfirm previous
findings by other laboratories,6,14 that uncommitted CLPs cannot
be maintained in CM cultures. By contrast, 40% of the cells
cultured for 2 weeks in KIDMEM remained Notch1hiCD192 cells

(Figure 1B). For the next 3 weeks, these cells preferentially ex-
panded in KIDMEM with 0.1 ng/mL IL-7 so that.70% of the cells
remained Notch1hiCD192 (Figure 1C; supplemental Figure 1D).
This preferential expansion of these cultured Notch1hiCD192

cells continued for at least 2 more months at the same rate
of proliferation (data not shown). The cultured cells displayed
an extended shape (Figure 1D). Limiting dilution of purified
Notch1hiCD192 cells from 2-month culture and further culture for
7 days in the same culture condition showed that ;1 of 2 cells
was clonally expandable (Figure 1E). The majority of clones and
of the cells expanded in the clones retained the surface phe-
notype (supplemental Table 1). The concentration of IL-7 in
cultures of CLP influenced their stability as uncommitted CLP.
Thus, at 0.1 ng/mL IL-7, minor subpopulations of more differ-
entiated Notch1loCD192 cells and Notch1loCD191 pre-BI cells
expanded with Notch1hiCD192 cells, and their proportion in the
culture increased at 1 ng/mL IL-7 (Figure 1C; supplemental
Figure 1C,E). Notchhi CD192 cells cultured for 1 month were
FACS analyzed as Lin2IL7R1Flk2lockitlo/2Sca1loCD271Ly6d2,
consistent with the phenotypic markers for uncommitted CLPs
from bone marrow, as previously described6,15 (Figure 1F). We
call these cells, cultured from ex vivo CLP, “cCLP.”

Retroviral transduction of cCLP
cCLPs cultured for 2 months were transduced with a doxycycline-
inducible retroviral vector containing a gene encoding enhanced
green fluorescent protein (EGFP).Within 4 days, EGFP-expressing
cCLPs were expanding by proliferation in the presence of
doxycycline (Figure 1G). Thus, genes of choice can be transduced
in cCLP by retroviral vectors.

Molecular control of proliferation and
differentiation of cCLP
To evaluate the roles of stromal cells and of the cytokines Flt3L
and IL-7 in the long-term maintenance and proliferation of
cCLPs, we replated Lin2-IL7R1Flk2loCD271Ly6d2 cells purified
from 1-month culture andmeasured their state of differentiation,
survival, and proliferative capacity after 7 days under different
culture conditions. In the presence of OP9 stromal cells, Flt3L,
and 0.1 ng/mL IL-7, cCLPs (CD271CD192) proliferated and
retained their undifferentiated state (Figure 2 first row; sup-
plemental Figure 2A-B). When IL-7 or the OP9 stromal cells were
omitted from culture, cCLPs did not continue to proliferate
(Figure 2 second and third row). Plate-immobilized recombinant
kit-ligand, which we previously found to be able to replace
OP9 stromal cells in pre–BI-cell cultures,16 could not replaceOP9
stromal cells to maintain the CLP phenotype in KIDMEM cultures
with 0.1 ng/mL IL-7, but rather promoted pre–BI-cell (CD272

CD191) proliferation and differentiation (Figure 2 fourth row).
Antibodies against c-kit, which had previously been found to
fully inhibit proliferation of the more differentiated pre–BI cells
in stromal cell/IL-7 cultures,17 had only a minor inhibitory effect
on cCLP proliferation (Figure 2 fifth row). On the other hand,
AMD3100, the CXCR4-specific inhibitor of CXCL12-mediated
signaling, inhibited cCLP proliferation at least 10-fold, without
affecting their survival and phenotype (Figure 2 sixth row). These
results suggest that IL-7/IL-7R-mediated signaling as well as
CXCL12/CXCR4 signaling, but not kitL/c-kit signaling, have
major influences on the proliferation of stably uncommitted
cCLPs, and that stromal cells appear to supply CXCL12 in our
cultures. However, we found that the addition of soluble,

GENERATION OF GENE-UNMODIFIED LYMPHOID PROGENITORS blood® 3 MAY 2018 | VOLUME 131, NUMBER 18 2027

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/18/2026/1405955/blood805259.pdf by guest on 02 June 2024



recombinant CXCL12 did not abolish the requirement for OP9
stromal cells (Figure 2 seventh row), suggesting that additional
properties of stromal cells are contributing to AMD3100-inhibitable
cCLP proliferation in vitro.

