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KEY PO INT S

l hsa-mir183/EGR1/
E2F1 is a novel and
critical factor for CML
SPC survival.

l E2F1 plays a pivotal
role in regulating CML
SPC proliferation
status.

Chronic myeloid leukemia (CML) stem/progenitor cells (SPCs) express a transcriptional
program characteristic of proliferation, yet can achieve and maintain quiescence. Un-
derstanding the mechanisms by which leukemic SPCs maintain quiescence will help to
clarify how they persist during long-term targeted treatment. We have identified a novel
BCR-ABL1 protein kinase–dependent pathway mediated by the upregulation of hsa-
mir183, the downregulation of its direct target early growth response 1 (EGR1), and, as a
consequence, upregulation of E2F1. We show here that inhibition of hsa-mir183 reduced
proliferation and impaired colony formation of CML SPCs. Downstream of this, inhibition of
E2F1 also reduced proliferation of CML SPCs, leading to p53-mediated apoptosis. In
addition, we demonstrate that E2F1 plays a pivotal role in regulating CML SPCproliferation

status. Thus, for the first time, we highlight the mechanism of hsa-mir183/EGR1–mediated E2F1 regulation and
demonstrate this axis as a novel, critical factor for CML SPC survival, offering new insights into leukemic stem cell
eradication. (Blood. 2018;131(14):1532-1544)

Introduction
Chronic myeloid leukemia (CML) is a myeloproliferative disease of
hemopoietic stem cell (HSC) origin resulting from the chromo-
somal translocation t(9;22)(q34;q11) that gives rise to the fusion
gene, BCR-ABL1. ABL tyrosine kinase inhibitors (TKIs) lead to
long-term remission in the majority of CML patients, but;50% of
cases relapse when treatment is discontinued, as TKIs are unable
to fully eradicate quiescent stem/progenitor cells (SPCs),1-9 de-
spite being able to inhibit BCR-ABL signaling in these cells.6,9,10

Investigations have demonstrated that TKI-resistant SPCs in pa-
tients show reduced levels of BCR-ABL1 expression as compared
with baseline, and exhibit a more primitive, quiescent transcrip-
tional signature that becomes predominant over time in response
to TKI therapy.11-14 It is not currently knownwhether this quiescent
signature is driven by CML SPC intrinsic signaling by the micro-
environment, or by a combination of both.

One possible candidate for cell-intrinsic regulation of the qui-
escent CML phenotype is the transcription factor E2F1, which
regulates cell proliferation by activating genes important for
G1–S-phase progression.15 In mice, deletion of E2f1 resulted in
increased T-cell numbers,16,17 whereas combined loss of E2f1/2/3
affected mature hemopoietic cell proliferation18,19 and survival

of the myeloid lineage,16,20 yet no effect was demonstrated on
HSC function.21,22 In CML, E2F3 was shown to be important for
disease initiation23 and silencing of E2F1 in K562 cells or CD341

cells led to activation of PP2A and BCR-ABL1 suppression.24 In
mouse fibroblasts, triple inactivation of E2f1/2/3 led to p53
activation and cell-cycle arrest,25 whereas deletion of p53 re-
stored E2F1 transcriptional activity.26 In recent work, we have
demonstrated that p53 acts as a key signaling hub to maintain
survival of CML SPCs.27

