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KEY PO INT S

l FLT3ITD TK inhibition
impairs glycolysis and
glucose utilization
without equally
affecting glutamine
metabolism.

l Combined targeting of
FLT3 TK activity and
glutamine metabolism
decreases FLT3ITD

mutant cells
leukemogenic
potential in vitro and
in vivo.

FLT3 internal tandem duplication (FLT3ITD) mutations are common in acute myeloid leu-
kemia (AML) associated with poor patient prognosis. Although new-generation FLT3 ty-
rosine kinase inhibitors (TKI) have shown promising results, the outcome of FLT3ITD AML
patients remains poor and demands the identification of novel, specific, and validated
therapeutic targets for this highly aggressive AML subtype. Utilizing an unbiased genome-
wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screen, we
identify GLS, the first enzyme in glutamine metabolism, as synthetically lethal with FLT3-
TKI treatment. Using complementary metabolomic and gene-expression analysis, we
demonstrate that glutamine metabolism, through its ability to support both mitochondrial
function and cellular redox metabolism, becomes a metabolic dependency of FLT3ITD AML,
specifically unmaskedbyFLT3-TKI treatment.Weextend thesefindings toAMLsubtypesdriven
by other tyrosine kinase (TK) activating mutations and validate the role of GLS as a clinically
actionable therapeutic target in both primary AML and in vivo models. Our work highlights the
role of metabolic adaptations as a resistance mechanism to several TKI and suggests gluta-
minolysis as a therapeutically targetable vulnerabilitywhen combinedwith specific TKI in FLT3ITD

and other TK activating mutation–driven leukemias. (Blood. 2018;131(15):1639-1653)

Introduction
Acutemyeloid leukemia (AML) is a highly heterogeneous disease at
both the molecular and clinical levels. Recent sequencing efforts
have helped to categorize different subtypes based on their mu-
tation profile and its putative effect on AML pathogenesis. Com-
mon subgroups include those carrying mutations in transcription
factors and epigenetic regulators, cases carryingmutations in genes
encoding for components of the spliceosome machinery and
cohesin complexes, and those carrying mutations in signaling
genes.1,2 Within the last group, activating mutations of tyrosine
kinases (TKs) are the most frequent and generally predict for a poor
outcome.3 In particular, mutations in the type-III receptor TK FLT3
are present in ;30% of AML patients, are mostly secondary to an
internal tandem duplication (FLT3ITD) of the juxtamembrane do-
main, and predict for an increased relapse rate following standard
therapies and a poor prognosis.4 Although FLT3ITD mutations are
acquired relatively late in leukemia evolution1,5 and are unable to
produce anAMLphenotype in animalmodelswithout collaborating
mutations,6 they are capable of conferring a state of oncogene

addiction by activating survival pathways.7 Their importance for the
maintenance of the leukemic phenotype and as a relevant thera-
peutic target has also been confirmed by the results of a recent
phase 3 randomized study (RATIFY), where a survival benefit
for patients treated with FLT3 TK inhibitor (TKI) was demonstrated
for the first time,8 leading to recent US Food and Drug Adminis-
tration approval of the FLT3 inhibitormidostaurin. However, despite
our understanding of the role played by FLT3ITD mutations in AML
and the rational design of targeted inhibitors of their TK activity, the
overall outcome of AML patients carrying FLT3ITD mutations re-
mains poor, suggesting that resistance mechanisms to targeted
inhibitors might hinder the efficacy of these therapies.9 Indeed
mutations in the FLT3 TK domain have already been described
as a frequent mechanism of resistance.7 However, more recently,
mutational analysis of patient samples obtained following relapse
after FLT3-TKI treatment and a handful of preclinical studies have
suggested that cellular adaptive mechanism might also play a role
in FLT3-TKI resistance,10-13 although these remain overall poorly
defined.
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Figure 1.GLS gene deletion and chemical inhibition are synthetically lethal with FLT3 TKIs. (A) Schematic of the genome-wide CRISPR/Cas9 synthetic lethality screen in the
FLT3ITD mutant cell line MOLM13. (B) KEGG pathways enrichment analysis of dropout genes from CRISPR/Cas9 screen sorted by combined score calculated using Enrichr
software.35,36 Pathways relevant to AML biology are highlighted while the remaining are grayed out. (C) List of top 10 genes from the “metabolic pathways” gene list sorted
according to average fold depletion from gRNAs. FDR, false discovery rate. (D) Bar graph depicting individual fold depletion for each gRNA targeting GLS. (E-G) Growth
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FLT3ITD mutations are known to activate survival/proliferation
signaling pathways, including the phosphatidylinositol 3-kinase/
AKT, Ras/MAPK, and JAK/STAT pathways14-17 that are also
known to directly or indirectly alter cell metabolism.18-20 As a
result, leukemias harboring FLT3ITD mutations are often asso-
ciated with a very proliferative and aggressive phenotype and
high tumor bulk and are accompanied by alterations in cellular
metabolism to sustain this proliferative phenotype.4,21

