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Over the last decade, our understanding of the pathophysiology of chronic graft-versus-host disease (cGVHD) has
improved considerably. In this spotlight, we discuss emerging insights into the pathophysiology of cGVHDwith a focus
on B cells. First, we summarize supporting evidence derived from mouse and human studies. Next, novel cGVHD
therapy approaches that target B cells will be covered to provide treating physicians with an overview of the rationale
behind the emerging armamentarium against cGVHD. (Blood. 2018;131(13):1399-1405)

Introduction
Chronic graft-versus-host disease (cGVHD) is a major com-
plication in patients undergoing allogeneic hematopoietic
cell transplantation (allo-HCT), leading to reduced patient-
reported quality of life1 and nonrelapse mortality.2 Risk factors
for cGVHD development include prior acute GVHD, donor
peripheral blood stem-cell grafts, HLA disparity, female do-
nors for male recipients, and recipient age.3 Clinical cGVHD
can involve classical acute GVHD epithelial target tissues
(intestinal tract, liver, skin, lung) and any other organ system,
including oral, esophageal, musculoskeletal, joint, fascial,
ocular, hair and nails, lymphohematopoietic system, and
genital tissues.4 The pleiotrophic symptoms resulting from
such broad organ involvement made past diagnosis and
scoring difficult. The 2005 and revised 2014 National Insti-
tutes of Health (NIH) criteria have brought greater consistency
to terminology and methods for cGVHD diagnosis and
staging.4,5

To identify and validate novel targets in cGVHD, numerous
mouse models are used. However, individual cGVHD mouse
models cannot reproduce all features of cGVHD seen in pa-
tients (as reviewed by Zeiser and Blazar6,7), who present with a
heterogeneous disease spectrum. Most models have 1 or
2 dominant cGVHD manifestations involving limited numbers
of organs. These different manifestations of cGVHD depend
on several factors, including the cytokines that are released.
Some of these cytokines or their receptors are attractive
targets to treat cGVHD. For instance, an anti–interleukin 2
(IL-2) receptor common g chain neutralizing monoclonal an-
tibody (mAb) reduced cGVHD,8 a result that may be based on
a broad inhibitory effect on multiple cytokine receptors. Also,
targeting of individual cytokines such as IL-17 was active
against cGVHD.9 Additionally, the type and degree of donor
and recipient genetic disparity in models suggest that the
antigens recognized by B and T cells as well as the number of
donor T cells transferred can dictate cGVHD phenotypes.
Thus, mechanistic studies of multiple models when feasible
are ideal.10

The role of B cells in cGVHD based on
findings in mice
Under normal conditions, B cells contribute to adaptive im-
munity by producing antibodies, secreting cytokines, and pre-
senting antigen. B-cell activation begins when an antigen is
recognized via the B-cell receptor (BCR). Activated B cells
participate in a 2-step differentiation process that yields both
short-lived plasmablasts for immediate protection against a
pathogen and long-lived plasma cells and memory B cells for
persistent protection.11 Together with BCR signaling, B-cell
activating factor (BAFF) determines B-cell fate/survival. Com-
parable to the normal B-cell activation process, the first step in
the pathogenesis of cGVHD is the recognition of antigen via
the BCR (Figure 1A step 1). In contrast to the normal situation,
B cells exhibit BCR hyperresponsiveness in cGVHD as shown in
mouse models.12-14 After activation, pathogenic B cells expand
(Figure 1A step 2) and are strongly affected by soluble factors in
the microenvironment such as IL-4, IL-17,9 IL-21,12,15 and BAFF16

(Figure 1A step 3). This process is connected to the formation of
GCs in cooperation with donor Tfhs. GC B cells undergo somatic
hypermutation that can favor cGVHD by increasing the fre-
quency of B cells capable of producing antibody to antigens that
trigger BCR.

IL-4 produced by CD4 T cells promotes B-cell immunoglobulin
isotype switching,17-19 allowing daughter cells from the same ac-
tivated B cell to produce secreted pathogenic IgG in cGVHD
mice.12,17 Tfhs produce IL-21, which can promote auto- and
alloreactive B-cell activation and survival along with increased local
BAFF levels in cGVHD.16 Although the role of GCs in cGVHD
initiation is likely to be important in many cGVHD mouse models,
GCs were found not to be required for disease development in
a recent report,20 possibly reflecting the wide clinical spectrum of
cGVHD in patients. In a consecutive step, activated B cells can
promote tissue injury via antibody and cytokine production and
release, leading to clinicalmanifestations of cGVHD (Figure 1A step
4). IgG-induced macrophage activation may contribute to cGVHD
via secretion of proinflammatory cytokines such as IL-6 and IL-22,21
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which maintain inflammation. Tissue stiffness in cGVHD can be
enhanced by copious immunoglobulin production and deposition
together with fibroblast-derived extracellular matrix molecules in-
cluding collagen and proteoglycans (Figure 1A step 4).

