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Hundreds of billions of platelets are cleared daily from
circulation via efficient and highly regulated mechanisms.
These mechanisms may be stimulated by exogenous
reagents or environmental changes to accelerate platelet
clearance, leading to thrombocytopenia. The interplay
between antiapoptotic Bcl-xL and proapoptotic mole-
cules Bax and Bak sets an internal clock for the platelet
lifespan, and BH3-only proteins, mitochondrial per-
meabilization, and phosphatidylserine (PS) exposure may
also contribute to apoptosis-induced platelet clearance.
Binding of plasma von Willebrand factor or antibodies to
the ligand-binding domain of glycoprotein Iba (GPIba)
on platelets can activate GPIb-IX in a shear-dependent
manner by inducing unfolding of the mechanosensory

domain therein, and trigger downstream signaling in the
platelet including desialylation and PS exposure. Degly-
cosylated platelets are recognized by the Ashwell-Morell
receptor and potentially other scavenger receptors, and
are rapidly cleared by hepatocytes and/or macrophages.
Inhibitors of platelet clearance pathways, including in-
hibitors of GPIba shedding, neuraminidases, and platelet
signaling, are efficacious at preserving the viability of
platelets during storage and improving their recovery
and survival in vivo. Overall, common mechanisms of
platelet clearance have begun to emerge, suggesting
potential strategies to extend the shelf-life of platelets
stored at room temperature or to enable refrigerated
storage. (Blood. 2018;131(14):1512-1521)

Introduction
In addition to their vital role in hemostasis and thrombosis,
platelets are involved in many diverse biological processes in-
cluding inflammation, tissue repair, and antimicrobial host de-
fense. Tomaintain a steady count of 150 000 to 400 000 platelets
per microliter of whole blood, the body produces and clears
platelets at a rate of 1011 platelets per day. Platelet genesis or
thrombopoiesis has been extensively characterized, and new
elements in the process are still being discovered.1 In recent years,
many critical advances in the studies of platelet clearance have
beenmade. This review focuses on the current understanding of
themolecularmechanisms underlying platelet clearance, and how
this knowledge is used to improve platelet storage.

Measurements of platelet clearance
Three methods are typically used to monitor platelet clearance.
The first method is to measure the ability of a compound or
molecule to induce platelet clearance. The compound is ad-
ministered into the body and blood counting is performed
periodically thereafter, producing a plot of relative platelet count
over time, expressed typically as a percentage of that prior to
administration (Figure 1A).2,3 An acute drop in platelet count
illustrates the compound’s clearing effect. Once the compound
is metabolized or removed from the body, the platelet count
rises to normal due to continuous thrombopoiesis. The second
method is to measure the lifespan of endogenous platelets.

A radioisotopic or fluorescent compound is administered into
humans or mice to pulse label the circulating platelets.4-6

Thereafter, blood is collected periodically, and platelets are
isolated from the whole blood. The percentage or the radio-
activity of labeled platelets in the whole platelet population is
measured and plotted over time (Figure 1B). These plots
demonstrated that the lifespans of human and murine platelets
are 7 to 10 and 4 to 5 days, respectively.4,5 The third method is to
measure the clearance of transfused platelets. Platelets obtained
from humans or animals are processed in vitro, labeled with
radioisotopes7 (eg, 51Cr or 111In) or chromophores8,9 (eg, car-
boxyfluorescein succinimidyl ester, 5-chloromethylfluorescein
diacetate, orN-hydroxysuccinimido biotin), and transfused into
a different host. The resulting plot of transfused platelets over
time typically consists of 2 parameters (Figure 1C). The first
parameter, known as platelet recovery, denotes the appear-
ance of transfused platelets in peripheral circulation. The
second, known as platelet survival, denotes the clearance of
transfused platelets from circulation. Compared with the first 2,
the third method enables the assessment of effects of in vitro
treatment (eg, storage) of platelets. Also, protocols have been
developed to monitor function and survival of human platelets
in animals.10