Metabolic reprogramming has emerged as a hallmark of trans-
formed cells,22 and several reports have recently highlighted
the role of specific metabolic enzymes and metabolites in
normal hematopoietic stem cell homeostasis and leukemo-
genesis through both direct effects on energy production and
macromolecule biosynthesis and their ability to modulate redox
balance, epigenetic regulation, and signaling pathways.23-29

Moreover, metabolism is able to rapidly respond to changing
conditions within a cell, and it has already been shown, in both
solid cancers and hematological malignancies, that metabolic
adaptations, under therapeutic selective pressure, can act as
key resistance mechanisms to standard therapeutics.30,31

In this work, we aimed to identify novel cellular adaptive
resistance mechanisms to FLT3-TKI treatment in FLT3ITD

AML. Using several unbiased complementary approaches,
we identify glutamine metabolism as a protective and adaptive
response to FLT3-TKI and describe the mechanisms underlying
this phenotype. Finally, we validate glutaminolysis as a clinically
actionable therapeutic vulnerability in both FLT3ITD and other
AML subtypes carrying TK activating mutations following TKI
treatment.

Methods
For more information, see the supplemental Methods (available
on the Blood Web site).

Cell culture
MV411, MOLM13, THP1, and K562 were cultured in RPMI 1640
(Sigma-Aldrich) supplemented with 10% dialyzed fetal bovine
serum (Sigma-Aldrich) and 1% penicillin/streptomycin/glutamine.
Lineage-depleted bone marrow cells from Rosa26Cas9/1, Flt3ITD/1