As BCR-ABL had previously been shown to modulate microRNA
(miRNA) levels,28 to gain insight into how CML SPCs maintain
quiescence, we investigated novel and publicly deposited
messenger RNA (mRNA)/microRNA transcriptomic data sets
derived from primitive human CML SPCs.27,29-34 Here, we show
that in CML SPCs, the cancer-relatedmiRNA hsa-mir183 is highly
expressed in a BCR-ABL1–dependent manner and hypothesize
that this miRNA deregulates specific SPC-intrinsic mechanisms.
Interestingly, it has been reported that hsa-mir183 targets early
growth response 1 (EGR1), a member of the immediate early
response transcription factor family that regulates proliferation
andmobilization of healthy SPCs. The genetic network regulated
by EGR1 responsible for stem cell division and migration has
not been entirely elucidated. Interestingly, EGR1 loss has been
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shown to promote development of BCR-ABL1–mediated
leukemia, whereas constitutive Egr1 is able to mitigate leukemia
conferred by deregulated E2F1 leukemic cells.35-37 Furthermore,
it has recently been shown that genetic deletion of Egr1 ac-
celerates BCR-ABL1–driven CML.38 Here, we identify a novel
CML-specific pathway in which BCR-ABL1 protein kinase reg-
ulates hsa-mir183–mediated inhibition of EGR1 leading to
upregulation of E2F1. In addition, we investigate the role that
hsa-mir183/EGR1–mediated E2F1 expression plays in priming
proliferation in CML SPCs.

Methods
Cell isolation and culture
Fresh leukapheresis or peripheral blood (PB) samples were
obtained from patients (informed consent) with chronic-phase
(CP) CML at diagnosis or non-CML donors (defined as healthy).
The in vitro studies with patient material were approved by
the West of Scotland Research Ethics Committee 4, National
Health Service (NHS) Greater Glasgow and Clyde (15-WS-0077).
Samples were enriched for CD341, Pyronin Y2 (PY) Hoechst2

(Ho), CD341381, and CD341382 populations as described.4

Dual-fluorescence in situ hybridization (D-FISH) was performed
as previously described.39 Where indicated, cells were treated
with imatinib, dasatinib, nilotinib (Selleckchem), or colcemid.
Colony-forming assays (CFCs) in methylcellulose medium
(H4434, M3434; StemCell Technologies) were performed as
described.40

RNA extraction and Q-PCR
RNA extraction was performed using the RNeasy Mini kit
(Qiagen); complementary DNA (cDNA) was synthesized using
the High-Capacity cDNA RT kit (Applied Biosystems), direct
1-step quantitative polymerase chain reaction (Q-PCR; Invitrogen),
the Cells-to-CT kit for miRNA (Ambion), or the Power SYBR Green
Cells-to-Ct kit (Ambion/Lifetech). Q-PCR was performed on the
ABI7900 (Applied Biosystems) or Fluidigm platforms (Fluidigm
Corporation).

Microarray data analysis
The CML vs healthy microarray data were obtained from
ArrayExpress (E-MTAB-2508; Affymetrix Human Genome U133A)
and describe gene expression in quiescent CML/healthy CD341

PY2Ho2 cells. Differential expression was calculated using rank
products (RPs; false discovery rate [FDR] calculated using 1000
permutations).41

For the TKI treatment data, cells were treated for 8 hours (CD341

382) or 7 days (CD341) with 5 mM imatinib, 150 nM dasatinib,
or 5 mM nilotinib (no growth factors). cDNA from viable cells
(7 days only) was hybridized to Affymetrix Human Gene 1.0 ST
arrays (E-MTAB-2594) and normalized using robust multiarray
average.42 Differentially expressed genes were identified using a
paired-sample Limma analysis43 with pooled TKI treatments and
a significance threshold of FDR # 0.05 (Benjamini-Hochberg
multiple testing correction was applied).44

For miRNA data, cDNA was hybridized to a miRNA chip based
on Sanger miRBase Release 14 (LC Sciences) and normalized
using a locally weighted regression (LOWESS) method on the
background-subtracted data. Raw data are publicly available via

ArrayExpress (accession E-MTAB-3220) and normalized data are
provided in supplemental Table 1 (available on the Blood Web
site). The resulting miRNA data were analyzed using Limma.43

Enrichment analysis
A PANTHER enrichment test (release 20141219) was used to
identify enrichment of Gene Ontology (GO) biological process
terms (release 20150111) in the list of genes identified as dif-
ferentially expressed in CML vs healthy cells using RPs (supple-
mental Table 2). The Bonferroni correction was applied to the
P values to account for multiple testing. The Gene Set Enrichment
Analysis (GSEA) was carried out using GSEA (2-2.2.2) as obtained
from the Broad Institute (gsea2-2.2.2.jar; http://software.broad-
institute.org/gsea/index.jsp)45; q values were calculated using
10 000 permutations of the phenotype label. The hypergeometric
distribution was used to calculate enrichment statistics.

