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Hepcidin agonists are a new class of compounds that regulate blood iron levels, limit iron absorption, and could improve
the treatment of hemochromatosis, b-thalassemia, polycythemia vera, and other disorders in which disrupted iron
homeostasis causes or contributes to disease. Hepcidin agonists also have the potential to prevent severe compli-
cations of siderophilic infections in patients with iron overload or chronic liver disease. This review highlights the
preclinical studies that support the development of hepcidin agonists for the treatment of these disorders. (Blood.
2018;131(16):1790-1794)

Iron metabolism and the importance of
its regulation
Iron is essential for the development and growth of nearly all
living organisms, from bacteria to humans.1 It plays a role in
many vital cellular and organismal functions, from cell division to
oxygen transport.2 As iron is relatively scarce in forms that can be
used for biological activities, it is not surprising that organisms
developed sophisticated mechanisms for iron acquisition,
recycling, and efficient tissue distribution. Although essential,
iron in excess can promote the formation of highly toxic reactive
oxygen species (ROS), which can damage DNA, protein, and
lipid membrane, leading to organ dysfunction.1-3 Therefore,
humans and other vertebrates have evolved regulatory systems
to optimize the absorption and organ distribution of iron. These
regulatory mechanisms are also used to limit iron availability to
invading microbes during infection, as microbes compete with
the host for this essential nutrient. However, several genetic or
acquired disorders of iron homeostasis dysregulate iron ab-
sorption or distribution, causing organ damage and creating
conditions for overwhelming infections with associated mor-
bidity and mortality.

Hepcidin: the key factor in ironmetabolism
The master regulator of iron metabolism is the 25-aa peptide
hormone hepcidin (hepcidin antimicrobial peptide [HAMP]),
mainly produced by the liver in proportion to plasma iron
concentration and iron stores.4-7 Hepcidin inhibits the activity of
the only known cellular iron exporter, ferroportin-1 (FPN-1),
which is expressed on the surfaces of cells that are involved in
iron absorption, recycling, and storage.8,9 The feedback circuitry
between hepcidin and iron levels in the body ensures systemic
iron homeostasis. Hepcidin is also increased during infection and
inflammation, causing reduced intestinal iron absorption and in-
creased iron retention in macrophages.10-12 This is essential to
protect the organism from infection with siderophilic and poten-
tially other gram-negative bacteria, which can grow rapidly in the
presence of excess iron.12-14 In contrast, hepcidin is suppressed

during increased erythropoiesis, when more iron is needed to
support increased red blood cell (RBC) production.15-18

When hepcidin production is chronically decreased, iron absorption
and release from body stores are excessive and tissue iron overload
occurs.6,18 Hepcidin deficiency is a common feature of hereditary
hemochromatosis (HH) and anemias with ineffective erythropoiesis,
including thalassemias and low-risk myelodysplastic disorders.19-22

In HH, mutations in genes such as HFE, TFR2, HJV, or HAMP,
which encode proteins in iron-regulatory pathways, lead to re-
duced hepcidin synthesis and to a phenotype characterized by
iron overload from increased intestinal iron absorption and ex-
cessive release of iron from macrophages.22 In b-thalassemia,
hepcidin deficiency results from chronically elevated production
of 1 or more erythroid suppressors of hepcidin.23-28 Mutations in
the b-globin gene or its regulatory elements cause reduced or
absent b-globin synthesis, resulting in the formation of globin
tetramers with an excess of a-chains that precipitate in ery-
throid progenitors causing their premature death.29,30 This,
together with the shorter lifespan of RBCs, results in profound
anemia that leads to increased erythropoietin production and
consequent expansion of the number of erythroblasts, not only
in the bone marrow but also at extramedullary sites, causing
hepatosplenomegaly.19,31 Large numbers of erythroblasts are stim-
ulated by high erythropoietin levels to produce excessive amounts
of the erythroid factor erythroferrone, which downregulates
hepcidin, leading to increased intestinal iron absorption.27