mice were transduced with retrovirus constructs pMSCV-MLL-
AF9-IRES-YFP, pMSCV-MLL-AF4-PGK-puro, and pMSCV-MLL-
ENL-IRES-Neo and cultured in X-VIVO 20 (Lonza) supplemented
with 10 ng/mL interleukin-3 (IL-3), 10 ng/mL IL-6, and 50 ng/mL
stem cell factor (Peprotech).
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Figure 1. (continued) inhibition curves to AC220 of MOLM13 (E) and murine bone marrow cells expressing MLL/AF9-FLT3ITD (F) and MLL/AF9 (G) transduced respectively with
“empty” gRNA control or 2 different gRNA targeting GLS (mean 6 standard error of the mean [SEM], n 5 3, P , .001 for treatment effect comparing control and both Gls
knockout for panels E-F; ns, not significant for panel G; 2-way analysis of variance [ANOVA]). (H-I) Apoptosis in the FLT3ITD mutant cell lines MV411 (H) and MOLM13
(I) transduced with control scramble shRNA and GLS shRNA following treatment with AC220 0.5 nM for 48 hours (for MV411: mean 6 SEM, n 5 7, ****P , .0001,
**P 5 .0086; for MOLM13: mean6 SEM, n5 3, **P5 .0014; for AC220 treatments [comparison between scramble andGLS shRNA]: **P5 .0050; for dimethyl sulfoxide vs
AC220 comparison in the scramble shRNA; 2-way ANOVA with Bonferroni’s multiple comparisons). (J-K) Apoptosis in MV411 (J) and MOLM13 (K) following treatment
with AC220 1 nM, CB839 100 nM or their combination (for MV411: mean 6 SEM, n 5 14, **P 5 .0033, ****P , .0001; for MOLM13: mean 6 SEM, n 5 16, *P 5 .0126,
***P 5 .0003; ANOVA with Tukey’s multiple comparisons). (L-M) Apoptosis in MV411 (L) and MOLM13 (M) grown in the presence (full media) or absence of glutamine
following treatment with AC220 1 nM for 48 hours (for MV411 mean 6 SEM, n 5 24, for MOLM13 mean 6 SEM, n 5 11; ****P , .0001, ***P 5 .0007; 2-way ANOVA
with Bonferroni’s multiple comparisons).
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Figure 2. FLT3 TK inhibition reduces glucose uptake and central carbon metabolism without affecting glutamine uptake. (A-D) Time-course analysis of glucose and
glutamine uptake from media by MV411 (A-B) and MOLM13 (C-D) cells treated with AC220 1 nM or vehicle control (mean 6 SEM, n 5 3; ****P , .0001; 2-way ANOVA with
Bonferroni’s multiple comparisons). (E) Total and isotopologue abundance of selected glycolytic intermediates and products measured by LC-MS analysis in MV411 cell extracts
treated with AC220 1 nM or vehicle control and grown in media containing uniformly labeled 13C [U-13C6] glucose (GLC) (mean 6 SEM, n 5 5; ***P 5 .0004 for total
3-phosphoglycerate and P5 .0007 for total lactate; 2-tailed paired t test). (F-G) Extracellular acidification rate (ECAR) of MV411 (F) andMOLM13 (G) cells treated with AC220 1nM
or vehicle control (mean6 SEM, n5 3, ****P , .0001, ***P5 .0003, 2-way ANOVA with Bonferroni’s multiple comparisons). (H) Total and isotopologue levels of selected TCA
cycle intermediates in MV411 cells treated as in panel E (mean6 SEM, n5 5; *** P5 .0009,**P5 .0011; ns, not significant; 2-tailed, paired Student t test). A.U., arbitrary units. (I)
Percentage of total levels of citrate and aspartate provided respectively by the 13C2 and 13C3 fraction following AC220 treatment as in panel E (mean6 SEM, n5 5; ****P, .0001;
ns, not significant; 2-way ANOVA with Bonferroni’s multiple comparisons). (J-K) Volcano plot for gene expression changes by RNA sequencing (n5 2 for each cell line) of MV411
and MOLM13 cells treated with AC220 1 nM compared with vehicle control, highlighting reduced expression of glycolysis genes (top) and the minimal effects on TCA cycle
genes (bottom). (L-M) Quantitative PCR validation in MV411 (L) and MOLM13 (M) for the reduced expression of lactate dehydrogenase (LDHA) and glucose transporter (GLUT3)
after treatment with AC220 1 nM (top) (mean6 SEM, MV411 n5 4, MOLM13 n5 5; for LDHA: **P5 .0053, *** P5 .0005; for GLUT3, MV411: *P5 .0150; MOLM13: *P5 .0387;
2-tailed, paired Student t test) and for the lack of changes in expression in glutamine metabolism genes (GLS) and glutamate dehydrogenase (GLUD1) (bottom) (mean6 SEM,
n 5 4; ns, not significant by 2-tailed, paired Student t test).
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Generation of genome-wide mutant
libraries, CRISPR screening, and gRNA
competition assays
Clustered regularly interspaced short palindromic re-
peats (CRISPR) screens were performed using the

previously reported wild-type Sanger genome-wide
CRISPR library.32 Guide RNA (gRNA) competition assays
were performed using single and dual gRNA vectors as de-
scribed previously.32 The gRNA sequences are listed in the
supplemental Methods.
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Figure 2. (Continued).
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Liquid chromatography coupled to mass
spectrometry (LC-MS) for metabolomics analysis
MV411 cells were plated at 0.5 3 106 cells/mL in media sup-
plemented with uniformly labeled 13C (U-13C6) glucose (11 mM)
or uniformly labeled 13C, 15nitrogen (U-13C5,15N2) glutamine (2mM)
(Cambridge Isotope Laboratories) for 48 hours before sampling.
Details ofmetabolite extraction and LC-MS analysis are provided in
the supplemental Methods.

Adult primary leukemia and cord blood sample
drug and proliferation assays
Human AML mononuclear cells were obtained from bone
marrow or peripheral blood of patients. Normal CD34 sam-
ples were obtained from leukapheresis products of myeloma/
lymphoma patients in bone marrow remission. Informed
consent was obtained in accordance with the Declaration of
Helsinki, and the study was conducted under local ethical
approval (REC 07-MRE05-44). Culture conditions for methyl-
cellulose and liquid culture assay of primary samples were as
previously described.33

In vivo experiments
MV411 cells transduced with control “scramble” short hairpin
RNA (shRNA) or GLS shRNA were transplanted (3 3 106) into
sublethally irradiated (2 Gy) 8- to 12-week-old NSG (NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ) male mice via tail vein injection. Three days
after transplant, mice were fed a doxycycline diet (1 g/kg) to induce
the shRNA, and after disease dissemination, treatment was started.
Micewere treatedbygavageeitherwith vehicle (22%hydroxypropyl-
b-cyclodextrin/0.3% dimethyl sulfoxide) or AC220 at 1 mg/kg
daily for 8 days and then 0.1 mg/kg till they succumbed to
disease. Survival was measured as the time from transplantation
until the point at which mice had to be humanely culled due to
overt clinical symptoms typical of the MV411 xenotransplant
model.34