Comparison of distributions
One-sided Kolmogorov-Smirnov tests (using ks.test in the base
R stats package) were carried out to identify positive shifts
in distribution for a gene set, as compared with background.
Ten thousand random subsamplings of the transcriptomic data
were used to generate the expected null distribution for the
Kolmogorov-Smirnov statistic for calculation of FDRs.

Western blotting
Western blotting was performed as described elsewhere.46 An-
tibodies used were c-ABL1, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), and tubulin (Cell Signaling); E2F1 (Upstate);
p53-Do-1 (Santa Cruz Biotechnology).

Fluorescence-activated cell sorting, flow
cytometry, and imaging analysis
Cells were stained with 7-aminoactinomycin D (7-AAD; Becton
Dickinson), Zombie Aqua (Biolegend), the CellTrace Violet Cell
Proliferation kit (Invitrogen), and 49,6-diamidino-2-phenylindole
(DAPI; Sigma-Aldrich) according to the manufacturer’s in-
structions. For intracellular analysis, cells were fixed and per-
meabilized using Fix and Perm (Merck Chemicals Ltd) or the
Fixation/Permeabilization Solution kit (Becton Dickinson). Primary
antibodies were phospho-p53-Ser15, p27 (R&D Systems), p21
(Santa Cruz Biotechnology), phospho-AKT-T308, phospho-STAT5-
Y694, BCL2, Ki-67, Annexin V, and CD34 and CD38 (Becton
Dickinson). Lin2Sca-11c-Kit1 (LSK) cells were isolated as previously
described.27

Retinoblastoma (Rb) phosphorylation was measured with the
Cellomic Phospho-Rb activation kit (ThermoScientific) according
to the manufacturer’s instructions and analyzed by the Operetta
High Content Imaging System (Operetta; PerkinElmer UK).

Gene knockdown
E2F1 (short hairpin [sh]-E2F1, sh-E2F1-1, and sh-E2F1-2) and
scrambled shRNAswere subcloned into the pLKO.1GFP vector.
Lentiviral infection was carried out as described elsewhere.9 A
customMirzip lentiviral system (PGKpromoter) andmirzip scrambled
vector (Cambridge Bioscience Ltd) were used. E2F1-small inter-
fering RNA (siRNA), -siRNA1, -siRNA2; p53-siRNA, -siRNA1; EGR1-
siRNA; scrambled siRNA; scrambled siRNA1 (100 nM) were
obtained from Ambion.
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Luciferase assay
EGR1 cDNA was amplified from human mononuclear cells.
The 39untranslated region (UTR) sequence containing the hsa-
mir183–binding site or a mutated binding site were cloned into
thepmirGLOvector (Dual Glo LuciferaseAssay System; Promega).
KCL22 cells were cotransfected with pmirGLO vector containing a
wild-type (WT) or mutated (MUT) EGR1 sequence, and 50 mM
hsa-mir183 mimic or scrambled control (Integrated DNA Tech-
nologies) by electroporation. Luminescence was measured after
48 hours using a Glomax 20/20 luminometer (Promega).

Mice and BM transplantation
E2f12/2 mice were obtained from The Jackson Laboratory. Bone
marrow (BM) transplants were performed by tail-vein injection
into lethally irradiated (2 doses of 4.25 Gy) SJL C57/B6 CD45.1
recipients. One thousand LSK cells were transplanted from
E2f11/1 and E2f12/2 donors (CD45.21) alongside 2 3 105

unfractionated BM support cells from SJL CD45.1 mice and kept
on Baytril antibiotic for 2 weeks. Peripheral blood was analyzed
at 4, 8, 12, and 16 weeks after transplantation, and BM was
analyzed at 16 weeks posttransplant. Populations analyzed were
LSK, long-term hemopoietic stem cells, short-term hemopoietic
stem cells, multipotent progenitor 1, multipotent progenitor 2,
granulocyte/macrophage progenitors, megakaryocyte/erythrocyte
progenitors, common myeloid progenitors, myeloid cells, and
B cells.