All 3 methods have been applied to humans and mice. Overall,
the results suggest that despite some differences such as life-
span, human and mouse platelet clearance mechanisms share
many common features.
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Platelet apoptosis and clearance
Similar to many nucleated cells, platelet apoptosis depends on
the balance between proapoptotic and antiapoptotic ma-
chinery (Figure 2). Antiapoptotic Bcl-2 family proteins restrain
the proapoptotic molecules Bak and Bax. Several Bcl-2 family
proteins, including Bcl-2, Bcl-w, and Bcl-xL are expressed in
both human and murine platelets.11,12 Platelet-specific knock-
out of Bcl-2 and systemic knockout of Bcl-w does not alter
platelet lifespan.13,14 Treatment with ABT-199, which specifically
inhibits Bcl-2, causes cell death in Bcl-2–dependent tumors but
not thrombocytopenia.15 Alternatively, specific pharmacological
inhibition16 or Cre-mediated deletion of Bcl-xL,17 or broad in-
hibition of Bcl-2-family proteins such as by ABT-737,18 led to
platelet apoptosis and thrombocytopenia. Furthermore, double
deletion of Bak and Bax prolongs platelet lifespan, and can rescue
thrombocytopenia caused by loss of Bcl-xL.12,19 Single deletions
have revealed that Bak is likely the major regulator of lifespan
whereas Bax plays a smaller role.6,19

In many apoptotic cells, Bcl-2 family proteins are inhibited by
BH3-only initiators of apoptosis, ultimately leaving Bax/Bak free
to initiate mitochondrial membrane damage and trigger the
apoptotic cascade. Of the 4 BH3-only proteins expressed in
platelets (Bid, Bim, Bad, and Bik), genetic deletions of Bid or Bim
did not alter the platelet count in mice.12 Loss of Bad leads to
only a small increase in platelet count and lifespan.20 The expres-
sion of BH3-only proteins in platelets may imply their involvement
in regulating intrinsic apoptosis (Figure 2), but future studies are
needed to fully elucidate their roles. Similarly, platelets express
certain components of the extrinsic apoptosis pathway including
caspase 8, but the limited data so far do not support their critical
role in regulating platelet lifespan.21,22

In many cells undergoing apoptosis, the redistribution of phos-
phatidylserine (PS) from the inner to the outer leaflet of the
plasma membrane serves as a molecular cue for engulfment and
clearance by phagocytes. Although lactadherin and the scavenger
machinery canmediate clearance of platelet-derived PS-expressing
microvesicles,23 whether they mediate clearance of apoptotic
platelets, as well as the identity of the “clear-me” sign on apoptotic

platelets, remains to be fully elucidated. Earlier studies have ruled
out several markers of platelet activation, such as P-selectin, as
“clear-me” signs for platelet clearance.24 Platelets possess 2 distinct
pathways through which they expose PS on their surface25,26

(Figure 2). One is dependent on intracellular Ca21 and TMEM16F, a
Ca21-activated phospholipid scramblase and ion channel.27,28 The
other is associated with apoptosis, and may involve Xk-related
protein 8 (Xkr8), a 10-transmembrane domain scramblase,
instead of TMEM16F.25 Earlier studies suggest that apoptosis-
associated morphological changes in platelets, such as PS ex-
posure and recognition by phagocyte scavenger receptors, are
not inhibited by broad-spectrum caspase inhibitor zVAD-fmk.29

Whether or how Xkr8 and/or TMEM16F are involved in regu-
lating the platelet lifespan and mediating its clearance in a
caspase-independent manner remains to be characterized.

In most apoptosis pathways, mitochondrial outer membrane
permeabilization is a critical step, resulting in decrease of the
mitochondrial electrochemical gradient and release of cytochrome
C. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is a lipid-
soluble protonophore and oxidative phosphorylation uncoupler
that induces mitochondrial permeabilization and loss of mem-
brane potential.30 When platelets are pretreated with CCCP,
posttransfusion recovery of these platelets is greatly reduced,
indicating that the bulk of CCCP-treated platelets are cleared
rapidly in vivo.31 Those that are not cleared rapidly do not have
reduced lifespan. It is also noteworthy that CCCP treatment induces
modest PS exposure but significant ectodomain shedding of
glycoprotein Iba (GPIba; CD42b) in platelets.31 These results link
the mitochondrial damage to accelerated platelet clearance and,
as described in “GPIb-IX signaling: a trigger for platelet clear-
ance,” implicate the shedding of GPIba as a key step (Figure 2).