Results
A genome-wide CRISPR/Cas9 screen identifies
GLS as a synthetic lethal gene in TKI-treated
FLT3ITD cells
In order to identify genes and pathways that would sensitize
FLT3ITD AML to FLT3-TKI treatment in an unbiased manner,
we performed a genome-wide CRISPR/Cas9 synthetic lethality
screen in the FLT3ITD cell line MOLM13 during treatment with
the highly potent and specific FLT3ITD inhibitor AC220 (qui-
zartinib), which is currently being assessed in phase 3 clinical
trials34 or vehicle control (Figure 1A). A total of 304 genes
dropped out following AC220 treatment (defined as genes
showing a drop out of #0.5 log2 fold change in at least 80% of
gRNA at false discovery rate , 0.01) (supplemental Table 1).
KEGG gene set enrichment analysis, using Enrichr software,35,36

demonstrated significant enrichment for genes involved
in several pathways, including some obviously relevant to
AML biology (highlighted in Figure 1B). Among these, meta-
bolic pathways, including mostly genes involved in oxidative
phosphorylation and the tricarboxylic acid (TCA) cycle, were
significantly enriched (Figure 1B). Among the top metabolic
genes depleted following AC220 treatment, glutaminase
(GLS) demonstrated the highest number of significantly de-
pleted gRNA (all 5 guides out of 5 targeting the gene), in-
dicating a strong synthetic lethal interaction with AC220
(Figure 1C-D). GLS is the first enzyme in glutamine catabolism,
a metabolic pathway with well-established anaplerotic and
biosynthetic roles in cancer cells37 that also regulates the
availability of substrates for both the TCA cycle and oxidative
phosphorylation, 2 of the most affected pathways in our
screen. Importantly, a potent and selective GLS inhibitor,
CB839, is currently being investigated in clinical trials.38 Given
the strong synthetic lethal interaction in the screen, its cen-
tral role in regulating metabolic pathways shown to be affected
in our screen, and the availability of a clinical grade inhibitor, we
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decided to further investigate the role of GLS as a clinically relevant
synthetic lethal pair in AC220-treated FLT3ITD cells.

In single targeting experiments, GLS was validated as syntheti-
cally lethal with AC220 in human and murine FLT3ITD mutant, but
not in wild-type FLT3 (FLT3wt) cells (Figure 1E-G; supplemental
Figure 1A-C). Moreover, the genetic ablation ofGLSwas nontoxic
in untreated FLT3ITD cells (supplemental Figure 1D-F). We then
confirmed that the silencing of GLS by shRNA and its chemical
inhibition, using the specific clinical grade inhibitor CB839 at
concentrations shown to be inhibiting GLS enzymatic activity in a
specific fashion,38 produced similar effects on cell proliferation
when combined with AC220 in FLT3ITD-mutant cells, and the
combination treatment induced higher levels of apoptosis than
AC220 treatment alone in FLT3ITD, but not FLT3wt cells (Figure 1H-K;
supplemental Figure 1G-K). In line with these findings, gluta-
mine starvation sensitized FLT3ITD cells to AC220 while having
negligible effects in untreated cells (Figure 1L-M). Taken to-
gether, these data demonstrate that glutamine metabolism
represents a metabolic dependency in FLT3ITD cells that is only
unmasked by FLT3-TKI, making genetic and chemical inhi-
bition of GLS a feasible strategy to sensitize these cells to
AC220.

FLT3 TK inhibition markedly reduces glycolysis
without affecting glutamine uptake in FLT3ITD cells
Previous studies have demonstrated that cells carrying FLT3ITD

display a highly glycolytic phenotype and enhanced central
carbon metabolism.21 Indeed, gene set enrichment analysis39,40

of published gene expression datasets of untreated AML pa-
tients at diagnosis,1,41,42 demonstrate that signatures involving
glucose metabolism, TCA cycle, and electron transport chain
(ETC) are consistently upregulated in FLT3ITD compared with
FLT3wt samples across all datasets analyzed (supplemental
Figure 2A-D). Furthermore, murine bone marrow cells carrying
FLT3ITD demonstrate both increased glycolytic activity/capacity
and oxygen consumption compared with their FLT3wt coun-
terpart (supplemental Figure 2E-F). Considering that glucose
and glutamine are the main fuels for central carbon metabolism
in cultured cells,37,43 we investigated the effects of FLT3-TKI on
the utilization of these nutrients and on central carbon me-
tabolism. Dynamic measurement of the concentration of glu-
cose and glutamine in FLT3ITD cell-conditioned medium
confirmed that while glucose uptake was almost completely
blocked during treatment with AC220, glutamine uptake was
only modestly reduced, and by 48 hours, it was not signifi-
cantly different between treated and untreated cells (Figure
2A-D). LC-MS analysis using U-13C6-glucose confirmed a marked
reduction in glucose labeling of glycolytic intermediates/

