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KEY PO INT S

l The spleen but not
bone marrow
microenvironment
induces CD44v6
variants in CLL, which
promote early
engraftment.

l CD44v6 expression is
linked to NF-kB and
MAPK signaling in
murine and human
B-cell leukemia and
contributes to
proliferation.

Chronic lymphocytic leukemia (CLL) outgrowth depends on signals from the microenvi-
ronment. We have previously found that in vitro reconstitution of this microenvironment
induces specific variant isoforms of the adhesion molecule CD44, which confer human CLL
with high affinity to hyaluronan (HA). Here, we determined the in vivo contribution of
standard CD44 and its variants to leukemic B-cell homing and proliferation in Tcl1 trans-
genic mice with a B-cell–specific CD44 deficiency. In these mice, leukemia onset was
delayed and leukemic infiltration of spleen, liver, and lungs, but not of bone marrow, was
decreased. Competitive transplantation revealed that CLL homing to spleen and bone
marrow required functional CD44. Notably, enrichment of CD44v6 variants particularly in
spleen enhanced CLL engraftment and proliferation, along with increased HA binding. We
recapitulated CD44v6 induction in the human disease and revealed the involvement of
MAPK and NF-kB signaling upon CD40 ligand and B-cell receptor stimulation by in vitro
inhibition experiments and chromatin immunoprecipitation assays. The investigation of
downstream signaling after CD44v6-HA engagement uncovered the activation of extra-
cellular signal-regulated kinase and p65. Consequently, anti-CD44v6 treatment reduced

leukemic cell proliferation in vitro in human and mouse, confirming the general nature of the findings. In summary, we
propose a CD44-NF-kB-CD44v6 circuit in CLL, allowing tumor cells to gain HA binding capacity and supporting their
proliferation. (Blood. 2018;131(12):1337-1349)

Introduction
The pathophysiology of chronic lymphocytic leukemia (CLL)
heavily depends on the tumor microenvironment.1 CLL cells that
circulate in peripheral blood (PB) lack intrinsic proliferative ca-
pacity. However, this quiescence can switch to proliferation once
leukemia cells infiltrate lymphoid organs and receive activating
signals by the microenvironment.2 Novel kinase inhibitors such
as ibrutinib disturb this communication, with great clinical suc-
cess.3 They reduce CLL cell proliferation within lymphoid organs
and mobilize leukemic cells into the periphery, preventing their
further activation. However, how proliferative and adhesive
signals cooperate in CLL is not understood yet.

CD44 comprises a set of transmembrane glycoproteins that
are required for many cellular functions, including adhesion and
activation. CD44 was 1 of the first described homing receptors
and has been suggested as a cancer stem cell marker in various

tumors.4,5 TheCd44 gene encodes amultitude of CD44 isoforms
(variants) collectively termed CD44v, which are generated by
alternative splicing of up to 10 variant exons between exon 5 and
6 of the CD44 standard isoform (CD44s).6 Resting lymphocytes
express CD44s, whereas the alternative isoforms are induced by
activation of the cells.6 In contrast, many tumor cells constitutively
express CD44v.6 We previously observed that resting CLL cells
display only minor levels of CD44v, but upon CD40L stimulation,
glycosylated variants, particularly CD44v3 and CD44v6, are
transcribed.7 This changes the binding affinity of CD44 to itsmajor
ligand hyaluronan (HA) and results in enhanced adhesive capacity
of CLL cells to stromal cells.7

Signaling cascades involved in CD44v induction and functional
consequences for CLL pathophysiology remained to be eluci-
dated. Here, we addressed the in vivo contribution of CD44 and
its high-affinity isoforms to CLL progression in an organ-specific
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manner by using a conditional B-cell–specific Cd44 knockout
model on basis of the well-established Tcl1 transgenic (Tcl1-tg)
CLL murine model. Tcl1-tg mice develop an aggressive CLL-like
disease, in which CD51/CD191 expressing cells are first found
in the peritoneal cavity (PC) at an age of 2 to 3 months, later
followed by a spread of leukemic cells through the circulation
and into the lymphoid organs.8 Removal of Cd44 on malignant
cells in this model allowed us to define a key contribution of
CD44v6 to leukemic B-cell proliferation, signaling, and CLL
progression in vivo.