Antibody-mediated clearance
Another common mechanism of platelet clearance involves
opsonization by antiplatelet antibodies, Fc-receptor–mediated
recognition, and subsequent clearance. In patients with immune
thrombocytopenia (ITP), autoantibodies targeting platelet sur-
face glycoproteins, primarily GPIIb-IIIa and GPIb-IX, lead to
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Figure 1. Measurement of platelet clearance kinetics. (A) Endogenous platelet count is monitored over time following the injection of a reagent to assess its effect on
platelet clearance. (B) A radioisotopic or fluorescent compound is administered into human or mice. Thereafter, the percentage or radioactivity of labeled platelets in the whole
platelet population is measured over time. (C) Exogenous platelets are labeled with radioisotopes or chromophores, and transfused into a host. The percentage of these ex-
ogenous labeled platelets is measured over time. The recovery indicates the initial appearance of transfused platelet in the circulation, and the survival means the time that the
transfused platelets stay in the circulation.
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Fc-dependent clearance via macrophages.32 Antiplatelet auto-
antibodies may also target the precursors to platelets, mega-
karyocytes.33 Additionally, infusion of monoclonal antibodies
(MAbs) targeting the N-terminal ligand-binding domain (LBD)
of GPIba causes fast depletion of nearly all platelets from
animals.34-37 Common treatments for ITP include immunosuppres-
sive steroids and IV immunoglobulin G (IVIG).38 However, some
patients are refractory to these treatments,39 implying at least 1
parallel Fc-independent clearance mechanism (discussed in “GPIb-
IX signaling: a trigger for platelet clearance”).

Role of glycans in platelet clearance
Recent studies have highlighted the role of glycan modifications
on platelets in mediating their clearance. In circulation, loss of
terminal sialic acid (a derivative of neuraminic acid) from the
platelet surface has been linked with senescent platelet re-
moval.40 Neuraminidases (sialidases) are glycoside hydrolase
enzymes that remove the terminal sialic acid residues on glycans.
Injection of neuraminidase in animal models leads to rapid
platelet clearance and transient thrombocytopenia.41 Also,
certain bacterial infections are marked by a release of pathogen-
derived neuraminidase resulting in thrombocytopenia.42 Fur-
thermore, there is evidence that endogenous, platelet-derived
neuraminidase plays a role in fast clearance of refrigerated
platelets.43,44 Relatedly, many antibodies targeting the N-terminal
ligand-binding domain (LBD) of GPIba induce platelet signaling
and surface presentation of lysosomal neuraminidase (Neu1),
leading to increased desialylation of platelets and acute throm-
bocytopenia in mice.45 Treatment with 2,3-dehydro-2-deoxy-
N-acetylneuraminic acid (DANA), a neuraminidase inhibitor,
reduces desialylation and leads to amelioration of thrombo-
cytopenia.45 Similarly, binding of plasma von Willebrand factor
(VWF) to GPIba on platelets under shear produces similar sig-
naling events including desialylation.46

In general, the terminal residues in both N- and O-glycans are
sialic acid, linked to a penultimate b-galactose (b-gal). Desia-
lylation of platelets therefore leads to the increased exposure of
b-gal (Figure 3). The exposed b-gal on the platelet surface can

be recognized by the Ashwell-Morell receptor (AMR), a multimeric
endocytic receptor complex also known as the asialoglycoprotein
receptor,47 on the surface of hepatocytes and/or liver macro-
phages (Kupffer cells), inducing the clearance of the platelet from
circulation.43,48,49 The AMR exhibits higher affinity and ligand
preference for tetra- or triantennary galactoses than di- or mon-
oantennary ones.47,50Mice lacking theAMRhave elevatedplatelet
count (mild thrombocytosis), and fast clearance of platelets in
response to neuraminidase injection is abolished in them.3,51 On
the other hand, St3gal42/2 mice, which have deficiencies in ter-
minal sialic acid residues on platelet surface glycoproteins due to
genetic loss of an important sialyltransferase, suffer from throm-
bocytopenia as a result of accelerated platelet clearance via the
hepatic AMR.48 In addition to mediating clearance and removal
of senescent platelets, the AMR also leads to stimulation of
platelet production, forming a clearance/thrombopoiesis feedback
loop for platelet homeostasis.51