The role of B cells in cGVHD: evidence
from studies on human tissues
Pathogenic B-cell activation is found in various autoimmune
diseases including systemic lupus erythematosus, multiple scle-
rosis, rheumatoid arthritis, type 1 diabetes, and others as well as
in cGVHD.17,19 During cGVHD, donor B cells and T cells mount a
coordinated response to both allogeneic and autologous anti-
gens, which leads to their expansion (Figure 1A steps 1 and 2).
Allogeneic antigens include minor histocompatibility antigens22,23

that are typically expressed or processed intracellularly and
presented as peptides by major histocompatibility complex

molecules. These include Y chromosome proteins/peptides in
male recipients of female donor grafts, as well as cell membrane
antigens, the former correlating with cGVHD by multivariable
logistic regression analysis.24 Autoantigens are antigens on
donor hematopoietic cells, which can be found for example on
megakaryocytes or platelets. In agreement with the concept of
recognition of autoantigens, patients can develop autoimmune
thrombocytopenia after allo-HCT, which is mediated by anti-
bodies produced by donor B cells and directed against donor
platelets.

BAFF promotes B-cell survival and activation (Figure 1A step 3)
and is significantly increased in plasma of patients with
cGVHD.25,26 BAFF and BCR-associated signaling work in concert
to promote activation and survival of B cells from patients with
cGVHD.27 In those with cGVHD, B cells exhibit increased BCR
responsiveness27 via increased proximal BCR intracellular sig-
naling molecules SYK and B-cell linker (BLNK).28 In that context,
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Figure 1. The role of B cells in cGVHD. (A) Different steps of cGVHDdevelopment. Step 1: antigen (Ag)-presenting cells (APCs) present auto- and alloantigens and prime B cells.
Direct activation of B cells via Ag or Ag/Ab complexes. APCs prime B cells against major histocompatibility complexes/peptides or neoantigens (eg, Y chromosome–encoded
genes). This is enhanced in certain B-cell subgroups by hyperreactive BCR signaling. In addition to B-cell activation by APCs, there is likely also direct BCR activation via Ag
or Ab/Ag complexes. Step 2: expansion of auto- and alloreactive B cells. Step 3: activated T follicular helper cells (Tfhs) produce IL-21 and cell-surface costimulatory
molecules that lead to germinal center (GC) formation, which is not counterbalanced by sufficient T follicular regulatory cells (Tfrs). CD4 T helper cells produce IL-4, which
promotes Ab class switch in autoreactive B cells. Stroma cells produce BAFF, which promotes B-cell activation. Step 4: plasma cells and plasma blasts produce high
amounts of immunoglobulin. Deposition of immunoglobulin G (IgG) can lead to macrophage activation and organ damage. IgG-induced macrophage activation may
contribute to cGVHD via secretion of proinflammatory cytokines by macrophages such as IL-6, which promotes B-cell survival and maintains inflammation. (B) Strategies to
target B cells in cGVHD. The sketch shows a B cell and the mode of action of multiple immunosuppressive strategies that directly act on B cells or plasma cells in the context
of cGVHD. The summary of translation of each approach is provided in Table 1. BTK, Bruton tyrosine kinase; ITK, IL-2–inducible kinase; MMF, mycophenolate mofetil;
mTOR, mammalian target of rapamycin; MTX, methotrexate; ROCK2, r-GTPase kinase-2; SYK, splenic tyrosine kinase.
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it is important to understand which cell-intrinsic mechanisms
enhance BCR responses. A novel observation here is that BCR
responses to surrogate antigen were markedly increased when
NOTCH2 was also activated.29 Intrinsic differences in important
transcription factors like IRF4 contributed to NOTCH2 expression
and responsiveness. How extrinsic factors like BAFF and intrinsic
molecular pathways likeNOTCHpromote BCR-activated B cells is
currently not clear but is an area of active investigation.