For secondary transplantations, 2000 CD45.21 LSK cells from
primary recipients were transplanted with 2 3 105 CD45.11

support cells into CD45.11 irradiated recipient mice.

Monoclonal antibodies against CD45.1 and CD45.2 were used.
For C-kit1 (CD1171) cell isolation, BM cells were passed through
MACS separation columns (Miltenyi Biotec) using the manu-
facturer’s instructions. C-kit–enriched cells were isolated using a
FACSAria cell sorter (Becton Dickinson).

Statistics
Statistical analyses were performed using the Student t test.
A threshold of P , .05 was defined as statistically significant (*).
Levels of P , .01 (**), and P , .001 (***) were taken to be highly
statistically significant.

Study approval
All animal experiments were carried out according to UK Home
Office regulations.

Results
CML SPCs are predominantly quiescent despite
expressing active BCR-ABL1
BCR-ABL1 confers a proliferative advantage to primitive CML
cells.32 To investigate cell-cycle status, SPCs (CD341382) and
more mature cells (CD341381) were isolated from primary
healthy and CML CP samples (Figure 1Ai). As previously
reported, CML SPCs expressed high levels of BCR-ABL1
(Figure 1Aii) when compared with more mature cells prior to
treatment.40,47,48 Despite this, CML SPCs showed no significant
difference in the percentage of quiescent cells (Figure 1B;
replicates shown in supplemental Figure 1A). Similarly, mRNA
levels of the cell-cycle inhibitors p21, p27, p57, and protein

levels of p21 and p27 did not differ between healthy and CML
SPCs (supplemental Figure 1B-C). The levels of phospho-AKT,
phospho-STAT5, and BCL2, proteins downstream of BCR-ABL1,
were higher in CML than healthy SPCs (Figure 1C), showing that,
despite being quiescent at the functional level, BCR-ABL1 kinase
activity and transcriptional machinery are active, suggesting that
CML SPCs are “primed to proliferate,” as previously reported.49

Consistent with the published literature,6,9,10 BCR-ABL1 activity
is affected by treatment with TKIs in SPCs, as evidenced by a
decrease in the levels of its downstream targets phospho-STAT5
and phospho-AKT (supplemental Figure 1D). Although CML
CD341382 SPCs showed lower levels of BCL2 and less phos-
phorylation of AKT and STAT5 compared with mature CML
CD341381 cells, these levels were still higher than in the equiv-
alent population of healthy cells (Figure 1C).

BCR-ABL1 regulates hsa-mir183 and EGR1 in
CML SPCs
BCR-ABL1 modulates the expression of miRNAs,28 therefore, to
elaborate networks that may regulate SPCs quiescence, we
performed global miRNA expression profiling in healthy and
CML SPCs. Several miRNAs were differentially expressed, in-
cluding hsa-mir183, which was upregulated in CML (Figure 2A).
Validation by OncoMir array confirmed that hsa-mir183 was
significantly upregulated by 38-fold in CML vs healthy SPCs
(Figure 2B). The upregulation of hsa-mir183 was BCR-ABL1 ki-
nase dependent as its expression decreased upon treatment
with TKIs (Figure 2C). Published evidence,35,36 together with
computational target prediction by the miRWalk database,50

indicated that hsa-mir183 targets and downregulates EGR1, which
plays a role in healthy SPC proliferation and development of
BCR-ABL1–mediated leukemia. As predicted, EGR1mRNA levels
were significantly lower in CML vs healthy SPCs (Figure 2Di).
This effect appeared to be BCR-ABL dependent as primary
CML CD341 cells demonstrated a significant increase in EGR1
expression following long-termexposure to TKI (P5 .01; Figure 2Dii).
To further confirm that the regulation of EGR1 was hsa-mir183
dependent, hsa-mir183 expression was knocked down in CML
SPCs using a green fluorescent protein (GFP)-lentiviral-based
anti-miRNA. GFP1 SPCs were analyzed for the level of the EGR1
transcripts, the expression of which was rescued by hsa-mir183
knockdown (Figure 2E). In addition, we found that SPCs with
hsa-mir183 knockdown proliferated less than control cells
(Figure 2F) and generated fewer colonies in CFC assays
(Figure 2G).