When Flt3L was omitted from the serum-free KIDMEM cultures,
cCLPs did not proliferate and entered apoptosis. The few sur-
viving cells differentiated to CD272CD191 pre–BI cells (Figure 2
eighth row). Addition of FBS enhanced this differentiation
(Figure 2 ninth row) and further supported the proliferation of
both cCLPs and pre–BI cells in the presence of OP9 stromal
cells, Flt3L, and IL-7 (Figure 2 10th row). Again, removal of OP9
from this culture condition abolished cCLP proliferation and
pre–BI-cell differentiation (Figure 2 11th row). This could also
be monitored by the upregulation of B-cell–specific genes such
as Ebf1, Pax5, and Igll1 (supplemental Figure 2C). From the dif-
ferentiated CD191 cells, long-term proliferating pre–BI-cell lines

could be established on stromal cells in the presence of high
concentrations of IL-7 (supplemental Figure 3).

From all these results, it is apparent that Flt3L-Flt3 interac-
tions stabilize the uncommitted state of cCLP differentiation
and allow their survival, and that FBS can overcome this stabi-
lizing influence.

High similarities of gene expression programs
of cCLP and CLP ex vivo by whole
transcriptome analysis
In order to see how similar cCLPs cultured for 2 months are
in comparison with CLPs isolated ex vivo from bone marrow
(ie, with the original cells put in culture), we performed tran-
scriptome analyses by RNA-sequencing (RNA-seq). It can be
seen from a representative set of genes shown in Figure 3A and
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Figure 1. Long-term proliferation of CLPs in vitro, and retroviral transduction of the cCLPs. FACS-purified Lin2Flk21IL7R1CD271Ly6d2 cells (1 3 103) were cultured on
irradiated OP9 stromal cells in our modified serum-free medium (KIDMEM) or serum-containing CM with Flt3L (25 ng/mL) and different concentrations of IL-7 (0.1 and 1 ng/mL).
Cells at the indicated time points were counted and FACS analyzed for CD19 and Notch1 expression. (A) Kinetics of cell proliferation during long-term culture with high (circles)
or low (squares) amount of IL-7 in KIDMEMor CM. (B-C) Representative FACS profiles of cells cultured with Flt3L and 0.1 ng/mL IL-7 at early phase up to day 14 (B) or cultured with
Flt3L and different concentrations of IL-7 at day 35 (C) in KIDMEM or CM. The values in each panel indicate percentages of Notch1hiCD192 and Notch1loCD191 cells. (D) Light
microscopic images (203 objective) of cells at day 35 of culture with 0.1 ng/mL IL-7 in KIDMEM (left panel) or CM (right panel). (E) Limiting dilution of purified CLP cultured for
2 months under CLP conditions. (F) FACS analyses of Notch1hiCD192 CLP (shaded areas) or of Notch1loCD191 B-lineage cells (thick lines) at day 35 of culture. Isotype-matched
control is shown in thin lines. (G) Retroviral transduction of cCLPs with a vector containing EGFP under the expression controls of doxycycline. Representative FACS profiles of
green fluorescent protein (GFP) and CD27/CD19 expression with (bottom) or without doxycycline (top) are shown.
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from the data deposited (GSE109805), that the gene expression
patterns were remarkably similar. Principal component analysis
of our RNA-seq data from cCLP and CLP ex vivo also sup-
ported a higher similarity between them, compared with other
hematopoietic lineages (Figure 3D). As expected from the
FACS-determined surface protein phenotype of these cells
(Figure 1E), this messenger RNA expression analysis detected
Notch1, Cd27, Cxcr4, Flt3, and Il7ra on both of them, al-
though Il7ra expression was significantly higher in cCLP than
in CLP ex vivo (Figure 3B). cCLP expressed transcription
factors that have been previously reported to function in CLP,
such as Tcf3 (E2A),18,19 a critical factor for the generation of LMPP
and CLP, Ikzf1(Ikaros),20 required for Flt3 expression and Spi1
(PU.1)21 at almost the same levels as in CLP ex vivo (Figure 3B).
These results were validated by quantitative reverse transcription
polymerase chain reaction analyses (Figure 3C). Impressively,
both of these cells showed low or undetectable levels of mes-
senger RNAs expression encoding transcription factors involved
in lymphoid lineage specification, such as Ebf1 and Pax5 for
B cells, Tcf7, Bcl11b for T cells, Eomes for NK cells, Tox, Tbx21,
Gata3, Rora, and Rorc, Zbtb16 for ILCs, although Id2 and Nfil3
were similarly or differentially expressed in both cCLP and CLP ex
vivo (Figure 3B). Quantitative reverse transcription polymerase
chain reaction analyses validated a much lower expression of
Ebf1, Pax5, and Igll1 in both of them, as compared with long-
term cultured CD191 pre–BI cells (Figure 3C). Genes linked to
hematopoietic stem cells, such as Tal1, Runx1, Hoxb5, and
Fdg5, were expressed in neither of them (data not shown).
Moreover, both cCLPs and CLPs ex vivo expressed very low or
undetectable levels of genes encoding signaling components
of antigen receptors for B cells or T cells, such as mb-1 (Iga),
B29 (Igb), or CD3g, CD3d, CD3e, respectively, as representative
genes of their precursors such as VpreB, Igll1, or Ptcra (pre–T-cell
receptor a) (Figure 3B, see also deposited data). Genes asso-
ciated with myeloid-lineage specification, including Cebpa, Csf1r
(M-CSFR),Csf2ra,Csf2rb (GM-CSFR), andCsf3r (for G-CSFR), were