products upon FLT3 TK inhibition in FLT3ITD mutant cells
(Figure 2E; supplemental Table 2). The effects of AC220 on
glycolysis were further confirmed by time-resolved metabolic
profiling (Figure 2F-G). As might be expected based on the
profound antiproliferative effects of AC220 in the same cells
(supplemental Figure 3A-B), a reduction in total levels of most
TCA cycle intermediates was also observed, but this was less
pronounced and the presence of 13C2 citrate and 13C3 as-
partate isotopologues (products, of the activity of the ana-
plerotic enzymes pyruvate dehydrogenase and pyruvate
carboxylase, respectively) suggests that anaplerotic oxida-
tive metabolism is still active in these cells (Figure 2H-I;
supplemental Table 2). Moreover, the preservation of the un-
labeled (13C0) and partially labeled (13C2) fractions of TCA cycle
intermediates also suggests that alternative carbon sources, such
as glutamine, were used by the cells to support the production of
TCA cycle metabolites following AC220 treatment (Figure 2H;
supplemental Table 2). Gene expression studies, performed prior
to the induction of significant levels of apoptosis by AC220,
confirmed the more pronounced effects of FLT3 inhibition on
glycolytic enzymes compared with TCA cycle and anaplerotic
genes, including glutaminolytic enzymes, GLS, and glutamate
dehydrogenase 1 (GLUD1) (Figure 2J-M; supplemental
Figure 3C-D; supplemental Table 3). Overall, these data
highlight that FLT3 inhibition significantly impairs the utiliza-
tion of glucose as a carbon source and particularly glycolysis in
FLT3ITD cells, whereas glutamine utilization and anaplerotic
oxidative metabolism via the TCA cycle were not equally
affected.

Glutamine supports the TCA cycle and glutathione
production following FLT3 inhibition
In order to understand the fate of glutamine metabolism in
FLT3ITD cells following AC220 treatment, we performed LC-MS
analysis upon incubation with stable isotope labeled glutamine
(U-13C5,15N2-glutamine). Intracellular levels of labeled glutamine
were increased in treated cells, confirming that glutamine uptake
was not impaired in these cells but, as expected, given the
antiproliferative effects of AC220, incorporation of labeled
glutamine in TCA cycle intermediates was reduced and overall
the level of most TCA cycle intermediates was decreased
compared with vehicle treated cells. However, between 20% to
40% of the total pool of TCA cycle intermediates was still labeled
from glutamine oxidative metabolism in AC220-treated cells
compared with 30% to 60% in vehicle-treated cells, suggesting
that despite a significant reduction in overall TCA cycle activity,
glutamine is still a major anaplerotic substrate in FLT3-
TKI–treated cells (Figure 3A-B; supplemental Table 2). Of note,
AC220-treated cells were still able to produce aspartate (Figure 3A),

Figure 6 (continued) their combination measured using a Seahorse analyzer. Real-time basal and maximal respiration are shown and in the inset a bar charts for the basal
respiration in the 4 different conditions is shown (mean6 SEM, n5 4; **P5 .0034 between AC220 and AC2201CB839; ANOVAwith Tukey’s multiple comparisons). (C) Relative
viability in primary FLT3ITD mutated AML samples treated with vehicle control, AC220 2.5 nM, CB839 100 nM, or their combination. Far left panel shows a summary plot for all
5 patients (mean6 SEM, n5 5; **P5 .0176 between AC220 and AC2201 CB839; ANOVA with Tukey’s multiple comparisons). The other panels show data for each individual
patient (PT) with VAF (variant allele frequency) for FLT3ITD. Note in PT5, AC220 was used at 5 nM given the low variant allele frequency for FLT3ITD. (D) Survival curve of mice
transplanted respectively with MV411 transduced with control scramble shRNA (n 5 9) and GLS shRNA (n 5 8) after treatment with AC220 (P 5 .0030 by log-rank test). (E-F)
Percentage of RFP-positive cells, measured by flow cytometry, within 45 positive human cells from the bone marrow (E) and spleen (F) of mice transplanted respectively with
MV411 transduced with control scramble shRNA (n 5 9) and GLS shRNA (n 5 8) after treatment with AC220 (box and whiskers showing minimum to maximum range for bone
marrow [*P5 .0201] and spleen [**** P, .0001]; unpaired Student t test). (G) Schematic model showing the action mechanism of combinedGLS and FLT3 TK inhibition. FLT3ITD