In addition to the interaction between galactose and the AMR,
other carbohydrates and their receptors may also play a role in
platelet clearance (Figure 3). It was reported that integrin aMb2
recognizes refrigerated platelets via binding to exposedGlcNAc on
the platelet surface and mice lacking the aM subunit show a small
increase in platelet count.52,53 Clodronate depletion of macro-
phages alleviates thrombocytopenia in a mouse model of von
Willebrand disease (VWD) type 2B.54 Furthermore, preinjection of
GlcNAc into guinea pigs prior to induction of antibody-induced
thrombocytopenia partly protects against depletion of platelets.55

However, although galactosylation of GlcNAc residues via treat-
ment of uridine 59-diphosphogalactose (UDP-galactose) results in
the normal survival of short-term refrigerated platelets, it does not
ameliorate the survival of long-term (48 hours) refrigerated human
and murine platelets.56 The degrees of contribution of various
glycans to platelet clearance remain to be clarified.

Platelet GPIba is heavily decorated with sialic acid residues,
accounting for as much as 70% to 80% of the total sialic acid on
the platelet surface. Unlike human GPIba, the murine GPIba
amino acid sequence lacks any N-glycosylation consensus se-
quences. Grewal et al showed recently that even in mice lacking
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Figure 2. Apoptotic machinery in platelet clearance
and lifespan. The anti-apoptotic Bcl-xL restrains the
proapoptotic Bax/Bak in platelets. Mitochondrial dam-
age induced by CCCP, an ionophore, leads to robust
ectodomain shedding of GPIba. If inhibition by Bcl-xL is
blocked pharmacologically, Bax/Bak will induce mito-
chondrial damage, leading to the apoptotic cascade.
The BH3-only initiator of apoptosis Bad may also affect
platelet lifespan, though further study would help to
elucidate its role. Apoptotic cells redistribute PS from
the inner to the outer leaflet of their plasma membranes.
One calcium-independent pathway may involve Xkr8.
Another pathway present in platelets is facilitated by
TMEM16F, a calcium-activated phospholipid scramblase.
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GPIba, neuraminidase treatment leads to platelet clearance,
albeit at a slower rate than in wild-type (WT) mice.3 This suggests
that the glycans on GPIba are necessary to set off a rapid rate of
AMR-dependent clearance, but the exposed galactoses on
other platelet glycoproteins may also be counterreceptors for
the AMR. Considering these intriguing observations regarding
glycosylation of GPIba, further work is likely required in order to
understand the full contributions of these phenomena to platelet
clearance.

GPIb-IX signaling: a trigger for
platelet clearance
The GPIb-IX-V (CD42) complex has been implicated in platelet
clearance under a number of scenarios. Among the scenarios are
VWF-platelet agglutinated complexes,54,57,58 Fc-independent
anti-GPIb-IX antibody-induced clearance,2,45 platelet surface
desialylation,3,48 and ectodomain shedding of GPIba during platelet
storage8,31 (discussed in “Platelet storage at room temperature”).

GPIb-IX is a multimeric platelet receptor complex composed of
the GPIba, GPIbb, and GPIX subunits. GPIba is the major subunit
of the complex and is responsible for binding to all known ligands
of GPIb-IX including VWF. When immobilized under flow at
sites of injury in the endothelium, VWF undergoes a conforma-
tional change that enables it to bindGPIba and recruit platelets to
the injury. Alternatively, circulating VWF does not spontaneously
associate with the LBD of GPIba. In patients with type 2B VWD,
mutant VWF exhibits increased spontaneous association to
GPIba. Type 2B VWD patients present with accelerated platelet
clearance and thrombocytopenia of variable severity, depending
on the underlying causative mutation.46,59,60 Furthermore, trans-
genic mice expressing type 2B VWF exhibit thrombocytopenia
due to clearance of large VWF-platelet complexes in the liver and/
or spleen.54 In addition to type 2B VWD, several other situations
that facilitate binding of soluble VWF to GPIba also result in
accelerated platelet clearance. For example, ristocetin, which
induces spontaneous association of VWF to GPIba, was pulled
from clinical use because it caused thrombocytopenia and clot-
ting.57 Injection of botrocetin, a snake venom that induces VWF
binding to GPIba via a different mechanism, causes acute throm-
bocytopenia in animals.58,61 Thrombocytopenia is also observed

in many patients who have received implantations of left-
ventricular assist devices,62 which generate abnormal shear
flow conditions and may potentially induce VWF association
with GPIba. It was recently reported that binding of plasma
VWF to GPIba on platelets under shear induces GPIb-IX signal-
ing including platelet desialylation, thereby leading to platelet
clearance.46