also expressed only at low or undetectable levels, even lower in
cCLPs than in CLP ex vivo (Figure 3B). These results suggest that
cCLPs display gene expression profiles for surface molecules,
transcription factors, and signalingmolecules involved in lymphoid
differentiation potential in vivo that closely resemble those of CLP
ex vivo.

Among genes upregulated in cCLPs, but not in CLPs ex vivo, was
Ccr9, encoding a chemokine receptor active in lymphoid pro-
genitor cell homing to the thymus (Figure 3B).22-24 Thus, the
long-term proliferating cCLP could assume the phenotype of a
subset of CLPs at an intermediate stage on its way to become
what has previously been defined as CD41/2CD252CD441c-kit1

CD271 Flt31CCR91 thymus-settling cells.25

cCLPs differentiate to lymphoid and myeloid cell
lineages in vitro
Next, we examined the differentiation potential of cCLPs, ex-
panded in culture for 2 months. We induced differentiation of
cCLPs to CD191 B-lineage cells in CM on OP9 stromal cells in the
presence of IL-7 (1 ng/mL) (Figure 4A upper left). T-cell differen-
tiation can be induced by culturing CLP on delta-like 1-expressing
OP9 (OP9DL1) stromal cells in the presenceof Flt3L and lowdoses
of IL-7.26 Under the T-cell–differentiating conditions for 7 days,
cCLPs developed to CD441CD252 CD42CD82 double-negative
thymocyte 1 (DN1), CD441CD251 DN2, and a few CD442CD251

DN3 thymocytes (Figure 4A upper middle). DC development
involves several transcription factors, including Ikaros and
PU.1, and the orchestrated signaling through Flt3L, macrophage
colony-stimulating factor (M-CSF), and granulocyte-macrophage
colony-stimulating factor (GM-CSF).5 We differentiated cCLPs in
the presence of Flt3L, IL-6, M-CSF, and GM-CSF. Within 14 days,
CD11c1MHCII1 DCs with typical dendritic morphology devel-
oped (Figure 4A middle panel). Because they were also CD11b1

F4/801 Ly6C2Ly6G2, they appear to be classical DCs, although
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Figure 2. Ligand-controlled proliferation, survival, and differentiation of cCLPs. FACS-purified Lin2Flk21IL7R1CD271Ly6d2 cells from 1-month cCLPs were further cultured
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this phenotypic analysis cannot exclude the possibility, that they
are monocyte-derived DC (supplemental Figure 4C). These DCs
were capable of presenting antigen to stimulate T-cell proliferation

(supplemental Figure 4A). Furthermore, a mixture of the cytokines
Flt3L, SCF, IL3, IL-6, IL-7, M-CSF, GM-CSF, and TNFa induced
cCLPs to CD11b1Gr11myeloid-lineage cells (Figure 4A lower left).
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These cells included F4/801Ly6c1CD11c2Ly6G2MHCII2FSCloSSClo

and F4/801Ly6c2CD11cloLy6GloMHCII2FSChiSSChi populations,
corresponding to monocytes and macrophages, respectively
(Figure 4A lower middle; supplemental Figure 4C). Giemsa
staining of these myeloid cells showed extended cytoplasm
with azurophilic granules, characteristic ofmacrophages (Figure 4A
lower right). Gr1hi or Ly6Ghi neutrophils were not observed in
the culture condition (data not shown). These myeloid lineage
cells, but not the uncommitted cCLPs, were capable of typical
macrophage-associated phagocytosis of fluorescent Escherichia
coli (supplemental Figure 4B).