Tfhs can support antihost antibody production.30 This process
typically takes place in GCs, areas of lymph nodes where B cells
are activated in mice,30 but where this occurs in cGVHD in pa-
tients remains unknown. As in patients with autoimmune dis-
ease, this process also may occur in extrafollicular locations.
Antigen targets of B-cell responses in cGVHD remain largely
unknown, but ultimately, both auto- and alloimmune B-cell re-
sponses can occur. Lack of sufficient T regulatory cells (Tregs) in
patients with cGVHD can contribute to impaired peripheral
tolerance.31 Tregs are capable of selectively killing B cells,32 and
their deficiency would predispose to a failure to control path-
ogenic B cells. Although humanmemory Tregs expand after allo-
HCT, they cannot compensate for the lack of naı̈ve Tregs,
because of short telomeres and increased apoptosis.33 cGVHD
tissue stiffness and organ dysfunction are likely supported by
cooperation between B cells and macrophages, leading to
fibroblast activation; however, so far there is no direct evidence
for this interaction (Figure 1A step 4).

Impaired central and peripheral tolerance
mechanisms in cGVHD
Under homeostatic conditions, multiple mechanisms prevent
pathogenic B-cell function via central (thymic) and peripheral
tolerance. In patients undergoing allo-HCT, uncontrolled ex-
pansion and immunoglobulin production by B cells possibly
occurs because of thymic dysfunction. Impaired thymic function is
caused by aging, conditioning regimen toxicity, calcineurin in-
hibitors, alloreactive T cells, and immunoglobulin deposition.19,34

Alloreactive T cells contribute to the process by depleting thymic
dendritic cells, medullary thymic epithelial cells (TECs), and cor-
tical TECs.34,35 A recent report also suggests pathologic anti-
bodies target TECs in a cGVHD model.15,18 GVHD affects both
positive selection by cortical TECs and negative selection by
thymic B cells and cortical TECs,34,36 which allows potentially
pathogenic CD41 T cells to escape from tolerization or deletion
before peripheral export37,38 and impedes the development of
Tregs that contribute to peripheral tolerance.

Mouse studies revealed that peripheral immune tolerance
to recipient tissues after transplantation is mediated by Tregs,
Tfrs representing Tregs that migrate to the GCs,12 regulatory
B cells,39 type 1 regulatory T cells,40 and invariant natural killer
T cells.41-43 Tregs and Tfrs negatively regulate B-cell responses
and cGVHD,43 and B regulatory cells that release IL-10 have
been shown to ameliorate sclerodermatous cGVHD severity.44 In
agreement with these mouse studies, analysis in patients with
cGVHD suggests that B cells with a regulatory phenotype are
both decreased and inactive.39,45 Increased T-cell help de-
creases self-regulation by B cells by promoting aberrant B-cell
generation. Additionally, the absence of robust recovery of
the peripheral B-cell compartment results in excess BAFF and

promotion of autoreactive B cells that can cooperate to over-
whelm peripheral tolerance mechanisms in those with cGVHD.46

Additionally, thymic T-cell generation, negative selection of
antihost reactive T cells, thymic Treg production, and peripheral
Treg survival are severely reduced in patients with cGVHD.31,47,48

Novel and early-phase therapeutic
strategies that target B cells in cGVHD
B-cell depletion with anti-CD20 antibodies was performed in
preclinical models and patients.12,49,50 Anti-CD20 mAbs ad-
ministered in the prophylactic setting reduced murine cGVHD,
whereas established cGVHD was nonresponsive.12,49 In the
clinical setting, the anti-CD20 mAb rituximab conferred some
efficacy in patients with steroid-refractory cGVHD (SR-cGVHD),51

with attenuation of cGVHD in those patients who robustly re-
covered B cells.46,52 A prospective phase 2 trial showed that
naı̈ve B cells (PD-L1hi) were significantly reduced at cGVHD
diagnosis but increased after rituximab treatment.50 To target
plasma cells, different drugs that have been successfully used in
the treatment of multiple myeloma such as pomalidomide53

were tested in cGVHD (Table 1; Figure 1B). IL-6 was shown to
contribute to cGVHD. Because IL-6 is known to promote plasma
blast and plasma-cell survival,54 further study of IL-6 and B cells is
warranted. The anti–IL-6 receptor mAb tocilizumab is being
investigated in a clinical trial as therapy for cGVHD.55 In other
diseases, IL-6 also has a known role in promotion of collagen
deposition and extracellular matrix production by fibroblasts.56