Utilizing hepcidin pathway to treat iron
overload disorders
Initially, studies in mousemodels of HH (Hfe2/2) or b-thalassemia
intermedia (Hbbth1/th1 and Hbbth3/1) demonstrated that trans-
genic overexpression of hepcidin could prevent iron overload
and improve erythropoiesis.32,33 Similarly, genetic disruption of
the hepcidin regulator Tmprss6 in a b-thalassemia mouse model
enhanced signaling by the bone morphogenetic protein (BMP)/
small mothers against decapentaplegic (SMAD) pathway and
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increased hepcidin levels with consequent prevention of iron
overload and improved erythropoiesis.34,35 These genetic
studies prompted the exploration of other approaches to in-
creasing circulating hepcidin in iron-overloaded patients with
hepcidin deficiency. Synthesis of full-length hepcidin is relatively
inefficient, and the half-life of hepcidin in circulation is short
because of rapid renal clearance.36 To overcome these limita-
tions, several molecules have been designed to mimic hepcidin
activity or stimulate endogenous hepcidin production.2,37 We
developed minihepcidins (MHs), short peptides based on the
7-9 N-terminal amino acid segment of hepcidin. We first showed
that this N-terminal segment of hepcidin is sufficient to induce
FPN-1 internalization and degradation in vitro.38 We then
engineered these peptides to increase their half-life and po-
tency, and demonstrated that administration of MHs to mice
mimics the iron-restrictive effect of endogenous hepcidin.

Studies in a severe mouse model of HH (Hamp2/2) showed that
the use of MHs could prevent or limit liver iron accumulation and
reduce iron level in the heart, while increasing iron sequestration
in splenic macrophages.39 Subsequent studies in a mouse model
of b-thalassemia intermedia showed that the iron-restrictive effect
of MHs improved anemia, iron overload, ineffective erythropoi-
esis, and splenomegaly.40 Treated animals also showed significant
reduction in hemichrome formation and ROS as well as improved
lifespan of circulating RBCs.40 However, this study also demon-
strated that high doses of MHs could cause anemia from ex-
cessive iron restriction, highlighting the need to titrate hepcidin
agonists to the desired effect.40

Utilizing hepcidin agonists to treat
siderophilic infections
MHs were also highly effective in preventing mortality from
infections with siderophilic pathogens inmousemodels. Patients
with iron-overload disorders are known to be susceptible to
severe and lethal infections with siderophilic bacteria such as
gram-negative Vibrio vulnificus and Yersinia enterocolitica.41,42

Mousemodels of hepcidin deficiency (Hamp2/2) reproduced the

susceptibility to lethal infection not only with V vulnificus and Y
enterocolitica, but also with another gram-negative pathogen,
Klebsiella pneumoniae.12-14,43 Even wild-type mice after ad-
ministration of parenteral iron showed greater infection burden
with Y enterocolitica and K pneumoniae.12,14 In mouse models,
the pathogenicity of these gram-negative bacteria was de-
pendent on extracellular iron concentrations, specifically on the
availability of nontransferrin-bound iron (NTBI). NTBI appears
in circulation when transferrin saturation exceeds ;70%, and
stimulates extremely rapid proliferation of these bacteria.14

Administration of MHs to mice rapidly lowered the concentra-
tion of extracellular iron, and prevented formation of NTBI. As a
result, MHs treatment prevented or reduced mortality from V
vulnificus, Y enterocolitica, and K pneumoniae inHamp2/2 mice,
and decreased abscess formation in iron-loaded wild-type
mice infected with Y enterocolitica.12-14 Based on these stud-
ies in mouse models, patients with siderophilic infections in the
setting of iron-overload disorders and chronic liver disease as-
sociated with high transferrin saturation and the presence of
NTBI could benefit from treatment with hepcidin agonists.44

Multiple other strategies have been developed to mimic hep-
cidin activity or increase production of endogenous hepcidin.
These include synthetic full-length human hepcidin,45 another
peptide-based hepcidin mimetic,46 small molecule FPN-1 in-
hibitors,47 or pharmacologic inhibition of Tmprss6 by in vivo
targeting and degradation of Tmprss6 messenger RNA,48,49 all
displaying similar beneficial effects in preclinical models of
hepcidin deficiency. Tmprss6 antisense oligonucleotide or
small-interfering RNA approaches were used in mouse models
of b-thalassemia intermedia and hereditary hemochromatosis
(Hfe2/2).48,49 Successful silencing of Tmprss6 led to increased
hepcidin and reduced serum and liver iron concentration in both
mouse models. In particular, in b-thalassemia models, increased
hepcidin concentration levels were associated with improved
anemia, ineffective erythropoiesis (with improved RBC maturation),
and reduced splenomegaly. Treatedmice also showed reduction in
hemichrome formation, apoptosis, and ROS as well as improved
RBC life span.48,49 Additional studies usingMHorTmprss6 inhibitors
in combination with the iron chelator deferiprone demonstrated a