We attempted NK and ILC differentiation from cCLP. In the
presence of IL-2 and IL-15, cCLPs differentiated to NK1.11NK
cells (Figure 4A upper right), but these cells could not kill YAC1
targets (data not shown). Also, more differentiated ILCs remained
undetectable. cCLPs could also not be induced to differentiate
to Ter1191 or CD411 erythroid-lineage cells (data not shown). These
results suggest that these cCLPs retain a lymphoid-uncommitted
status, allowing them to differentiate in vitro not only to the major
lymphoid lineages but also to myeloid lineages.

Differentiation of cCLP clones
Because cCLPs can be cloned, we tested single cCLP clones
for their lymphoid differentiation potential in culture conditions,
which promote proliferation, but also favor differentiation into
different myeloid and lymphoid lineages (see “Materials and
methods”). Limiting dilution assays of 2-month cultured cCLP
clones, maintained for 7 days under B-lymphoid differentiation
conditions, showed that ;1 of 2 clones developed to CD191

B-lineage cells (Figure 4B left). Again, ;1 in 2 clones differen-
tiated to Thy11T-lymphoid cells (Figure 4B middle). These re-
sults indicate that single cCLPs have the differentiation potential
to B- and T-lymphoid lineage cells in vitro. Interestingly, dif-
ferentiation to myeloid cells depended on the status of the OP9
stromal cells. On irradiated OP9, 1 in 15 clones differentiated,
whereas ;1 in 2 cells did so on nonirradiated OP9 (ie, with
frequencies similarly as high as those for T- and B-lineage cells)
(Figure 4B right). All of the 21 cCLP clones expanded from
2-month cultured cCLPs could be induced to differentiate to
myeloid and B lineages, 19 of them also to T lineages, 14 of them
to NK lineages, and 17 of them to DC lineages. Twelve of the
21 clones could differentiate to all tested lineages (Figure 4C;
supplemental Table 2). Similar frequencies of clones with mul-
tiple B-, T-lymphoid, and myeloid differentiation potential were
observed with clones of CLP isolated ex vivo and freshly ex-
panded (supplemental Figure 5).

These results suggest that at least a large part of cCLP clones
retain differentiation potential to lymphoid andmyeloid lineages
in vitro.

In vivo differentiation potential of cCLPs
To examine the differentiation potential of cCLP in vivo, 13 106

CD45.11 cCLPs cultured for 2 months were transplanted IV into
sublethally irradiated congenic CD45.21 mice. One and 2 weeks
after transplantation, the majority of CD45.11 donor cells were
found in bone marrow and a smaller number were found in
spleen (Figure 5A). Most of them had lost their CLP phenotype.
At this early time after transplantation, the donor-derived cells
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were mostly B2201IgM2 precursor B cells and B2201IgM1 im-
mature B cells (Figure 5A-B).

At 1week, but not later, small numbers of donor-derivedCD11b1Gr11

myeloid cells were detected in bone marrow, and donor-derived
CD11b2CD11c1 or CD11b1CD11c1DCs were detected in spleen
(Figure 5C-E). Donor-derived mature granulocytes or erythroid-
lineage cells could not be detected at any time up to 6 weeks
after transplantation (data not shown). Three weeks after trans-
plantation, the number of donor-derived B2201IgM2 precursor
B cells and B2201IgM1 immature B cells started to decline in
bone marrow and spleen (Figure 5A-B). Later, between 3 and
4 weeks after transplantation, donor-derived CD41CD81 thy-
mocytes appeared in the thymus, and CD41 as well as CD81

T cells, expressing T-cell receptor b and CD3, appeared in spleen
(Figure 5A-B). Donor-derivedNK1.11 NK cells were found in bone
marrow and spleen, increasing in numbers at later times after
transplantation (Figure 5C-E). Competitive transfer analysis of
cCLPs with CLPs ex vivo revealed an;1/200 lower repopulation
potential, but a similar differentiation potential of cCLPs to those
of CLPs ex vivo (supplemental Figure 6A-D). In vivo clonal
analysis of 4 randomly selected single cCLP clones showed that
all clones differentiated to B, T, and NK cells, but no myeloid
cells were detectable (supplemental Figure 6E).

