
Regular Article

THROMBOSIS AND HEMOSTASIS

Maintenance of murine platelet homeostasis by the kinase
Csk and phosphatase CD148
Jun Mori,1,* Zoltan Nagy,1,* Giada Di Nunzio,1 Christopher W. Smith,1 Mitchell J. Geer,1 Rashid Al Ghaithi,2 Johanna P. van Geffen,3

Silke Heising,1 Luke Boothman,1 Bibian M. E. Tullemans,3 Joao N. Correia,1 Louise Tee,1 Marijke J. E. Kuijpers,3 Paul Harrison,2

Johan W. M. Heemskerk,3 Gavin E. Jarvis,4 Alexander Tarakhovsky,5 Arthur Weiss,6 Alexandra Mazharian,1 and Yotis A. Senis1

1Institute of Cardiovascular Sciences and 2Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham,
United Kingdom; 3Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; 4Department of
Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; 5Laboratory of Immune Cell Epigenetics and Signaling, The
Rockefeller University, New York, NY; and 6Department of Medicine, Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center and Howard Hughes
Medical Institute, University of California, San Francisco, San Francisco, CA

KEY PO INT S

l Csk and CD148 are
nonredundant regulators
of SFKs in platelets, and
deletion of either induces
cell-intrinsic negative
feedback mechanisms.

l Csk is a negative
regulator of SFK
activity,whereasCD148
is a dual positive and
negative regulator of
SFK activity in platelets.

Src family kinases (SFKs) coordinate the initiating and propagating activation signals in
platelets, but it remains unclear how they are regulated. Here, we show that ablation of
C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice
results in a dramatic increase in platelet SFK activity, demonstrating that these proteins
are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice
exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following
injury rather than a prothrombotic phenotype. This is a consequence of multiple negative
feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based
activation motif (ITAM)– and hemi-ITAM–containing receptors glycoprotein VI (GPVI)-
Fc receptor (FcR) g-chain and CLEC-2, respectively and upregulation of the immu-
noreceptor tyrosine-based inhibition motif (ITIM)–containing receptor G6b-B and its
interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-
sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating

ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and
hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from
occurring. (Blood. 2018;131(10):1122-1144)

Introduction
Platelets are highly reactive fragments of megakaryocytes (MKs)
that interrogate the vessel wall and prevent excessive blood loss
following injury. They do so by adhering to exposed extracellular
matrix proteins and forming a thrombus that transiently occludes
the blood vessel, promoting wound repair and vessel regenera-
tion. However, it remains unclear how the reactivity of platelets in
the circulation is regulated.

Platelets contain high levels of Src family kinases (SFKs) that have a
coordinating role in initiating and propagating primary activation
signals.1,2 The 3 most abundant SFKs in human and mouse
platelets are Src, Lyn, and Fyn (supplemental Figure 1, available
on the Blood Web site).3,4 Src and Fyn act primarily as positive
regulators of platelet activation,5-8 whereas Lyn is both a positive
and negative regulator of activation.9,10 SFKs are constitutively
associated with the cytoplasmic tails of several important platelet
receptors, including the glycoprotein Ib (GPIb)–IX-V complex,11,12

the immunoreceptor tyrosine-based activation motif (ITAM)–
containing GPVI-Fc receptor (FcR) g-chain receptor complex,5,13

and the integrin aIIbb3.14,15 SFKs are also involved in transmitting
secondary activation signals fromGprotein–coupled receptors.16-21

Equally important, but less well understood are the inhibitory
functions of SFKs. Concomitant with phosphorylating ITAM-
containing receptors activating platelets,5,22 SFKs also phos-
phorylate immunoreceptor tyrosine-based inhibition motif
(ITIM)–containing receptors that inhibit platelets.23 The latter
recruit SH2 domain-containing phosphatases, including the
nontransmembrane protein-tyrosine phosphatases Shp1 and
Shp2,24-26 that inhibit platelet activation. The 2 most well-
characterized platelet ITIM-containing receptors are PECAM-1 and
G6b-B, which inhibit platelet activation and modulate platelet
homeostasis, respectively.27,28

Limited knowledge has been gained about how platelet SFKs
are regulated. SFKs are primed by dephosphorylation of the
C-terminal inhibitory phosphotyrosine residue by the receptor-
like tyrosine phosphatase CD45 in most hematopoietic cells29

and by CD148 in platelets.30-32 Primed SFKs need to be fully
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activated through trans-autophosphorylation of a tyrosine resi-
due located within the catalytic domain.33 On the other hand,
inactivation of SFKs can occur through the action of C-terminal