Methods
Mice
Tcl1-tg mice were obtained from Carlo Croce.8 CD19Cre mice9

(strain 006785) were purchased from Jackson Laboratories.
Cd44flox/flox mice were described.10 Genotyping was performed
by polymerase chain reaction (PCR), and CD44 deficiency was
confirmed by flow cytometry. Leukemia onset and progression
were monitored by regular flow cytometric tumor load quanti-
fication in PB. Absolute cell numbers were determined using
Flow-Count Fluorospheres (Beckman Coulter) or the EVE au-
tomatic cell counter (NanoEnTek).

Patient samples
Human peripheral blood mononuclear cells (PBMCs) of CLL pa-
tients were isolated and cultured as described.11 Prognostic factors
were determined as described.12-14 For patient characteristics, see
supplemental Table 1, available on the Blood Web site.

Antibodies and reagents
Antibodies are listed in supplemental Table 2.

Flow cytometry
Murine cells and human PBMCs were stained with specific an-
tibodies (supplemental Table 2) or corresponding isotype con-
trols. To detect intracellular antigens, cells were fixed and
permeabilized with BD Cytofix/Cytoperm Kit (BD Biosciences).
To detect HA binding, cells were incubated with HA-FITC
(AbLab) or HA-TAMRA (Creative Peg Works) for 15 minutes at
room temperature.

In all experiments, leukemic cells were identified by anti-CD5
and anti-CD19 stainings. Viable cells were identified using fix-
able viability dye. Measurements were performed using the
FC-500 or Gallios system (Beckman Coulter).

Histology
Spleens, bone marrow (BM), lymph nodes, livers, lungs, and
kidneys from Tcl1-tg mice and C57BL/6J wild-type mice with
and without B-cell–specific CD44 deficiency were fixed in 4%
formalin for 24 hours at room temperature, subsequently em-
bedded in paraffin, cut into 4-mm sections, and stained with
hematoxylin and eosin.

RT-PCR
Murine leukemic cells were selected with EasySep Mouse B-cell
Isolation Kit (STEMCELL Technologies) for .96% purity. RNA
isolation and complementary DNA (cDNA) synthesis were per-
formed as described.11 For detection of CD44v transcription by
reverse transcription PCR (RT-PCR), cDNA from leukemic cells

was amplified by panCD44 or CD44 variant exon-specific pri-
mers and visualized by agarose gels. Primers are listed in sup-
plemental Table 3.

Adoptive transfers
Splenocytes (0.5-15 3 106) were IV injected IV into C57BL/6J
wild-type mice (Javier Laboratories). For competitive transplan-
tation experiments, equal numbers of CD44-deficient or intact
CD51/CD191 cells were used for staining with CellTrace Violet
(CTV) or carboxyfluorescein succinimidyl ester (CFSE) Cell Pro-
liferation Kit (Thermo Fisher). The ratio in the final mixture was
determined again. For anti-CD44 treatment studies, splenocytes
were incubated with anti-CD44 (clone KM201, 5 mg/mL) for
20minutes at 37°Cwhere indicated. After 3 hours or 3 days, mice
were sacrificed, and the number of CD51/CD191 cells that had
homed to BM, spleen, and PB was detected using CD5- and
CD19-specific antibodies and CellTrace dye. Homing rate was
calculated as described.12,15 Proliferation after 3 days was de-
termined using CellTrace dye dilution.

CLL PBMCs were treated with anti-CD44 (515 Fab fragment,
5 mg/mL) for 10 minutes at 37°C where indicated. Human
homing assays were previously described.12

Whole transcriptome analysis
Gene expression profiling of splenic B cells from Tcl1-tg,
Cd44DB Tcl1-tg, C57BL/6J, and Cd44DB C57BL/6J mice was
performed after sorting of tumor cells (CD51/CD191) or healthy
B cells (CD52/CD191) from diseased and age-matched healthy
animals of each genotype (4 mice each group). Purity after
sorting was .95%. Clariom S assay (Affymetrix) was performed
by the Center of Competence for Fluorescence Bioanalytic and
Microarray Technology, Germany. Data were analyzed using the
Transcriptome Analysis Console (Affymetrix).

Gene set enrichment analysis (GSEA)
Gene sets were manually curated from the MSigDB_v4.0 data-
base (Broad Institute). GSEA was performed as previously de-
scribed,16 considering gene signatures that obtained a significant
(P , .05, false discovery rate [FDR] , 25%) enrichment score.
Signatures with ,10 genes or .500 genes were filtered out.