All 3 ILC populations, namely donor-derived T-bet1 ILC1,
Gata3hi ILC2, and RORgt1 ILC3 subsets, as defined by NKp46
and CD4 expression were detected in the small intestinal lamina
propria of Rag2gc-deficient mice 4 weeks after transplantation of
cCLP (Figure 5F-G). Moreover, themain ILC populations residing
in lung, in particular Eomes1 NK cells and Gata3hi ILC2, or in
the liver, specifically T-bet1 ILC1 and Eomes1 NK cells, could be
reconstituted (supplemental Figure 7). Comparable numbers of
B, T, NK cells from donors were obtained in control experiments,
where CLPs, isolated ex vivo from bone marrow, were trans-
planted (supplemental Figure 8). Transplantations of cCLPs into
RAG2/gc-deficient hosts yielded lower numbers of T cells and
B cells (supplemental Figure 9). Transplantations of cCLPs cultured
for .4 months yielded lower numbers of donor cells, compared
with those cultured for 2 months (supplemental Figure 10).

From all these transplantation experiments, we conclude that
our long-term cultured, genetically unmodified cCLPs have the
potential to differentiate in vivo to all lymphoid cell lineages
tested.

Discussion
For the first time, we have been able to propagate CLPs from
bone marrow of normal mice for weeks andmonths as long-term
proliferating cell lines and clones, which closely resemble ex vivo
CLP. CLP defined as Lin2ckitloSca1loIL7R1Thy126, later refined as

LinloFlk21IL7R1CD271, were found to possess myeloid potential
in vitro, but were found to display little myeloid potential in vivo.27

On the other hand, LMPP, defined as Lin2ckit1Sca11Flk21, were
shown to have stronger myeloid potential in vitro and in vivo, and
colonies with myeloid potential were detected in spleen and
bone marrow a week after the in vivo transplantation.7 We
have established the cell lines described here from Lin2Flk21

IL7R1CD271Ly6d2CLP. Because we find them to have differ-
entiation capacities for lymphoid and myeloid lineages in vitro
and in vivo, we call these lines “cCLP (cultured CLP),” in order to
distinguish them from ex vivo CLPs, or ex vivo LMPPs. Karyotype
test by Q-bandmethod of the 2-month cCLPs revealed that all of
cells tested retained a full set of chromosomes (data not shown).
It has been known that some hematopoietic cells, such as CD41

and CD81 T cells, CD191ckit1IL7R1preBI cell lines, and FceRI1

ckit1IL3R1bone marrow-derived mast cells, can be generated
and propagated long term in vitro from primary lymphoid tissues
without any genetic manipulation, but all of them are already
lineage committed with reduced or specialized differentiation
potential. Thus, this is the first report that describes the estab-
lishment of long-term expanding hematopoietic uncommitted
progenitor lines and clones with differentiation potential in vitro
and in vivo without any genetic manipulations or modifications.
Our genetically unaltered cCLP lines and clones are a significant
advance over previous studies, in which transgenic overexpression
of Hoxb88 or Id3,9 or germline deletion of Pax5,10 Ebf1,11 or
E2A,12 had led to developmental arrests of progenitors re-
sembling multipotent progenitors or CLP, and had enabled their
establishment as long-term proliferating, stably differentiated, but
genetically altered cell lines and clones.

In order to achieve the same success with normal, genetically
unaltered cells, we have introduced several changes in tissue
culture conditions and introduced a modified version of Iscove
modified Dulbecco medium, KIDMEM, in which FBS is replaced
by purified transferrin and delipified bovine serum albumin,
complexed with a defined mixture of lipids.28 This has removed
hematopoietic and B-cell differentiation-inducing activities of
serum.29 We have used the well-documented synergistic action
of IL-7 and Flt3L,6,13,14 but we have lowered the concentration
of IL-7 to 0.1 ng/mL, reducing its B-cell differentiation-inducing
activity, to stimulate proliferation of CLP, a condition that we find
to inhibit the induction of Ebf1 and Pax5 expression, hence, to
prevent the commitment to B-cell differentiation. Other labo-
ratories have found that Flt3L and IL-7 cooperate to improve
B-cell development.13,14 However, in these previous experiments,
FBS was present in the cultures, which we show here to have
strong B-cell differentiation-inducing activities. Our finding,
that Flt3L stabilizes the uncommitted CLP state of differenti-
ation, is a novel view of the action of Flt3L during hemato-
poietic and B-lymphopoietic differentiation. This stabilizing
action is a crucial element of the success of the long-term