Platelet clearance by anti-LBD MAbs in mice can occur in an
Fc-independent manner and is largely unaffected by IVIG
pretreatment.2,37,63 This is because anti-LBD MAbs can directly
activate GPIb-IX and induce platelet intracellular signaling,
particularly desialylation, and subsequent platelet clearance by
hepatocytes and/or macrophages.45,55 Analyses of plasma from
ITP patients in multicenter cohort studies revealed that the
presence of autoantibodies targeting GPIb-IX is an effective
predictor for refractoriness to steroid or IVIG therapy.64,65 Re-
garding the mechanistic requirements of anti-LBDMAb-induced
platelet signaling, 4 key observations have emerged from the
literature. First, the F(ab9)2 but not the Fab fragment of an anti-
LBD MAb induces platelet clearance,2,37 indicating that the bi-
valent structure of an antibody is required for activating GPIb-IX.
Second, most anti-LBD antibodies clear platelets rapidly, re-
gardless of their epitope in the LBD.34-37,45 Third, a small subset
of anti-LBD MAbs is ineffective at inducing Fc-independent
clearance.55,66 Fourth, most MAbs targeting regions other
than the LBD in GPIb-IX do not induce Fc-independent platelet
clearance.36,67,68

A GPIba clustering model has been proposed as the mechanism
of GPIb-IX activation69,70 and applied to explain the observed
effects of anti-LBD MAbs. In this model, an anti-LBD MAb binds
1 copy of GPIba with each Fab, inducing lateral dimerization or
“clustering,” and thereby transmitting a signal into the platelet
that subsequently leads to fast clearance.55 VWF, being a
multimeric ligand, is also capable of clustering GPIb-IX.69,70 The
clustering model can explain the aforementioned first and
second observations about anti-LBD MAbs. However, it is dif-
ficult to conceive how the clustering model accounts for the third
and fourth observations. Particularly, a MAb targeting the
mechanosensory domains (MSDs) of GPIba binds to 2 copies of
GPIba on the platelet, but induces neither platelet activation in
vitro nor thrombocytopenia in mice.68 Moreover, the requirement
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Figure 3. Protein desialylation as a clear-me sign in
platelets. Over the platelet lifespan, surface glycopro-
teins lose the terminal sialic acid residues in their glycans, a
process associated with clearance. Neuraminidases are
glycoside hydrolases that can remove terminal sialic acid
from glycans. Neuraminidases are found in platelets,
whichpresent neuraminidaseon their surfacedownstream
of GPIb-IX complex signaling. In many glycans, desialy-
lation leads to exposure of the penultimate galactose
residues on glycans. These can in turn be recognized by
the AMR. Further deglycosylation leads to exposedGlcNAc
residues, which may be recognized by other carbohy-
drate receptors and potentially mediate their uptake
by macrophages.

PLATELET CLEARANCE AND STORAGE blood® 5 APRIL 2018 | VOLUME 131, NUMBER 14 1515

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/131/14/1512/1405604/blood743229.pdf by guest on 04 June 2024



of shear in VWF-mediated GPIb-IX signaling is well documented71

but remains to be addressed by the clustering model.

An alternative model for GPIb-IX activation, the trigger model,
has recently been proposed (Figure 4).46 The model is built on a
membrane-proximal MSD that was recently identified between
the macroglycopeptide region and the transmembrane domain
of GPIba.72 Under physiological shear, binding of soluble VWF
to the LBD generates a pulling force onGPIba, and inducesMSD
unfolding on the platelet surface, exposure of the membrane-
proximal trigger sequence therein and subsequent platelet
signaling including desialylation. This model of GPIb-IX activa-
tion accounts for the requirement of shear force, as well as all
4 aforementioned observations regarding antibody-induced
signaling. The dimeric structure of activating ligands is used
to crosslink platelets via GPIb-IX and induce MSD unfolding.66 In
the trigger model, the defining characteristic of an activating
ligand to GPIb-IX is its ability to bind the LBD and sustain suf-
ficient tensile force to induce MSD unfolding.46,66 Thus, it is
conceivable that ligands with similar binding affinities and
binding sites but disparate mechanical properties, such as
different anti-LBD MAbs or VWF bearing different type 2B
mutations,60,66 may differentially activate GPIb-IX and induce
platelet clearance.