To prove direct binding between hsa-mir183 and EGR1 in CML
cells, we generated oligos complementary to the EGR1 39UTR
(WT) encompassing the binding site for hsa-mir183 (supple-
mental Figure 1F). As a control, a mutated version of the binding
site was designed by inserting a BamHI restriction site. Both
oligos were transfected into CML KCL22 cells, together with
either 50 nM hsa-mir183 mimic or a negative control. After
48 hours, cell lysates showed a significant decrease in luciferase
signal in the cells containing the WT EGR1 sequence and the
hsa-mir183 mimic; however, there was no effect in the cells
containing the EGR1MUT sequence (Figure 2H), confirming that
hsa-mir183 binds directly to the predicted sequence within
EGR1 to prevent its transcription. In summary, these data sup-
port a model where BCR-ABL1–induced hsa-mir183 leads to a
decrease of EGR1.
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E2F1-signaling pathway is deregulated in
CML SPCs
To investigate how this hsa-mir183/EGR1 axis relates to tran-
scriptional control of the cell cycle, specifically in relation to E2F1,
we have performed in silico and in vitro assays. Comparison of

previously published transcriptomic data from quiescent (G0)
healthy and CML cells, defined as CD341 PY2Ho2 (ArrayExpress
accession E-MTAB-2508)32 by principal component analysis
(PCA), demonstrates clear separation of CML and healthy sam-
ples using E2F1 target gene expression data (Figure 3Ai; targets
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extracted from theMetaCoreKB; supplemental Table 3). Overall,
these E2F1 targets exhibit a statistically significant positive shift
(ie, toward upregulation) with respect to differential expression
when comparing primary quiescent CML SPCs to quiescent
healthy SPCs32 (supplemental Figure 2Ai; D 5 0.18, P 5 2.06 3
10236, Kolmogorov-Smirnov test). Random resampling of these

data demonstrated that this difference is unlikely to occur by
chance (supplemental Figure 2Aii; FDR , 0.0001, 10 000 iter-
ations). This statistically significant positive shift for E2F1 targets
was also observed in a second, complementary data set of
primary CML and healthy quiescent cells (Gene Expression
Omnibus [GEO] accessionGSE24739)29 (supplemental Figure 2Bi;
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D 5 0.11, P 5 8.90 3 10213, Kolmogorov-Smirnov test); here,
again, a difference of the samemagnitudeor greater is very unlikely
to occur by chance (supplemental Figure 2Bii; FDR , 0.0001,
10 000 iterations).

Cell-cycle–related GO51 terms were significantly overrepresented
in the list of differentially expressed genes32,41 (supplemental
Table 2). E2F1 target genes identified as significantly differentially
upregulated in the first CML vs healthy G0 transcriptional data
set (ArrayExpress accession E-MTAB-2508) are summarized in
Figure 3Aii; these same genes were shown to be significantly
upregulated in the second CML/healthy G0 data set by GSEA45

(supplemental Figure 2C; NES 5 1.40, P 5 .05). Interestingly,
although E2F1, E2F2, and E2F3 share a high degree of functional
redundancy, E2F2 and E2F3 were not differentially expressed
between healthy and CML cells (supplemental Figure 2D). Taken
together, these in silico results suggest that E2F1 transcriptional
targets are upregulated in quiescent CML SPCs as compared with
quiescent healthy SPCs.