mutant cells use both glucose and glutamine to support their metabolism (left). FLT3-TKI treatment (AC220) blocks glucose uptake and mostly glycolysis, rendering the cells
dependent on glutaminemetabolism (middle).GLS gene silencing, chemical inhibition (CB839), or glutamine starvation enhances the efficacy of FLT3-TKI by blocking glutamine
metabolism and its ability to support both TCA cycle/mitochondrial function and GSH synthesis/redox metabolism (right).
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a readout of ETC activity,44,45 indicating that their respiratory
function was not compromised by FLT3-TKI treatment (total levels
of aspartate were actually increased, possibly reflecting lack of
utilization due to FLT3-TKI antiproliferative effects). Consistent
with this hypothesis, AC220-treated cells increased their mi-
tochondrial membrane potential and showed a trend toward
increased mitochondrial mass (Figure 3C-D; supplemental
Figure 4A). We did not observe any significant contribution
from glutamine reductive metabolism in FLT3ITD mutant cells,
and this did not change following AC220 treatment (supple-
mental Figure 4B).

In addition to supporting TCA cycle activity, glutamine, via
glutamate, is also a precursor of glutathione, the major cellular
antioxidant.46 Of note, the reduced/oxidized glutathione ratio
(GSH/GSSG) was generally preserved in AC220-treated cells
(Figure 3E), and glutathione metabolism genes, including the
master regulator of antioxidant response NFE2L2, were not
affected by AC220 treatment in FLT3ITD mutant cells (supple-
mental Figure 4C-D; supplemental Table 3). As our labeling
experiments showed that glutamine largely contributes to
glutamate and GSH generation (Figure 3A,F), we hypothesized
that glutamine metabolism might play a role in maintaining
redox homeostasis in AC220-treated cells. Consistent with this
hypothesis, glutamine starvation markedly reduced GSH
levels in AC220-treated cells, and these effects correlated
with a significant increase in intracellular reactive oxygen species
(ROS) levels (Figure 3G-H; supplemental Figure 4E). Overall,
these data suggest a role for glutamine metabolism in sup-
porting both mitochondrial function and redox homeostasis in
FLT3ITD cells under the cellular stress of TK inhibition.

Effects of combined FLT3-TKI and GLS inhibitor
treatment can be rescued by the glutamine
downstream product a-ketoglutarate (aKG)
In order to clarify the relative importance of the metabolic
pathways supported by glutamine in the survival of FLT3ITD cells
upon TKI treatment, we specifically targeted both glutathione
metabolism and respiratory function using respectively buthio-
nine sulfoximine, an inhibitor of GSH synthesis,47 or phenformin,
an ETC (complex I) inhibitor44 in addition to AC220. However,
neither of the 2 combinations was able to fully phenocopy the
effects of glutamine starvation or GLS inhibition (supple-
mental Figure 5A-B). We also failed to completely rescue the
effects of glutamine starvation or GLS inhibition using the
antioxidant N-acetylcysteine or anaplerotic substrates such
as pyruvate or aspartate (supplemental Figure 5C-H). These
data support a model whereby both branches of glutamine
metabolism, supporting TCA cycle/mitochondrial function
and GSH synthesis, are important for continued cell sur-
vival, and blocking only one of these branches is insufficient
to recapitulate the effects of glutamine starvation or GLS
inhibition.

To confirm this hypothesis, we used a cell-permeable form of
aKG, a downstream metabolic product of glutamine metabo-
lism, to rescue the effects of combined AC220 and CB839
treatment in FLT3ITD cells. Among other functions,48 aKG sup-
ports both the TCA cycle and glutamate production and can
therefore rescue both branches of glutamine metabolism.
Moreover, aKG is known to regulate redox homeostasis in

cancer cells.49 Treatment of FLT3ITD cells with combined AC220
and CB839 resulted in reduced oxygen consumption, during
both basal and maximal respiration, and increased intracellular
ROS production compared with single agent alone. However,
these effects were rescued by concomitant treatment with aKG,
in keeping with its anaplerotic and antioxidant properties
(Figure 4A-D). The salvage of the metabolic phenotype corre-
lated with a complete rescue of the additional cell death related
to the combination treatment by aKG (Figure 4E-F). Overall,
these data further confirm the importance of glutamine me-
tabolism in supporting both TCA cycle and redox metabolism in
FLT3ITD cells treated with AC220.