In circulating platelets, the ectodomain of GPIba is continuously
cleaved or shed by ADAM17.73 The ADAM17 cleavage site of
GPIba is located in the MSD, preceding the trigger sequence.46,74

It appears to be on theMSD surface and is accessiblewhenMSD is
folded,75 consistent with the observation that shedding of GPIba
occurs continuously on resting platelets. However,MSDunfolding
induced by ligand binding and pulling could further expose the
ADAM17 shedding cleavage site, thereby boosting shedding of
GPIba.46,66 On the other hand, upon shedding of GPIba, and
subsequent separation of glycocalicin from the platelet, the
structure of the MSD is disrupted and the membrane-proximal
trigger sequence therein unprotected (Figure 4). Thus, it is

conceivable that shedding of GPIbamay achieveMSD unfolding
and induce GPIb-IX signaling. This is consistent with the ob-
servation that mutations in the MSD that cause MSD unfolding
and trigger sequence exposure can induce ligand-free sig-
naling from GPIb-IX.46

Intracellular signaling pathways that connect activated GPIb-IX
to the surface expression of Neu1 and other clearance-related
cellular changes remain to be determined. Soluble VWF binding
to GPIba under shear was reported to induce apoptotic sig-
naling events in human platelets and Chinese hamster ovary cells
expressing human GPIb-IX.76 This effect is dependent on 14-3-3
protein z isoform,76 which binds the cytoplasmic domains of
both GPIba and GPIbb. GPIba binding to VWF immobilized at
the injury site is critical to platelet adhesion and activation, in
which GPIb-IX-mediated signaling helps to mediate activation
of GPIIb-IIIa.77 However, the difference and similarity between
GPIb-IX–signaling pathways leading to platelet clearance and
platelet activation remains to be clarified.

Platelet storage at room temperature
Platelet transfusion is a widely used therapy to treat patients with
thrombocytopenia. Prior to transfusion, platelets derived from
healthy donors, mixed in gas-permeable plastic bags with donor
plasma (at ;3 3 1011 platelets in 300 mL), are stored under
constant agitation at room temperature for up to 5 days. The
5-day shelf-life is adopted primarily to reduce the risk of bacterial
growth and secondarily to curtail the platelet storage lesion
(PSL). PSL develops with the storage time, and its severity
correlates with the reduced recovery and survival of infused
platelets.78,79 Recent application of pathogen inactivation and
detection technologies raise the possibility that PSL will become
a limiting factor for platelet storage and efforts to reduce PSL
may help to extend the platelet shelf-life beyond 5 days.
Several factors have been identified to influence the devel-
opment of PSL. For example, centrifugation can damage platelets
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GPlbα
GPlbβ

GPIX

β-Gal

P-selectin

MSD

VWF or Ab

Recognition by AMR
and other receptors

PS

ADAM17

Platelet

Platelet

Platelet clearance

[Ca2+]

force generated
by shear

Physiological shear

Ligand binding

Figure 4. The trigger model of GPIb-IX-mediated
signaling that leads to platelet clearance. A soluble
multimeric ligand, such as plasma VWF or anti-LBD
antibodies, can bind to the LBD of GPIba and cross-
link platelets. Under physiological shear, the crosslinking
can generate a pulling force on GPIba and induce
unfolding of the MSD therein. Consequently, it induces
platelet signaling as illustrated, including desialylation
(the exposure of b-gal), leading to rapid clearance of
platelets. Adapted from Deng et al with permission.46
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and cause platelets to release both lactate dehydrogenase and
granules.80 The storage conditions, including storage temperature
and duration, composition of storage media, and storage
containers, are also known to affect the quality of stored
platelets.81 Here, we focus on recent developments targeting
the molecular machineries in the platelet that mediates its
clearance and function.