To validate these in silico findings, we next performed in vitro
functional experiments. Upregulation of E2F1 mRNA in CML
SPCs was confirmed by Q-PCR (Figure 4A). As expected, given
that Rb protein phosphorylation (ie, Rb inactivation) often
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coincides with E2F1 upregulation,52 phospho-Rb (inactive) was
high in CML SPCs (Figure 4B; raw data provided in supplemental
Table 4). The higher activity of E2F1 in CML SPCs, in terms
of cell-cycle regulation, was confirmed by expression of key
downstream genes and additional E2F1 targets (Figure 4C).
Similar to the bulk SPC data (Figure 4A-C), CML and healthy G0
SPCs (CD341382PY2Ho) showed upregulation of E2F1 and its
downstream genes (supplemental Figure 3A-C).

To determine whether hsa-mir183/EGR1 were involved in E2F1
regulation of the cell cycle, we again knocked down hsa-mir183
and observed a decrease in E2F1 and an increase in p21 mRNA
levels, suggesting that the upregulation of E2F1 was mediated by
hsa-mir183, presumably throughEGR1 (Figure3B). Toconfirm this,we
knocked down EGR1 using siRNA, which indeed caused an increase
in E2F1 and CDK1mRNA levels compared with control (Figure 3C).

These data therefore support a model whereby BCR-ABL1–
induced hsa-mir183 expression leads to a decrease of EGR1
expression, which in turn results in the upregulation of E2F1
activity in CML SPCs (Figure 3D).

E2F1 regulation is dependent on BCR-ABL1
kinase activity
To investigate whether E2F1 regulation in CML SPCs was BCR-
ABL1 kinase dependent as found for hsa-mir183 (Figure 2),
we compared transcriptional data for SPCs plus or minus TKIs
(8 hours) and CD341 cells plus or minus TKI (7 days) (Figure 4D).
BCR-ABL11 (confirmed by D-FISH) cells were treated, sorted
again for viable cells, and analyzed using Affymetrix Human
Gene 1.0 ST chips. Analysis revealed a limited effect on gene
expression at 8 hours (49 differentially expressed genes, FDR 5
0.05), but an extensive effect (n� 20 000, FDR5 0.05) at 7 days;
expression of E2F1 (Figure 4D) and most of its downstream
targets (supplemental Figure 4) was significantly decreased.
To determine whether the BCR-ABL1–driven regulation of E2F1
in the SPCs of patients was sensitive to TKI therapy in vivo,
we interrogated transcriptomic data from CML CD341 cells
harvested from 6 patients, before and at 7 days after imatinib
treatment (GEO accession GSE12211).30 We observed that
significantly more of the E2F1 targets were downregulated by
TKIs in vivo than expected by chance (29 of 54; P5 2.163 10224).
To confirm that these effects were the result of BCR-ABL1 kinase
inhibition rather than an enrichment for resistant leukemic
cells, CML SPCs were treated for 7 days with dasatinib, washed,
and cultured for a further 3 days without drug; levels of E2F1
and CDK1 were restored following washout (Figure 4E). Similar
behavior was seen in other representative E2F1 target genes
(supplemental Figure 5A). Taken together, these data suggest
that E2F1 regulation inCML SPCs is BCR-ABL1 kinase dependent.
Interestingly, E2F1 target genes were similarly deregulated
in primary CD341 CML vs healthy PB samples, for both TKI-
responders (TKI-Rs) and TKI-nonresponders (TKI-NRs) (GEO
accession GSE14671)33: random sampling demonstrated that
E2F1 targets were significantly more correlated across TKI-Rs
and TKI-NRs thanwewould expect by chance (r5 0.70; q, 0.001)

(supplemental Figure 5B). The same result was found for ag-
gressive and indolent CML samples (ArrayExpress accession
E-MIMR-17) (r 5 0.73; q , 0.001) (supplemental Figure 5C).34

Together, these analyses indicate that the E2F1-dependent
deregulation observed in our unselected CML samples is also
present in TKI-NRs and aggressive CML phenotypes, and that
targeting this deregulation may have wide clinical scope.