Cell culture
Splenocytes were cultured 24 to 48 hours with or without M2-
10B4 stromal cells (ATCC-CRL-1972) and treated with 5 mg/mL
anti-CD44v6 (clone 9A4) or anti-panCD44 (clone KM201) where
indicated.

Human CLL PBMCs were cultured with or without Human
T-Activator CD3/CD28 Dynabeads (Thermo Fisher) for 24 to
120 hours as described.2 In addition, CLL PBMCs were cultured
with or without M2-10B4 stromal cells, or NIH3T3 fibroblasts
transfectedwith CD40L or empty vector, kindly provided by Arnon
Kater.17 Cells were treated with 10 mg/mL anti-immunoglobulin
M (IgM) F(ab’)2, 1 mM ibrutinib for 24 hours, or with 10 mg/mL
high-molecular-weight HA for 10 minutes where indicated.

Western blotting
Isolated CD51/CD191 cells from CLL patients (purity .96%)
were analyzed as described11 using primary antibodies against
phosphorylated and unphosphorylated inhibitory NF-kB inhibitor
(IkB), IkB kinase (IKK), and actin.
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Inhibition assays
For NF-kB inhibition assays, PBMCs from CLL patients were
preincubated for 30 minutes with 20 mM of the caspase inhibitor
Q-VD-OPh and subsequently for 1 hour with 10 mM of the NF-kB
inhibitor BAY-11-7082 (Sigma-Aldrich). Medium was removed;
fresh medium was added, and cells were seeded on NIH3T3 fi-
broblastswith orwithoutCD40Lexpression. ForMEK inhibition, cells
were treated with 2 or 10 mM Cobimetinib (APExBIO) for 24 hours.

Chromatin immunoprecipitation
Mec1 cells (ACC 497, DSMZ) were authenticated by DNA fin-
gerprinting and passaged ,6 months. Chromatin immunopre-
cipitation (ChIP) was performed as described using tumor necrosis
factor-a (TNF-a)–stimulated Mec1 cells.11 Primers were designed
based on in silico ENCODE-project data18 to validate the p65-
binding region starting at position 1128 relative to the tran-
scriptional start site of CD44 (NM_001001392): primer: “p65
binding region fw”: 59-GCAAATCCCAGCCCTGCTTTCC-39;
“p65 binding region rv”: 59-CAAGATGGGTGCGGGGTGCT-39.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 5. Box
plots are shown with whiskers from minimum to maximum.
All data sets were tested for normal distribution using the
Kolmogorov-Smirnov test. Outliers according to the Grubbs’ test
were excluded from analysis. Two groups of normally distributed
data were compared using the paired or unpaired Student t test
and nonparametric data sets were analyzed for paired analysis
with theWilcoxon signed-rank tests or for unpaired analysisMann-
Whitney U test. Three or more groups of data were analyzed with
the 1-way analysis of variance with post hoc tests. Results were
considered significantly different when P , .05, with values at
*P , .05, **P , .01, and ***P , .001. Nonsignificant differences
were marked as ns.

Study approval
Blood samples were obtained upon written informed consent
(Ethics committee Salzburg approval: 415-E/1287/4-2011, 415-
E/1287/8-2011, 415-E/1287/13-2016) from CLL patients at
the Third Medical Department, Paracelsus Medical University,
Salzburg. Animal experimentation approval numbers are 20901-
TVG/89/7-2014 and 20901-TVG/52/11-2012.

For the experiment procedures of the supplemental figures, see
supplemental Methods.

Results
CD44 deficiency of murine B cells delays leukemic
onset by modulating tumor infiltration of spleen
We used the Tcl1-tg model, mirroring human CLL to study the in
vivo expression and function of CD44 in lymphoid organs.We first
analyzed CD44 protein levels of CD51/CD191 cells derived from
spleen, BM, lymph nodes, PC, blood, and liver of Tcl1-tg mice
with overt leukemia by flow cytometry (Figure 1A). CD51/CD191

cells in all organs, except lymph nodes and PC, displayed sig-
nificantly increased CD44 expression compared with normal
B cells (CD52/CD191 cells; Figure 1A) or B1a cells (CD51/CD191;
supplemental Figure 1) derived from wild-type animals. CD44
intensity correlatedwith the number of infiltrating leukemic cells in

spleen, blood, and liver, but not in the other investigated organs
(Figure 1B).