The onset of apoptosis may mediate PSL because caspase 3 is
activated and gelsolin subsequently cleaved during storage.82

Addition of caspase 3 inhibitor Z-DEVD-FMK significantly in-
creases platelet viability in the methyl-thiazolyl tetrazolium as-
say.83 Furthermore, utility of anandamide, which can inhibit platelet
apoptosis through the phosphatidylinositol 3-kinase/Akt
pathway,84 is able to reduce PS exposure and soluble P-selectin
content in platelets after 7 days of storage although it has no
effects during 5 days.85 On the other hand, partial inhibition of
caspase 3 activation by complement inhibitor compstatin during
storage does not reduce PSL.86 These studies suggest that
apoptosis is ongoing during storage, but whether its inhibition is
sufficient to preserve the viability of stored platelets requires
additional investigation.

The mitochondrial transmembrane potential in stored platelets
was reported to remain unchanged comparedwith fresh platelets,
even though apoptotic signals such as caspase activation and
PS exposure were enhanced.87 However, it was significantly
higher than fresh platelets in another report.88 A recent study
found that increasing the storage time was associated with
mitochondrial dysfunction.89 Additionally, platelet mitochon-
dria injury induced by CCCP treatment led to a significantly
reduced posttransfusion recovery in mice.31 Acetyl-l-carnitine
or ascorbic acid, which preserves mitochondrial function during
platelet storage, helps but is not fully sufficient to maintain
platelet viability.90

Significant ectodomain shedding of GPIba and accumulation
of its product glycocalicin during storage is consistently ob-
served in various studies.91,92 A tight correlation between
GPIba shedding and the extent of PSL has been noted in
laboratory studies,93 although whether glycocalicin can serve
as a biomarker for the quality of stored platelets requires
testing in clinical settings. Furthermore, the utility of a broad-
spectrum metalloproteinase inhibitor GM6001 significantly
improved the posttransfusion recovery and survival of in vitro

GM6001

ADAM17
GPlbβ

Glycocalicin

GPIX

GPlbα

Shedding

5G6

Figure 5. Platelet storage at room temperature. At
room temperature, platelets can only be stored for up to
5 days,which ismainly due to the risk of bacteria growth. In
addition, GPIba shedding is also tightly correlated to
platelet storage lesion. Inhibiting GPIba shedding by
using GM6001 or 5G6 significantly improves the post-
transfusion recovery and survival of room temperature–
stored platelets.
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Figure 6. Platelet storage by refrigeration. (A) Desialylation-mediated clearance. Sialic acid is removed by Neu1 from platelet glycoproteins following refrigeration. The
exposedb-gal is recognized by the AMR, and the platelets are cleared by hepatocytes. The utility of neuraminidase inhibitors such as DANAor the AMR inhibitor asialofetuin can
impede the clearance of desialylated platelets. (B) GPIba clustering–mediated clearance. GPIba clusters on platelet surface, and14-3-3z dissociates fromBad and associates with
GPIba after refrigeration. This induces the platelet apoptosis process. A broad caspase inhibitor Q-VD-Oph or arachidonic acid depletion can inhibit the apoptosis process of
refrigerated platelets and improve the posttransfusion recovery and survival. (C) VWF binding–mediated clearance. Refrigeration leads to binding of plasma VWF to GPIba.
Upon transfusion and thus exposure to the shear flow, VWF binding may generate a pulling force and induces MSD unfolding, leading to rapid platelet clearance. OGE cleaves
off the LBD of GPIba, therefore precludes the VWF-GPIba interaction and subsequently platelet clearance.
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aged or CCCP-treated murine platelets (Figure 2, 5).31 Ge-
netic ablation of ADAM17 or addition of inhibitors of p38
MAPK, which is an activator of ADAM17, during platelet
storage achieved similar effects.94 More definitively, addi-
tion of MAb 5G6, which binds specifically to human GPIba
and block its shedding, during prolonged storage at room
temperature improved the recovery and survival of stored
platelets (Figure 5).8,95 In mice, platelets stored with the
aforementioned shedding inhibitors exhibited significantly
better in vivo hemostatic function than those stored with-
out, likely because GPIba is critically involved in primary
hemostasis.8,31,94 These studies suggest that GPIba shed-
ding could accelerate platelet clearance, and that inhibition
of GPIba shedding could improve recovery and survival of
stored platelets.