Src kinase (Csk) and the structurally related Csk homologous
kinase (Chk), also referred to as megakaryocyte-associated tyrosine
kinase (Matk), both of which target theC-terminal inhibitory tyrosine
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Figure 1. Aberrant platelet production and platelet receptor expressions in CskKOmice. (A) Platelet lysates were blotted for the indicated proteins. (B) Platelet counts. (C)
Percentage of reticulated platelets determined by thiazole orange1aIIb1 cells in blood. See also supplemental Figure 2A. (Di) Median fluorescence intensity (MFI) measured in
aIIb1 cells alone or aIIb1 cells costained for the indicated proteins in blood (n5 5-6mice per genotype). See also supplemental Figure 3. (Dii) Platelet lysates were blotted for the
indicated proteins. (Ei) Platelet counts of pre-/postinjection of anti-GPIba antibody (1.5 mg/g body weight). (Eii) The rate of platelet recovery determined by a proportionate
slope from linear trend lines between days 3 and 7 from panel Ei (n 5 7-8 mice per genotype). See also supplemental Figures 4-6. Asterisks refer to significant difference
compared with WT (*P , .05, ***P , .001; 1-way ANOVA with Tukey’s test in B-D or 1-way ANOVA with Dunnett’s test; vs WT in E); data represent mean 6 SEM.
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Figure 2. Increasedbleeding anddefective thrombus formation inCskKOandDKOmice. (A)Hemostatic responsewasmeasured in tail bleedingassaysby anexcisionof a 5-mm
portion of the tail tip followed by the determination of lost blood/body weight (normalized blood loss) (n5 11-57 mice per genotype). Tail bleeding assays were conducted in a double-
blindedmanner. (B) Laser injury–induced thrombus formation in vivo. Composite bright-field and fluorescence images of (Bi) platelet accumulation (green) or (Bii) fibrin generation (red) in
cremaster muscle arterioles monitored by DyLight488-labaled anti-GPIbb antibody (0.1 mg/g body weight) or Alexa Fluor 647–labeled anti-fibrin antibody (0.2 mg/g body weight) signal,
respectively by confocal intravital microscopy (scale bar, 10 mm). Each curve represents the median integrated fluorescence intensity of (Biii) platelets or (Biv) fibrin in relative fluorescence
units (RFUs) (n5 25-37; 5 mice per genotype). See also supplemental Videos 1 and 2. (C) FeCl3 injury-induced thrombus formation in vivo. Filter paper soaked in 10% FeCl3 was applied to
carotid artery for 3 minutes. (Ci) Representative fluorescence images of platelet accumulation (green) monitored by DyLight488-labeled anti-GPIbb antibody (0.1 mg/g body weight) by
confocal intravitalmicroscopy (scale bar, 200mm). (Cii) Each curve represents themedian integrated thrombus fluorescence intensity in RFU. (Ciii) Area under the curve (AUC)wasmeasured
(n 5 8-11 mice per genotype). See also supplemental Video 3. *P , .05, **P , .01, ***P , .001; 1-way ANOVA with Tukey’s test; data represent mean 6 SEM.
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residue in SFKs.34,35 However, it remains unknown how the
threshold of individual SFK activation is set in platelets

To address these questions, we generated a series of MK-
specific conditional knockout (KO) mouse models leading to
deletion of Csk, CD148, or Csk/CD148 and studied the con-
sequences of these deletions for platelet physiology. Disruption
of the homeostatic balance of SFK activity in MKs had dramatic
and unexpected consequences on the number and reactivity of
platelets in the circulation due to cell-intrinsic negative feedback

mechanisms involving the ITIM-containing receptor G6b-B and
Chk, culminating in antithrombotic and hemorrhagic outcomes.

Materials and methods
Mice
Cskfl/fl, CD148fl/fl, Pf4-Cre1, and CskAS mice were generated as
previously described.36-39 All mice were on a C57BL/6 back-
ground. All procedures were undertaken with United Kingdom
Home Office approval in accordance with the Animals (Scientific
Procedures) Act of 1986.

Antibodies and reagents
Thiazole orange (BD Retic-Count) was from BD Biosciences. PP1
analog IV (3-IB-PP1) was from Calbiochem. Antibodies are de-
scribed in detail in supplemental Methods.

Immune thrombocytopenia
Thrombocytopenia was induced as previously described.28

Platelet preparation
Blood was collected from terminally CO2-narcosed mice from
the abdominal vena cava into 1:10 (v/v) acid-citrate-dextrose
anticoagulant. Washed platelets were prepared as previously
described.40 Adenosine diphosphate (ADP)-sensitive washed
platelets were prepared in the presence of ADP scavenger
apyrase as previously described.41 Platelet counts were normalized
and used for spreading (23 107/mL), aggregation (23 108/mL), or
biochemical analysis (4-5 3 108/mL).