E2F1 is dispensable for healthy SPC survival
Before considering the hsa-mir-183/EGR1/E2F1 axis for thera-
peutic targeting in CML SPCs, we first wished to confirm that
targeting E2F1 would not be detrimental to healthy SPC homeo-
stasis using E2f12/2 mice.17 The reconstitution capacity of healthy
SPCs lacking E2f1 was tested by transplanting E2f12/2 and WT
CD45.21 LSK cells into lethally irradiated syngeneic CD45.11 re-
cipients. Cells of both genotypes contributed equally to long-term
hemopoiesis following primary and secondary transplantation
(Figure 5A). Full characterization of the BM of primary and secondary
transplanted mice showed minimal differences in the reconstitution
potential ofWTandE2f12/2LSK cells in terms of long- and short-term
stem cells, various progenitor populations, and mature myeloid and
B cells (supplemental Figure 6A-B). Finally, E2f12/2 (CD45.21) and
E2f1 WT (CD45.11) BM cells were transplanted in ratios of 9:1, 1:1,
and 1:9 into lethally irradiated syngeneic CD45.11 recipient mice to
test long-term reconstitution primary ability of mutant vs WT cells.
Analysis of PB at 4, 8, 12, and 16 weeks posttransplant showed
that E2f12/2 cells exhibited comparable reconstitution ability to
WT cells (Figure 5B). Together, these data suggest that loss of E2F1
has no detrimental effect on healthy SPC maintenance and function.

E2F1 is required for CML SPC survival in vitro
We next asked whether increased activity of E2F1 in CML SPCs
led to an increased dependency on E2F1 for survival. E2F1 was
knocked down in healthy and CML SPCs using a GFP-lentiviral
shRNA. The GFP1CD341382 cells showed a significant decrease in
E2F1 expression in both healthy and CML cells, and an increase in
p21 mRNA in CML (Figure 6A-B). In CFC assays, the number of
colonies derived from CML, but not healthy, SPCs was significantly
decreased, suggesting that E2F1 is required for CML SPC colony-
forming potential (Figure 6C). Furthermore, knockdown of E2F1
inhibited proliferation of CML SPCs to a similar extent as the col-
cemid control (Figure 6D).E2F1depletion also induced a significant
increase in cell death in CML, but not in healthy SPCs, as indicated
by an increased percentage of Annexin V1 cells (Figure 6E). These
data suggest that E2F1 is required for CML SPC survival and
proliferation in vitro. The efficacy of the knockdown system and the
subsequent effects in primary CML cells was corroborated using
different sets of shRNAs (supplemental Figure 7A-B).

p53 is known to mediate cell-cycle arrest and apoptosis in pri-
mary mouse fibroblasts with triple inactivation of E2f1/2/3.25

Given this and the increase in p21 mRNA levels we observed
following E2F1 knockdown, we investigated whether the cell-cycle
arrest and apoptosis upon depletion of E2F1 in CML SPCs was
mediated by p53 activation. CML SPCs were transfected with an
E2F1-specific siRNA or control sequence. Although the level of

Figure 4 (continued) SPCs after treatment with TKIs (values for imatinib, dasatinib, and nilotinib pooled together) for 7 days (treated columns indicated by “1”). (ii) E2F1
response to TKI treatment of 8 hours and 7 days. (E) E2F1 and CDK1mRNA levels from CML SPCs treated with dasatinib (DAS, 150 nM) or washed out and cultured for a further
3 days (DAS w/o).d, Outliers as calculated using the Tukey method.24 Each experiment had N5 3 biological replicates. *P, .05; **P, .01; ***P, .001. RMA, robust multiarray
average.
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E2F1 was decreased, the level of p53 protein was unchanged
(supplemental Figure 8Ai). However, an increase in serine 15 (Ser15)
phosphorylation on p53, a crucial site for the induction of cell-cycle
arrest,53 was observed in SPCs transduced with E2F1 siRNA com-
pared with control (supplemental Figure 8Aii), suggesting that a
decrease in E2F1 resulted in activation of p53. The efficacy of the
knockdown system in primary CD341 CML cells was confirmed
using different sets of siRNA (supplemental Figure 8B).