Next, by crossing Tcl1-tg mice with CD19Cre9 and Cd44flox/flox

mice,10 we established a unique CLL mouse model with a
B-cell–specific Cd44 knockout, CD19Cre/1 Cd44flox/flox Tcl1-tg
mice, henceforth referred to as Cd44DB Tcl1-tg. This condi-
tional model allowed us to dissect the contribution of CD44
expressed on leukemic cells without affecting CD44 in the
microenvironment. CLL development in blood of Cd44DB Tcl1-
tg mice compared with parental Tcl1-tg mice and to non-
leukemic C57BL/6J wild-type mice was regularly assessed. Three
months after birth, Tcl1-tg mice developed a population of leu-
kemic CD51/CD191 B cells, whereas Cd44DB Tcl1-tg animals
lacked leukemia. At the age of 5 months, the tumor load of
Cd44DB compared with CD44 intact Tcl1-tg animals was still
significantly reduced, but with increasing age, the mice de-
veloped normal leukemia (Figure 2A)with no significantly different
survival rates (supplemental Figure 2A). The CD44 knockout
was highly efficient and tightly restricted to the B-cell lineage
in spleen, BM, lymph node, liver, PC, and blood of sacrificed
moribund end-stage CLL mice (supplemental Figure 2B). CD44
expression on other cell types like T cells was normal (supple-
mental Figure 2C).

Histology of spleen, lungs, and liver at end-stage CLL (10-12
months) revealed residual intact structures of Cd44DB Tcl1-tg
organs, whereas a strong leukemic infiltration disrupted the
organ architecture in CD44-proficient mice. Unexpectedly,
B-cell–specific CD44 depletion did not affect leukemic in-
filtration of BM (Figure 2B). Lower leukemic infiltration in spleens
of Cd44DB Tcl1-tg mice was paralleled by decreased spleen size
and weight (Figure 2C), confirmed by flow cytometric de-
termination of the absolute CD51/CD191 cell count in spleen
and BM (Figure 2D). Collectively, CD44 was not essential for
accumulation of leukemic cells in BM but important for their
accumulation in spleen, restricting initial phases of CLL.

CD44 is primarily required for early leukemic B-cell
engraftment in spleen
Having observed a spleen-specific but not BM-specific association
of CD44 with the degree of leukemic infiltration, we next analyzed
the homing and engraftment capacity of CD44-proficient and
CD44D leukemic B cells by competitive adoptive transfers.
Splenocytes of Cd44DB Tcl1-tg- and CD44-proficient Tcl1-tg
animals were labeled with different proliferation dyes, mixed,
and coinjected IV into wild-type syngeneic mice. Mice were
sacrificed after 3 hours (short-term homing, allowing leukemia cell
entry into organs but noproliferation) or 3 days posttransplantation
(engraftment, which includes first proliferation events). Injected
CD51/CD191 cells were cytometrically identified in spleen and
BM (Figure 3A). CD44 intact leukemic B cells had a significantly
greater capacity to home within 3 hours to both BM and spleen,
compared with CD44DB leukemic B cells (Figure 3B). Within 3
days, CD44 intact leukemic B cells, compared with CD44DB
cells, transversed the cell cycle in spleen more often, promoting
early engraftment (Figure 3C). However, BM engraftment did not
consistently depend on CD44, suggesting its selective role in
CLL entry to BM rather than its proliferative capacity in this organ.
Dye-swap control experiments confirmed these results (data
not shown).
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Consistent with the competitive transfers, treatment of CD44-
proficient leukemic B cells by a blocking anti-CD44 antibody
abrogated their homing capacity to spleen and BM (Figure 4A-B).
Residual BM homing was still dependent on VLA-4 (CD49d/
CD29) (supplemental Figure 3A), confirming our previous
data.12 However, the CD49d expression on CD51/CD191 cells
from Cd44DB Tcl1-tg was significantly decreased compared
with CD51/CD191 cells from Tcl1-tg mice (supplemental
Figure 3B).

To validate these observations in human CLL, we performed
short-term adoptive transfers of human CD49d1 CLL PBMCs
(4 patients with mutated IgVH genes [MCLL], 3 patients with
unmutated IgVH genes [UMCLL] ) into immunodeficient mice, as

previously established.12,15,19 Pretreatment of PBMCs with anti-
CD44 Fab fragments (clone 515), reported to block CD44
binding of HA,20,21 significantly reduced CLL cell homing to
spleen. BM homing was also reduced by CD44 blockage but not at
statistical significance (P 5 .0778) (Figure 4C). Collectively, these
results indicate that the murine spleen contains unique niches for
CD44-mediated homing and survival of both murine and human
CLL cells.