Effects of combined GLS and TKI extend to other
TK activating mutations, primary AML samples,
and in vivo models
To determine whether a similar rewiring of metabolism occurs in
leukemia driven by other activated TK that are amenable to
targeted inhibition, we analyzed the metabolic consequences of
inhibiting the chimeric BCR-ABL tyrosine kinase, which is central
to the pathogenesis of chronic myeloid leukemia and Phila-
delphia chromosome–positive acute lymphoblastic leukemia,50

using its specific inhibitor imatinib.51 Indeed, in a BCR-ABL–
positive cell line, imatinib treatment resulted in a reduction of
glycolytic activity that also correlated with a decrease in gene
expression levels of glycolytic enzymes (Figure 5A-C). Con-
versely, the effects on TCA cycle and glutathione metabolism
genes were much less pronounced, and although a significant
reduction in both GLS and GLUD1 gene expression levels were
noted after imatinib treatment, this was,50% and much smaller
than those observed on glycolytic genes (supplemental
Figure 6A-C; supplemental Table 3). As observed in FLT3ITD

cells, combining imatinib with CB839 led to increased apoptosis
of BCR-ABL–positive cells, which correlated with enhanced in-
tracellular ROS production and reduced oxygen consumption.
Moreover, as with FLT3ITD AML, these effects could also be fully
rescued by aKG (Figure 5D-F).

Finally, we sought to confirm our findings in more physiological
and clinically relevant models. Using primary AML samples from
patients carrying a FLT3ITD mutation, we found that AC220
treatment led to a reduction in glycolytic capacity, and com-
bined treatment with AC220 and CB839 led to a reduction in
basal oxygen consumption (Figure 6A-B). These effects corre-
lated with a further reduction in the viability of FLT3ITD primary
samples following combined treatment that appeared pro-
portional to the levels of FLT3 mutation, as measured by variant
allele frequency, in each sample, whereas similar effects were
not observed in FLT3wt samples (Figure 6C; supplemental
Figure 7A-B). The combined treatment also led to reduced
colony-forming cell output in bone marrow murine cells and
AML primary samples carrying FLT3ITD mutations, whereas
similar effects were not observed in normal CD341 samples or
FLT3wt AML patient samples, suggesting that these effects are
specific to FLT3ITD cells (supplemental Figure 7C-F). Finally, we
tested the effects of combined GLS and FLT3 TK inhibition in
vivo using FLT3ITD MV411 cells stably expressing a doxycycline
inducible GLS or scrambled shRNA alongside a red fluorescent
protein (RFP) reporter to allow tracking of shRNA expression.
We transplanted shRNA GLS or scrambled cells into recipient
immunocompromised mice and allowed leukemia to develop,
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at which point we fed mice with a doxycycline-containing diet
and also initiated AC220 treatment by oral gavage. MV411-
generated leukemias are extremely aggressive but also highly
sensitive to FLT3 inhibitor treatment34 (data not shown). Using a
low dose of AC220 in combination with a doxycycline-containing
diet, all mice succumbed to disease while on treatment. However,
despite the very aggressive nature of this leukemia, mice trans-
planted with cells carrying shRNA targeting GLS showed a modest
but statistically significant increase in survival compared with mice
transplanted with control cells (Figure 6D). We also observed that
themice transplantedwith shRNA targetingGLS had lower levels of
disease burden in bone marrow and spleen (as measured by
percentage of RFP-positive cells within human CD45 cells) and a
trend toward smaller spleen size (Figure 6E-F; supplemental
Figure 7G). Finally, GLS depletion was measured in vivo from hu-
man cells isolated from mouse organs. Interestingly, in the shRNA
GLS transduced cells, AC220 treatment resulted in a 50% reduction
inGLS knockdown efficiency, suggesting preferential killing of cells
with lower levels of GLS expression (supplemental Figure 7H).