To determine whether the changes in apoptosis in E2F1
knockdown CML SPCs were the direct result of increased p53
activity, we performed knockdowns of E2F1 and p53, separately
and in combination, with the double knockdown resulting in
reduced E2F1 on a background of low p53 (expression of Puma
and CDK1 were measured as representative indicators of p53
and E2F1 activity, respectively) (supplemental Figure 8C).
p53 activity was higher upon E2F1 knockdown, whereas E2F1
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activity was higher upon p53 knockdown. In the combination,
no changes were seen in either the p53 or E2F1 downstream
targets. Three days after transfection, apoptosis levels were
significantly higher in the E2F1 knockdown, whereas there was
no difference in the combination relative to control (supple-
mental Figure 8D). These data imply that the apoptosis and
inhibition of proliferation arising from E2F1 knockdown in CML
SPCs is mediated by p53.

Discussion
The oncogenic role of the E2F family members has previously
been reported.52,54-56 E2F3 has been shown to play a role in
controlling BCR-ABL1–driven leukemogenesis in vitro and
in vivo,23 whereas in vitro studies have indicated that E2F1
regulates the cell cycle of BCR-ABL11 cell lines.57,58 Here, we
have used primary patient-derived cells to demonstrate that
E2F1 is required for the survival of CML but not healthy SPCs in
vitro, and that E2F1 is regulated in CML SPCs via the BCR-ABL1/
hsa-mir183/EGR1 axis. In CML SPCs, E2F1 was the effector
of a novel signaling pathway mediated by upregulation of
hsa-mir183 and inhibition of its direct target EGR1. Indeed,
recent evidence demonstrates that leukemia development is
accelerated in the absence of EGR1 in a CML mouse model.38

E2F1 upregulation was BCR-ABL1 kinase dependent and its
inhibition led to a decrease in colony-forming potential, cell-
cycle arrest, and induction of p53-mediated cell death, sug-
gesting the dependency of leukemic SPCs on E2F1.

Our data provide mechanistic insight into how CML SPC death
induced by E2F1 inhibition may be mediated by p53. We have
previously shown that the apoptotic activity of p53 is down-
regulated in leukemic stem cells27 and here we have demon-
strated that its activity is increased upon inhibition of E2F1
in CML SPCs (by showing that increased cell death in E2F1
knockdown CML SPCs was associated with posttranscriptional
modification of Ser15 on p53). To investigate the functional link
between E2F1 and p53 in CML SPCs, we hypothesized that cell
death due to E2F1 knockdown might be rescued by simulta-
neous knockdown of p53. Although these data suggest that
knockdown of p53 may be sufficient to ameliorate cell death of
E2F1-deficient CML SPCs, further work will be required to de-
finitively prove the relevance of this mechanism in CML.

Despite E2F1 upregulation being BCR-ABL dependent, recent
work in singleCMLSPCs has demonstrated that E2F1 signaling and
proliferation-associated gene expression are active in a subpop-
ulation of BCR-ABL1 cells that persist following TKI treatment.14

This suggests that therapeutic intervention (via therapeutic tar-
geting of E2F1 or the other components of our model) could
address a pressing unmet clinical need for CML patients.

Of relevance to designing a novel therapy for CML, our work
indicated that healthy SPCs were not affected by inhibition of the
E2F1 pathway, suggesting a potential therapeutic window and CML
specificity. Although our studies suggest that inhibition of E2F1
itself may represent a promising therapeutic target, transcription
factors are notoriously challenging in drug development, and
alternative routes to target the BCR-ABL1/hsa-mir183/EGR1/E2F1
axis may prove to be more tractable. Future investigations will
explore the therapeutic potential of the BCR-ABL1/hsa-mir183/
EGR1/E2F1 axis in CML.
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