CD44-deficient leukemic cells harbor decreased
NF-kB activation and proliferative disadvantages
We next determined expression of the activation marker CD86
and the proliferation marker Ki-67 of leukemic B cells derived
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Figure 1. CD44 is overexpressed on leukemic cells of Tcl1-tg mice compared with healthy B cells of wild-type mice and is associated with organ infiltration. (A) CD44
surface expression on viable CD51/CD191 leukemic cells of Tcl1-tg mice and CD52/CD191 healthy B cells of C57BL/6J wild-type mice was assessed by flow cytometry (mean
fluorescence intensity ratio, MFIR). (B) CD44 expression on CD51/CD191 cells in lymphoid organs of Tcl1-tg mice correlates with the percentage of CD51/CD191 CLL cell
infiltration in spleen (SPL), liver (LIV), and blood (BL) but not BM, lymph node (LNP), and PC. Pearson correlation was determined.
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from spleen and BMof Tcl1-tg andCd44DB Tcl1-tg animals. CD44
deficiency was paralleled by significantly reduced CD86 expres-
sion (Figure 5Ai). Spleen-derived leukemic B cells, compared with
those derived from BM, expressed significantly higher per-
centages of Ki-671 cells. In spleen, Ki-67 expression was reduced
when CD44 was depleted. In BM, Ki-67 expression was slightly,

yet not significantly, different in Tcl1-tg and Cd44DB Tcl1-tg
mice (Figure 5Aii). Using genome-wide transcriptomics, we ex-
amined relative changes in gene expression of splenic leukemic
cells derived from diseased Tcl1-tg vs diseased Cd44DB Tcl1-tg
mice, 4 mice, respectively. Figure 5B presents unsupervised hier-
archical clustering of these transcriptomic data, with 35 differentially
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Figure 2. B-cell–specific CD44 deletion leads to a delayed leukemic onset and reduced tumor infiltration in vivo. (A) A CLL mouse model with a B-cell–specific Cd44
knockout, henceforth the Cd44DB Tcl1-tg mouse, was established. The amount of PB CD51/CD191 cells per microliter in wild-type, Tcl1-tg, and Cd44DB Tcl1-tg mice was
measured by flow cytometry during early disease development (3 and 5 months) and progressive disease (7 and 9 months). (B) Organ infiltration of Tcl1-tg and Cd44DB Tcl1-tg
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regulated genes (supplemental Table 4), applying a twofold change
cutoff and P, .05, among themmembers of the MAPK and NF-kB
pathways. In addition, subjecting the raw microarray data to GSEA
identified transcriptional changes in gene sets of B-cell–specific
NF-kB targets (Jain NFKB_Signaling set; Figure 5Ci), also in the
context of proliferation (Hallmark_MYC_targets; Figure 5Cii).
Notably, these alterations were specific for malignant cells, with
only 9 genes altered in CD44 intact vs CD44DB spleen samples of
C57BL/6J wild types (data not shown). Thus, the association
between CD44 and NF-kB signaling is pronounced in malignant
rather than normal B cells.

Spleen-derived leukemic cells express CD44v6 with
high affinity to HA contributing to proliferation
The spleen-specific CD44-dependent proliferation of leukemic
B cells points to a differential CD44 ligand binding activity and
isoform composition in this environment. We determined the HA
binding capacity of leukemicB cells derived fromTcl1-tg spleen vs
BM by flow cytometry using fluorescein-labeled HA. Spleen-
derived leukemic B cells retained the capacity to bind HA ex
vivo in a CD44-mediated manner. Stromal cell contact further
increased this capacity. In contrast, BM-derived leukemic B cells
displayed low affinity toward HA (Figure 6A). To elucidate the