Figure 5. Differentiation potentials of cCLPs in vivo. CD45.11cCLP cultured for 2 months were transplanted into sublethally irradiated CD45.21C57BL/6 mice (n 5 4). Bone
marrow (top), spleen (middle), and thymus (bottom) of the recipient hosts were FACS analyzed at the indicated times after transplantation. (A) Total numbers of CD45.11 donor
cells. (B) Representative FACS profiles of donor-derived T and B cells differentiated at 3 weeks after transplantation in bone marrow (upper panel), spleen (middle panel), and
thymus (lower panel). (C-D) Total numbers of indicated cell subsets derived from donors in bone marrow (C) and spleen (D) at different times after transplantation.
(E) Representative FACS profiles of donor-derived NK1.11NK cells (upper panel), CD11b1Gr11 myeloid cells (middle panel) in bone marrow, and CD11b1CD11c1, CD11b2

CD11c1DCs in spleen (lower panel) at different times after transplantation. The values in each panel shown in panels B and E indicate the percentages of cells in each gate. Data
shown in panels A to E are representative of 2 independent experiments. (F) Representative FACSprofiles and (G) total numbers of donor-derived ILC subsets in intestine 4 weeks
after transplantation of CD45.11 cCLPs cultured for 2 months into sublethally irradiated CD45.21 RAG2/c-deficient mice (n5 4). BM, bonemarrow; IgM, immunoglobulin M; Spl,
spleen; Thy, thymus.
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culturing of cCLP. OP9 stromal cells and low doses of IL-7 both
contribute to proliferation of cCLPs, whereas kit-ligand is only
marginally active. Therefore, the differentiation from CLP to
pre–BI cells coincides with a major change in the controls of
proliferation to a kitL/c-kit–controlled signaling. The CXCR4-
inhibitor AMD3100 inhibits proliferation of cCLPs but allows
undifferentiated cCLPs to survive. Thus, IL-7 and Flt3L are major
candidates for ligands, which could signal cCLP to survive without
further differentiation. Furthermore, the M-CSF deficiency of the
OP9-stromal cells might avoid a possible, c-fms–mediated myeloid
differentiation of the cCLPs, and this suggestion is supported by
our findings that M-CSF–proficient stromal cells (eg, ST-2) do
not support the long-termmaintenance of cCLPs (data not shown).
Neither soluble nor plate-immobilized recombinant CXCL12 could
replace OP9 stromal cells in proliferating CLP cultures, suggesting
a more complex form of growth support (Figure 2 and data not
shown).

The comparison of the transcriptomes of cCLP with CLP ex vivo
shows a high similarity between them. However, in contrast to
ex vivo CLPs, cCLPs downregulate IL7Ra, Flt3, and CXCR4
surface expression, probably induced by the presence and ac-
tion of their ligands in culture. On the other hand, these cell lines,
but not CLP ex vivo, also express CD16 and CCR9, markers
expressed on Lin2Flt31IL7R2/loc-kithi early thymic precursors,25,30

that also retain B-cell and myeloid differentiation capacity.31,32

Expression of CCR9 on CLP facilitates their transfer to the
thymus.33,34 Because Rag1 as well as Ccr9 expression was up-
regulated in cCLPs, they resemble hematopoietic progenitors
known as Lin2Rag11 earliest lymphoid progenitors (data de-
posited as GSE109805).35

Our method to obtain large numbers of hematopoietic pro-
genitors with myeloid-lymphoid potential makes it possible to
study the complex endogenous choices of molecular programs
for hematopoietic lineage differentiation (ie, dynamic epigenetic
regulations of genes involved in receptor-ligand interactions
stimulating signaling pathways to gene expression controls),
and influences of metabolic activities on CLP (eg, oxidative
phosphorylation, glycolysis and lipolysis, autophagy, and hyp-
oxia). It will also facilitate evaluations of influences of CLP by their
environments. Our ability to express selected genes by retroviral

transductions in our cCLPs predicts that better targeted intro-
ductions of genes into the genome (eg, by CRSPR-cas9 tech-
nology) will also be possible, opening exciting new possibilities
to study lymphopoiesis from CLP.
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18. Dias S, Månsson R, Gurbuxani S, Sigvardsson
M, Kee BL. E2A proteins promote develop-
ment of lymphoid-primed multipotent pro-
genitors. Immunity. 2008;29(2):217-227.