Table 1. Classification of hepcidin agonists

Hepcidin agonists Company Drug Target Clinical trials Reference

Class 1: hepcidin mimetics University of California,
Los Angeles

MHs (PR65, PR73,
M009, M012)

Ferroportin Validated in preclinical studies See articles cited in
the review

La Jolla Pharmaceutical
Company

LJPC-401
(hepcidin
formulation)

Ferroportin Phase 1: no toxicity reported;
expected hypoferremia
observed

45

Protagonist Therapeutics PTG-300 Ferroportin Phase 1: no serious adverse
events reported; expected
hypoferremia observed

58

Class 2: stimulators of hepcidin
production

Ionis Pharmaceuticals Tmprss6-ASO Tmprss6 Phase 1 ongoing 59

Alnylam Pharmaceuticals Tmprss6-siRNA Tmprss6 Validated in preclinical studies See articles cited in
the review

Class 3: ferroportin inhibitors Vifor Pharma VIT-2763 Ferroportin Phase 1 planned in 2018 60

ASO, antisense oligonucleotide; siRNA, small-interfering RNA.
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more powerful effect of the combined therapy on iron overload and
ineffective erythropoiesis than the single agents alone.40,50,51

Hepcidin agonists could also be beneficial for the management
of b-thalassemia major (TM). In patients affected by TM, the
major cause of iron overload is the iron burden of repeated
blood transfusions.19,52 Although transfusion therapy transiently
increases hepcidin levels, hepcidin decreases toward the end
of the transfusion cycle when hemoglobin levels decrease.53

Therefore, increased intestinal iron absorption may also con-
tribute a small but potentially important component of iron
overload. In addition, low or relatively low levels of hepcidin in this
condition could lead to the generation of NTBI and labile plasma
iron, which trigger oxidative stress and tissue injury in many or-
gans.44 Therefore, in these disorders, the use of hepcidin agonists
could help limit or prevent intestinal iron intake when the synthesis
of endogenous hepcidin is not sufficient, and prevent formation of
labile plasma iron by sequestering iron in macrophages. Fur-
thermore, the restrictive effect of iron deficiency on ineffective
erythropoiesis could also decrease the number of erythroid pro-
genitors and splenomegaly. A smaller spleen should, in turn, re-
duce the rate of destruction of transfused RBC and reduce the
transfusion frequency. To test these hypotheses, we are now
conducting a series of studies in a new mouse model of TM.

Another disease in which iron restriction might be beneficial is
polycythemia vera (PV).40 Most of the clinical characteristics of PV
are triggered by the excessive number of erythrocytes, leading
to an increased risk of pulmonary hypertension and thrombo-
sis.54 The principal therapy for PV is phlebotomy to reduce the
hemoglobin concentration and reduce the risk of thrombosis.54

Because phlebotomy does not suppress the production of RBCs
in the bone marrow, the effect of each phlebotomy is transient,
until patients become iron deficient. As an alternative, systemic
iron restriction induced by administration of MHs in a mouse
model of PV limited iron supply to erythropoiesis and thereby
reduced hemoglobin concentrations and decreased splenomeg-
aly.40 All of these studies also indicate that overadministration of
hepcidin agonists can cause suppression of intestinal iron uptake
and macrophage iron recycling, with potential exacerbation of
anemia, as in b-thalassemia, or suboptimal production of RBCs, as
in PV. These observations stress the notion that careful titration of
these compounds is needed to fully benefit from their therapeutic
properties, while avoiding undesirable side effects.

Nevertheless, based on the positive results frompreclinical studies,
several hepcidin agonists are being tested in clinical trials (Table 1).

Conclusions and future directions
Hepcidin agonists have been developed to control iron ab-
sorption and ameliorate iron overload in multiple iron disorders,

but their therapeutic efficacy alone or in combination with existing
therapies remains to be tested in clinical trials.

In patients with hereditary hemochromatosis, hepcidin agonists
may become useful in conjunction with phlebotomy during the
treatment phase, or as a stand-alone treatment during the main-
tenance phase. Furthermore, hepcidin agonists may effectively
treat severe siderophilic infections affecting patients with iron
overload or chronic liver disease.

Based on preclinical studies, hepcidin agonists could improve
not only iron overload but also the anemia in patients with
b-thalassemia intermedia. Future studies will explore whether
hepcidin agonists could also ameliorate splenomegaly and
decrease the need for blood transfusion in individuals affected
by b-thalassemia major. Because of their distinctive effect
on iron metabolism, hepcidin agonists may also complement
other novel treatments that increase RBC production, such as
agents that target ligands of the transforming growth factor-b
family.55-57
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