human CLL cells

A

NOD/SCID mice

C57BL/6J wild-type mice

50

40

30

SS
CD

19
-P

C7
CD

19
-P

C7

FS

CD45-PC5

CD5-FITC

CLL cells
86.70

T cells
9.53

20

10

103

103

102

102

101

101
100

103

102

101

100

100

103102101100

total cells
47.24

CD45+
0.21

0
0 50 100 150 200

murine Tcl1-tg splenocytes

UTC
3 hours

αCD44

B

αCD44UTC
0

500

1000

1500

2000

2500 *

SPL

Ho
m

in
g 

ra
te

αCD44UTC

800 **

600

400

200

0

BM

Ho
m

in
g 

ra
te

C

αCD44UTC

5000
*

2500

1000

800

600

400

200

0

SPL

Ho
m

in
g 

ra
te

αCD44UTC

1500 ns

1000

500

0

BM

Ho
m

in
g 

ra
te
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molecular basis for the differential affinity, we systematically ex-
amined the CD44v composition of leukemic B cells isolated from
spleen and BM of Tcl1-tg mice with respect to variants 3, 6, 7,
and 10, suggesting v6 as the major differentially regulated exon
(data not shown). RT-PCR analysis confirmed the expression of

long variants containing v6 in Tcl1-tg spleen but not BM, whereas
CD44s expression was similar in both organs (Figure 6Bi-ii).
Sequencing of bands confirmed CD44v6-containing iso-
forms, in variable combinations with v4 and v5 (supplemental
Table 5). Notably, the lymph node microenvironment similarly to
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spleen induced v6-containing variants (Figure 6Biii; supplemental
Table 5).

We next tested whether CD44v6 directly contributes to tumor
proliferation using cocultures of Tcl1-tg splenocytes (containing
leukemia cells and autologous T cells) with stromal cells. To that
end, we analyzed the Ki-67 rates of the leukemic cells, identified
by their CD5/CD19 coexpression. Treatment with anti-panCD44

and with a specific anti-CD44v6 antibody similarly impaired
tumor cell proliferation, suggesting the dominant role of
CD44v6 (Figure 6Ci, CLL cell viability; Figure 6Cii). This ob-
servation was further confirmed in a second set of experiments,
counting absolute cell numbers (supplemental Figure 4A).
Leukemic cell division upon Tcl1-tg splenocytes coculture with
stromal cells was also monitored using CTV (supplemental
Figure 4B).
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NF-kB machineries in human CLL cells induce
CD44v6 and support their proliferative capacity
We next validated our observations in human CLL. First, we
screened 343 CLL blood samples for CD44v6. Only 4% (15
cases) of these mostly quiescent samples expressed basal
CD44v6 expression, consistent with our previous observation.7

Notably, 14 of the 15 cases displayed unmutated IgVH genes,
indicating active B-cell receptor (BCR) signaling22,23 linked to
CD44v6. CD44v6 positivity was also associated with ZAP-70
expression, but not with CD38 and CD49d positivity (supple-
mental Figure 5A). We also found that within these samples,
the CLL subset, that had recently proliferated and emigrated
from lymphoid organs, defined by the bright CD5 (CD5bright)
and diminished CXCR4 (CXCR4dim) expression signature,24 dis-
played further increased CD44v6 levels (Figure 7A). In line with
this finding, CD44v6 and CXCR4 expression correlated nega-
tively, and CD44v6 and CD5 expression correlated positively,
both in a linear manner (supplemental Figure 5B).

We next incubated resting CD44v6-negative CLL cells with ac-
tivated T cells or with CD40L-overexpressing fibroblasts, stimuli
that promote CLL proliferation,2 thereby inducing de novo
CD44v6 expression (Figure 7Bi). BCR stimulation by anti-IgM also
resulted in CD44v6 induction, which was reversed by ibrutinib
treatment (Figure 7Bii). Notably, in normal B cells, IgM andCD40L
stimulation induced comparable CD44v6 induction and activation
(supplemental Figure 5Ci-ii), suggesting CD44v6 modulation as a
general immunological feature of B-cell activation.

These observations suggested an involvement of the MAPK and
the NF-kB signaling pathways in the induction of CD44v6. We
first used the MEK inhibitor cobimetinib as a tool to investigate
the contribution of MAPK pathway to CD40L-induced CD44v6
expression. Indeed, cobimetinib inhibited CD44v6 induction in a
dose-dependent manner (Figure 7C). Next, we tested active
NF-kB signaling after CD40L stimulation, which revealed higher
phospho–inhibitor of NF-kB subunit beta (IKKB) a and phospho-
IkB a (Figure 7Di). Pretreatment of CLL cells with an NF-kB
inhibitor before their stimulation with CD40L prevented the
induction of CD44v6 expression (Figure 7Dii) and their activation
(CD69; Figure 7Diii). To overcome toxicity of the NF-kB in-
hibition, an additional caspase inhibitor was used to block ap-
optosis (supplemental Figure 5D). Finally, to analyze whether the
NF-kB subunit p65 directly binds the CD44 promoter, we per-
formed ChIP assays using stimulated Mec1 cells, a CLL patient-
derived cell line. ChIP with anti-p65 but not with control IgG
resulted in robust enrichment of the CD44 promoter fragment
containing the predicted NF-kB binding sites (Figure 7Div).
These results collectively suggest that microenvironment-
induced NF-kB signaling can directly regulate CD44 mRNA
expression and selective splicing of CD44 variants.