19. Borghesi L, Aites J, Nelson S, Lefterov P,
James P, Gerstein R. E47 is required for V(D)J
recombinase activity in common lymphoid
progenitors. J Exp Med. 2005;202(12):
1669-1677.

20. Yoshida T, Ng SY, Zuniga-Pflucker JC,
Georgopoulos K. Early hematopoietic lineage
restrictions directed by Ikaros. Nat Immunol.
2006;7(4):382-391.

21. Scott EW, Fisher RC, Olson MC, Kehrli EW,
Simon MC, Singh H. PU.1 functions in a cell-

autonomous manner to control the differen-
tiation of multipotential lymphoid-myeloid
progenitors. Immunity. 1997;6(4):437-447.

22. Schwarz BA, Sambandam A, Maillard I,
Harman BC, Love PE, Bhandoola A. Selective
thymus settling regulated by cytokine and
chemokine receptors. J Immunol. 2007;
178(4):2008-2017.

23. Lai AY, Kondo M. Identification of a bone
marrow precursor of the earliest thymocytes in
adult mouse. Proc Natl Acad Sci USA. 2007;
104(15):6311-6316.

24. Scimone ML, Aifantis I, Apostolou I, von
Boehmer H, von Andrian UH. A multistep
adhesion cascade for lymphoid progenitor
cell homing to the thymus. Proc Natl Acad Sci
USA. 2006;103(18):7006-7011.

25. Benz C, Bleul CC. A multipotent precursor
in the thymus maps to the branching point
of the T versus B lineage decision. J Exp Med.
2005;202(1):21-31.

26. Schmitt TM, Zúñiga-Pflücker JC. Induction of
T cell development from hematopoietic pro-
genitor cells by delta-like-1 in vitro. Immunity.
2002;17(6):749-756.

27. Richie Ehrlich LI, Serwold T, Weissman IL. In
vitro assays misrepresent in vivo lineage po-
tentials of murine lymphoid progenitors.
Blood. 2011;117(9):2618-2624.

28. Iscove NN, Melchers F. Complete re-
placement of serum by albumin, transferrin,
and soybean lipid in cultures of

lipopolysaccharide-reactive B lymphocytes.
J Exp Med. 1978;147(3):923-933.

29. Bryder D, Jacobsen SE. Interleukin-3
supports expansion of long-term multilineage
repopulating activity after multiple stem cell
divisions in vitro. Blood. 2000;96(5):
1748-1755.

30. Dejbakhsh-Jones S, Strober S. Identification
of an early T cell progenitor for a pathway of
T cell maturation in the bone marrow. Proc
Natl Acad Sci USA. 1999;96(25):14493-14498.

31. Wada H, Masuda K, Satoh R, et al. Adult T-cell
progenitors retain myeloid potential. Nature.
2008;452(7188):768-772.

32. Bell JJ, Bhandoola A. The earliest thymic pro-
genitors for T cells possess myeloid lineage
potential. Nature. 2008;452(7188):764-767.

33. Krueger A, Willenzon S, Lyszkiewicz M,
Kremmer E, Förster R. CC chemokine receptor 7
and 9 double-deficient hematopoietic progen-
itors are severely impaired in seeding the adult
thymus. Blood. 2010;115(10):1906-1912.

34. Zlotoff DA, Sambandam A, Logan TD, Bell JJ,
Schwarz BA, Bhandoola A. CCR7 and CCR9
together recruit hematopoietic progenitors
to the adult thymus. Blood. 2010;115(10):
1897-1905.

35. Igarashi H, Gregory SC, Yokota T, Sakaguchi
N, Kincade PW. Transcription from the RAG1
locus marks the earliest lymphocyte progen-
itors in bone marrow. Immunity. 2002;17(2):
117-130.

GENERATION OF GENE-UNMODIFIED LYMPHOID PROGENITORS blood® 3 MAY 2018 | VOLUME 131, NUMBER 18 2035

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/18/2026/1405955/blood805259.pdf by guest on 02 June 2024