Discussion
In this study, we used orthogonal unbiased approaches, in-
cluding CRISPR/Cas9 synthetic lethality screen, metabolomics,
and gene expression analysis, to reveal that FLT3ITD cells de-
velop a metabolic dependency on glutamine metabolism after
FLT3 TK inhibition. Targeted inhibition of FLT3 TK activity ap-
pears to suppress the enhanced central carbon metabolism
typical of FLT3ITD cells by mostly hindering glucose uptake and
utilization thus predominantly reversing the glycolytic pheno-
type. However, TCA cycle activity and respiratory function,
although reduced, are less affected and are supported by
continuous uptake of glutamine, the other main fuel for central
carbon metabolism. Combined suppression of FLT3 TK activity
and glutamine metabolism using both GLS chemical inhibition
and gene silencing leads to an increased cell death in FLT3ITD

cells, including models previously shown to be already highly
sensitive to FLT3 TK inhibition. We also extend these findings to
a model of leukemia carrying BCR-ABL TK activating mutations,
primary AML samples, and in vivo models. We demonstrate that
glutamine metabolism supports both the TCA cycle and redox
metabolism upon FLT3 TK inhibition, and, through rescue ex-
periments, we further validate the role of all these branches of
glutamine metabolism in cellular survival (Figure 6G). Our data
expand the findings of a recent report on the activity of com-
bined GLS and FLT3 TK inhibition in FLT3ITD AML by providing in
depth mechanistic explanation for these findings and extending
their validity to primary AML samples and other TK activating
mutated leukemias.52 Moreover, they also explain mechanisti-
cally previous published observations suggesting that combined
targeting of FLT3 TK activity and redoxmetabolism or ETCmight
enhance toxicity in FLT3-mutated AML.53,54 However, it is en-
tirely plausible that another consequence of glutamine metab-
olism might also underlie, at least in part, the effects of targeting
it. For instance, branched chain amino acids, produced by the
transamination of glutamine derived glutamate, have recently
been shown to support the maintenance and progression of
myeloid leukemias.27

GLS has recently emerged as a therapeutic target in both
solid and hematological malignancies, and potent GLS in-
hibitors, including the one used in this study, have now

entered clinical trials in several malignancies (NCT02071862
and NCT02071927). GLS is the most abundant isoform pre-
sent in hematopoietic cells and has already been suggested
as a potential therapeutic target in AML.55 However, our data
show that specifically in FLT3ITD mutated AML, GLS inhibition,
on its own, produces only mild antiproliferative effects and
only becomes a metabolic vulnerability following FLT3 TK
inhibition, with similar effects not observed in normal cells or
leukemic cells that lack TK activating mutations. Our results
therefore suggest a therapeutic window for this combination
therapy and confirm its specificity andpotential utility in several TK
mutated leukemias.

Of note, the best effects in combination with FLT3 TK inhibition
were observed when FLT3ITD cells were starved of glutamine rather
than following GLS inhibition. This suggests that FLT3ITD mutated
cells might also rely on ancillary pathways of glutamine metabolism
releasing its g-nitrogen and producing glutamate. Moreover, glu-
tamine g-nitrogen is a central substrate for the biosynthesis of
nucleotides, NAD, amino acids, and glucosamine-6-phosphate,56

and given that this function is not targeted by GLS inhibition, it is
also plausible that these glutamine-dependent metabolic pathways
support cell survival after AC220 and combination treatment.

The ability of FLT3-TKI to predominantly revert the glycolytic
phenotype, while having a less pronounced effect on TCA
cycle activity and oxidative metabolism, is another important
observation stemming from this work. With regards to this it is
noteworthy that, consistent with our findings, 2 recent reports
have suggested that both AML and chronic myeloid leukemia
therapy–resistant cells display increased mitochondrial mass
and a high oxidative phosphorylation status that is thera-
peutically actionable.57,58 However, the exact mechanisms
whereby some metabolic phenotypes are particularly de-
pendent on FLT3 TK activity and how the described metabolic
adaptations are established remain unknown, and these
fundamental questions merit further studies. Speculatively
the ability of FLT3 TK to control glycolysis could be explained
by its activation of AKT,17 which can modulate transcription
factors, such as FOXO, known to regulate glycolysis,59 or
directly control the activity of several glycolytic enzymes.21,60,61

However an improved understanding of themolecular mechanisms
leading to this metabolic phenotype and whether other ana-
plerotic substrates, such as fatty acids, also contribute to oxidative
phosphorylation in therapy resistant cells might help to clarify the
basis of resistance and help target it more effectively.

In summary, our results highlight the importance of FLT3 mu-
tations and downstream signaling in the control of leukemia cell
metabolism, extend our understanding of the role of metabolic
adaptations in the resistance to treatment with FLT3 and other
TK inhibitors, and provide an example of a complementary
unbiased approach to study the role of metabolism in leukemia
and as a tool for the design of novel and specific therapeutic
strategies targeting cell metabolism in AML.
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