Platelet storage by refrigeration
The risk of microbial contamination during platelet storage
at room temperature limits the shelf-life of stored platelets.
Checking for the pathogens during storage adds significantly
to the cost of blood banking. Refrigeration of platelets at 1°C
to 6°C offers an alternative storage option because the cold
temperature could effectively minimize microbial prolifera-
tion and slow down metabolism in the platelet. However, re-
frigerated platelets are rapidly cleared after transfusion.96 In
the past few years, several studies have been carried out to
critically advance our understanding of the underlying mo-
lecular mechanism.

It was noticed that platelets became desialylated following
48 hours of refrigeration.43 This is because refrigeration and sub-
sequent rewarming of the platelets induces surface expression of
Neu1, which removes sialic acid from platelet glycoproteins,
particularly GPIba.44 The exposed b-gal is recognized by the
AMR and the platelets are quickly cleared by hepatocytes.43

Adding DANA, a neuraminidase inhibitor, to murine platelets
during refrigeration improves the posttransfusion recovery and
survival of refrigerated platelets.44 Likewise, AMR inhibitor
asialofetuin significantly blocks the fast clearance of refrigerated
platelets (Figure 6A).43 These inhibitory effects are similar to
those on platelet desialylation and thrombocytopenia induced
by anti-LBD antibodies.45

Clustering of GPIba on the platelet surface was noticed fol-
lowing refrigeration of platelets.53 The clustered GPIba may
contribute to the recognition of refrigerated platelets by integrin
aMb2 on hepatic macrophages, in which glycans may play a
role.52 In addition, refrigeration-induced GPIba clustering was
thought to induce platelet apoptosis, as 14-3-3z dissociates
from Bad and associates with GPIba following refrigeration,
leading to Bad activation, cytochrome C release, caspase 9
activation, PS exposure, and increased platelet phagocytosis
in vitro.97 The process is inhibited by Q-VD-Oph, which is a
broad caspase inhibitor, and N-acetyl-D-glucosamine, which
blocks the platelet-macrophage interaction and potentially
GPIba clustering (Figure 6B).53,97,98 Furthermore, refrigeration-
mediated 14-3-3z–GPIba association is dependent on ara-
chidonic acid, as the depletion of arachidonic acid during
refrigeration inhibited apoptotic signals and improved the

posttransfusion recovery and survival of refrigerated platelets
(Figure 6B).99

Treatment of murine platelets with O-sialoglycoprotein endo-
peptidase (OGE), which cleaves off the LBD of GPIba, prior to
refrigeration significantly improves the recovery and survival of
these platelets in mice.43,97 Because murine GPIba does not
have N-glycosylation sequence motifs, it could not be involved
in direct binding with the AMR.50 Instead, because refrigeration
induces binding of plasma VWF to GPIba on the platelet,43,100

treatment of OGE could conceivably preclude the VWF-GPIba
interaction and subsequent clustering of GPIba in refrigerated
platelets (Figure 6C). Consistent with the aforementioned
trigger model, shear treatment of refrigerated WT platelets,
but not VWF2/2 ones, results in MSD unfolding, platelet desia-
lylation, and PS exposure.100 Furthermore, refrigerated VWF2/2

platelets, or refrigeratedWT platelets incubated with a peptide
that inhibits GPIba interaction with VWF, exhibit markedly
higher posttransfusion recovery than WT.100 Thus, it appears
that VWF binding, GPIba clustering, platelet desialylation, and
PS exposure are key steps to the fast clearance of refrigerated
platelets.

In summary, although several questions remain to be addressed,
common mechanisms of platelet clearance have begun to
emerge. Studies of platelet storage at room temperature and
under refrigerating conditions have provided critical insights.
Reciprocally, several inhibitors have shown promising efficacies
in preserving the viability and improving the recovery and sur-
vival of stored platelets in animals. It is time to translate the newly
gained knowledge of the platelet clearance mechanisms into
viable strategies to treat thrombocytopenia and to improve
platelet storage for transfusion.
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