Having elucidated the upstream modulation of CD44v6, we next
investigated downstream effects of CD44v6 induction and func-
tion. HA treatment of unstimulated CLL cells with low CD44v6
expression (range 0.8% to 7.2% CD44v6) directly induced
phosphorylation of extracellular signal-regulated kinase (ERK), as
assessed by phospho flow cytometry (Figure 7E). Upon CD40L
stimulation, phospho-ERK and phospho-p65 levels were further
increased, in line with their increased CD44v6 expression, up to
60% (data not shown). Importantly, cells capable of binding HA
had higher phospho-ERK and phospho-p65 levels (Figure 7F).
Finally, both anti-CD44v6 and anti-panCD44 antibody treatment
interfered with CD40L-stimulated CLL proliferation (Figure 7G),
and blockingCD44v6with an isoform-specific antibody25 reduced
the division of the CLL subcohort with basal CD44v6 expression
(supplemental Figure 6). Collectively, the data suggest a circuit of
CLL proliferation, CD44v6 expression, and function, which in-
volves the activation of NF-kB and MAPK pathways members
both upstream and downstream of CD44v6.

Discussion
The functional activity of CD44 is tightly regulated by transcrip-
tional splicing.6 Occurrence of CD44v6 has been attributed to
malignancy,6 but its regulation and signaling are not well un-
derstood. Here, we established a conditional murine CLL model
with a B-cell–specific CD44 knockout and provide evidence for the
robust association of CD44v6 expression on spleen-derived CLL
cells with accelerated proliferation and leukemic dissemination.We
found substantial differences of the spleen and BM microenvi-
ronments regarding their ability to induce CD44v6 variants. We
also describe a link between CD44v6 expression, MAPK signaling,
and NF-kB machineries, shared by both murine and human CLL.

The Tcl1-tg mouse reproduces leukemia with a similar course to
aggressive human CLL.26 In human CLL, tumor cells divide mainly
in secondary lymphoid organs, where accessory cells (eg, stromal
cells and T cells) provide the suitable environment to maintain
proliferation and survival.24 In the Tcl1-tg CLL model, the spleen is
the dominant proliferative compartment, where follicular dendritic
cells within splenic B-cell follicles support CLL survival.27 Ac-
cordingly, we found the highest proliferation rates in the spleen of
Tcl1-tg mice. Expression of CD44 on splenocytes was particularly
relevant for early disease dynamics and leukemic dissemination by
shaping homing, engraftment, and proliferation in this organ.

Investigating the underlying signaling pathways, we found that
splenic B cells lacking CD44 display reduced NF-kB transcript
signatures. This is consistent with the fact that the long-term
maintenance of any mature B cell critically depends on NF-kB.28,29

Mature splenic B cells exhibit higher constitutive activity of NF-kB
than many other leukocytes and, according to the name, NF-kB
was discovered as a “nuclear factor ‘kappa-light-chain-enhancer’ of