Several small-molecule inhibitors are now in the pipeline,
building upon the observation that patients with cGVHD have
hyperreactive BCR signaling via the BCR proximal tyrosine ki-
nase SYK. SYK was found to be upregulated in cGVHD B cells
in mice12,13 and patients.28 SYK inhibition reduced established
murine cGVHD, was associated with reduced GC responses,
and activated CD80/861 dendritic cell responses10 and induced
apoptosis in B cells of patients with cGVHD.10,13,28 On the basis of
these promising findings, the SYK inhibitor entospletinib, re-
cently granted US Food and Drug Administration (FDA) orphan
drug status, is being studied as first-line treatment with ste-
roids.57 Further downstream of the BCR is BTK. In B cells of
patients with cGVHD, phosphorylated BTK was present in the
absence of in vitro stimulation by anti-IgM.14 In agreement with a
role of BTK, cGVHD severity was reduced in murine recipients
receiving donor B cells lacking BTK or ibrutinib that targets
BTK.14 Ibrutinib additionally inhibits ITK,14 and in a cGVHDmodel
where T cells lacked ITK, cGVHD was reduced.14 On the basis
of these findings, it is likely, but not formally proven, that both
BTK and ITK inhibition are critical to the efficacy of ibrutinib in
cGVHD. In patients with cGVHD, ibrutinib reduced murine
sclerodermatous and multiorgan system cGVHD as well as T- and
B-cell activation.14,58 Guided by these preclinical data, an open-
label phase 2 study evaluated the safety and efficacy of ibrutinib in
patients with active cGVHDwith SR-cGVHD.59 At amedian follow-
up of 13.9 months, best overall response was 67% (sustained
$20 weeks in 71% of responders).59 On the basis of these clinical
data and upon the foundations of the applied NIH consensus
criteria from 2005, ibrutinib was FDA approved for SR-cGVHD.

With better understanding of the role of B cells in cGVHD path-
ogenesis, multiple additional strategies have been developed that
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deplete B cells, reduce their activation via manipulation of BCR-
downstream events, or inhibit their migration toward inflammatory
sites. Other agents also potentially target cytokine-mediated B-cell
differentiation or survival. In normal mice and healthy volunteers, in
vitro Tfh generation depends upon the ROCK2.60 In both murine
sclerodermatous and multiorgan system cGVHD models, ROCK2
inhibition with KD025 ameliorated ongoing cGVHD, was associ-
ated with reduced Tfhs resulting from inhibition of pSTAT3 and
IL-21 production, and increased Tfrs as a result of augmentation of
pSTAT5 signaling.61 A phase 2a KD025 trial to treat SR-cGVHD62 is
ongoing. BCR stimulation also activates JAK2/STAT3 signaling.63 In
mice, JAK1/2 blockade with ruxolitinib inhibited multiple murine
cGVHD features.64 Clinical responses were reported in a survey of
patients with SR-cGVHD treated with ruxolitinib.64 On the basis
of these promising results, a phase 3 multicenter ruxolitinib trial for
treating SR-cGVHD65 is in progress. How the B-cell compartment is
affected by these agents is unclear.

Pirfenidone inhibits TGF-b receptor signaling; downregulates
NLRP3 inflammasomes, growth factors, and procollagen I and II;
and is FDA approved for treating idiopathic pulmonary fibrosis.
Pirfenidone treatment of established murine cGVHD restored
pulmonary function and reversed lung fibrosis and was associ-
ated with reduced pulmonary macrophage infiltration and
TGF-b production.66 How B cells are affected by agents that
block fibrotic pathways requires further investigation.

Autoreactive B-cell regulation is mediated via Tregs. Tregs have
the capacity to control recipient reactive B cells, with their ex-
pansion and survival dependent upon IL-2 production by T ef-
fector cells.67 Thus, low-dose IL-2 infusion has been tested as
cGVHD treatment. A phase 1/2 study showed that exogenous IL-2
increased Tregs and improved cGVHD.68,69 On the basis of the
defects in Tregs reported for patients with cGVHD, 31,48 a clinical
study analyzed the feasibility and efficacy of human expanded
Tregs administered to patients with cGVHD.70 The study reported
that 2 of 5 treated patients achieved a complete remission.

Summary and outlook
Recent advances in our understanding of the role of B cells in
cGVHD pathogenesis have paved the way for novel strategies

that target activation, expansion, survival, and Ab production
of B cells. Studies are urgently needed, because the first-line
gold standard for cGVHD therapy remains steroids, which have
multiple severe adverse effects. Both mouse and human studies
of B-cell pathways have been a major driver in testing the
aforementioned novel therapies. These drugs were in some
instances already clinically applied in other diseases. In spite of
their potential clinical benefit, an important clinical consideration
is that cGVHD is connected to overall reduction in relapse.71

Thus, overly intensive cGVHD prevention may lead to reduced
graft-versus-leukemia activity. Clinical judgment, the application
of the NIH criteria for cGVHD diagnosis and scoring,4,72 novel
cGVHD biomarkers,73 andmeasurement tools will be essential to
make clinical meaningful progress in cGVHD treatment via B-cell
targeting.
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