Figure 7 (continued) determined by flow cytometry (n5 4). (C) PBMCs from CLL patients were cultured with NIH3T3 fibroblasts or 3T40L and treated with 2 or 10mM cobimetinib for
24 hours. CD44v6 surfaceexpressionwasdeterminedby flowcytometry (n5 5). (Di) Protein lysates from isolatedCLL cells (patients 1-3, PAT 1-3) that were culturedwithNIH3T3 fibroblasts
transfected with or without CD40L for 24 hours were tested for their IkB a, phospho-IkB a, IKK a (upper band), and phospho-IKK a (upper band) b (lower band) content by western blot.
(Dii-iii) PBMCs from CLL patients were treated for 0.5 hour with pan-caspase inhibitor (Q-VD-OPh) and an NF-kB inhibitor (BAY11-7082) for 1 hour and then cultured with NIH3T3
fibroblasts transfectedwith or withoutCD40L for 24 hours. (ii) CD44v6 and (iii) CD69 surface expression on viable CD51/CD191CLL cells was determined by flow cytometry (n5 8). (iv) p65
ChIP analysis of the Cd44 promoter was conducted using an NF-kB activated, CLL patient-derived cell line Mec-1 (bars, mean 6 standard deviation). One representative out of 3
independent experiments, performed in duplicates, is shown. (E) Unstimulated PBMCs fromCLL patients were cultured for 24 hours and treatedwith HA for 10minutes. Phosphorylation
of ERK was measured in CD51/CD191CLL cells via flow cytometry (n5 5). (F) PBMCs from CLL patients were cultured with NIH3T3 fibroblasts transfected with or without CD40L for 24
hours. HA binding and phosphorylation of p65 (i) and ERK (ii) were measured via flow cytometry (n5 5). (G) PBMCs from CLL patients were cultured with NIH3T3 fibroblasts transfected
with or without CD40L for 72 hours with or without anti-CD44v6 or anti-panCD44 antibody. Intracellular Ki-67 expression was determined by flow cytometry (n 5 6).
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activated B cells.”30 Importantly, the basal activity of this pathway is
further upregulated in tumors.31 Tcl1-tgmice recapitulate the human
situation, with NF-kB cascades in lymphoid organs triggered by
BCR signaling or microenvironmental signals, shaping CLL
pathophysiology.32,33 We found that CD44v6 expression and HA-
binding capacity are linked to active MAPK and NF-kB signaling,
critical for CLL proliferation. Oppositely, we also observed that
both pathways induce the active CD44 isoform CD44v6, pro-
posing an upstream and downstreamMAPK/NF-kB-CD44 circuit.
This implies that therapies suppressing NF-kB signaling, as de-
scribed for ibrutinib, for example,34 will result in reduced CD44v6
expression and function, and that CD44v6 could serve as a
biomarker to monitor active disease under therapy.

Using a germline CD44 knockout model, Fedorchenko et al de-
scribed that CD44 serves as a prosurvival factor during disease de-
velopment of Tcl1-tg mice. 35 Several other groups reported on the
contribution of CD44-mediated processes to cell survival in vitro by
acting in part through a multiprotein complex comprising CD44,
MMP9, and VLA-4.36-39 Our B-cell–specific model allows for the first
time the differentiation between the contribution of CD44 expressed
on CLL cells vs CD44 expressed by cells of the microenvironment. It
revealed the transforming and proliferative nature of CD44v6 rather
than CD44s expressed by the leukemic cells, which we propose to
function during early disease onset, leukemic engraftment, and
spreading. This contrasts the late and survival phenotype observed
by Fedorchenko et al,35 which might also involve a contribution of
CD44 expressed on accessory cells, such as T cells or macrophages.

Our data are consistent with the previous suggestion of CD44 as
a leukemia stem cell molecule,5 and the association of CD44v6
variants with poor prognosis and metastasis in various tumors.40

However, we propose that particularly the switch between
standard CD44 and CD44v6 modulates leukemia initiation and
progressive disease. We also provide direct functional evidence
that CD44v6-HA interactions support malignant B-cell pro-
liferation, which is linked to the higher adhesive capacity of the
tumor cells to their HA-bearing prosurvival stromal elements.
Notably, CD44 deficiency in healthy B cells of C57BL/6J mice
had far less impact on the whole transcriptome, consistent with
previous observations using germline CD44 knockout models
that displayed only minor or no phenotypes in respect to
recirculation and differentiation of lymphocytes.41

Our data suggest CD44v6 as a marker for active disease in B-cell
and other malignancies. A CD44v6-specific targeting may allow
the reduction of described side effects of anti-panCD44
antibodies,42-45 which bind CD44 abundantly expressed by
other cell types. In this regard, it is interesting that T cells that
were engineered to target CD44v6 variants exert potent anti-
tumor effects in both acute myeloid leukemia and multiple
myeloma.46 CD44v6 targeting by peptides44 as well as newly

engineered CD44v-specific chimeric antigen receptor T cells
may be novel tools to treat hematological and other tumors.

Taken together, on basis of our in vivo murine model and our
various ex vivo and in vitro approaches, we propose that MAPK
and NF-kB–regulated CD44v6 variants on leukemic B cells with
high affinity to HA rather than the standard CD44 isoform with
low affinity to HA promote B-cell leukemia progression.

Acknowledgments
The authors thank all the patients for their participation in this study. The
authors also thank Christoph Ratswohl for helpful revision of the man-
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