Platelet functional assays and biochemistry
Platelet aggregation, adenosine triphosphate (ATP) secretion,
spreading, clot retraction, platelet adhesion under flow, total
thrombus formation analysis system (T-TAS), stimulation for
biochemical analysis, immunoblotting, and immunoprecipita-
tion are described in detail in the supplemental Methods.

Flow cytometry
Reticulated platelets in blood were double stained with aIIb and
thiazole orange (BD Retic-Count; BD Biosciences). Surface protein
expression was measured in blood or bone marrow cells with
indicated FITC- or PE-conjugated antibodies by flow cytometry
(BD Accuri C6 for platelets; BD FACSCalibur for bone marrow
cells), as previously described.25,28

Tail bleeding assay
Experiments were performed on 8- to 10-week-old KO and litter-
matched wild-type (WT) mice as previously described.30

In vivo thrombosis assays
Laser-induced injury of arterioles in the cremaster muscle and
ferric chloride (FeCl3)-induced injury of carotid arteries were
performed and analyzed as previously described.42

Statistical analysis
Data presented are mean 6 standard error of the mean (SEM).
One-way or 2-way analysis of variance (ANOVA) followed by
post-hoc tests were used to determine statistical significance
(P, .05). Further details on statistical analysis are provided in the
supplemental Methods.
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Figure 2. (Continued).
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Figure 3. Aberrant platelet functions in Csk KO, CD148 KO, and DKO mice. (Ai) 25 mg/mL hirudin-treated blood was perfused with collagen-coated chip at 1000 s21 for
10 minutes. Individual time-dependent flow pressure curves and total thrombogenicity (area under the curve [AUC]) were measured by the total thrombus-formation analysis
system (T-TAS). (Aii) Blood treated with 3.2% sodium citrate, 12 mM CaCl2, and 50 mg/mL corn trypsin inhibitor was perfused on collagen plus tissue thromboplastin (tissue
factor)–coated chip at 240 s21 for 30 minutes. Individual time-dependent flow pressure curves, time to onset (T10), time to occlusion (T80), rate of thrombus growth (T10-80), and
AUC were measured by T-TAS (n5 4-9 per genotype). (B) Blood treated with 5 U/mL heparin, 40 mMPPACK, and 50 U/mL Fragmin was perfused over microspots with indicated
coatings; 100 mg/mL collagen I, 12.5 mg/mL vWF-BP, 50 mg/mL laminin, and 250 mg/mL rhodocytin for 3.5 minutes at 1000 s21. (Bi) Representative bright-field images with
indicated surfaces. (Bii) Platelet deposition (percent surface area coverage [SAC]). (Biii) Multilayered thrombus (percent SAC) on the collagen I surface. (Biv) Representative
fluorescence images of P-selectin, integrin aIIbb3 activation (JON/A), and PS exposure (Annexin V) from the collagen surface, and (Bv) percent SAC of fluorescence images. (Bvi)
Heatmap of outcome parameters expressed as effect sizes per genotype76; P1, platelet deposition; P2, multilayered thrombus; P3, P-selectin; P4, JON/A; and P5, PS exposure
from indicated surfaces. Scale bar represents 10 mm. Experiments and analysis were performed in a double-blindedmanner. Percent SAC was analyzed using Fiji (n5 15 images
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Results
Rescue of thrombocytopenia in Csk/CD148-
deficient mice
MK-specificCsk andCD148 conditional KO (Csk andCD148 KO)
mice were generated by crossing Cskfl/fl and CD148fl/fl mice with
Pf4-Cre1 transgenic mice, respectively.36-38 Csk/CD148 condi-
tional double KO (DKO) mice were also generated to determine

whether deletion of both enzymes simultaneously would rescue
phenotypes of single KO mice and to reveal novel mechanisms
of SFK regulation (Figure 1A).

Platelet count in Csk KO mice was reduced by 65% and platelet
volume increased by 33% (Figure 1B; supplemental Table 1),
suggesting defects in platelet production and/or clearance.
This was supported by a twofold increase in the proportion of
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reticulated, immature platelets in these mice (Figure 1C;
supplemental Figure 2A). The same parameters were normal in
CD148 KO mice (Figure 1B-C; supplemental Figure 2A). Al-
though the platelet count was normal in DKO mice, the vari-
ability in numbers was greater than in WT and Csk KO mice,
and the proportion of large, reticulated platelets was similar to
that in Csk KO mice (Figure 1B-C; supplemental Figure 2A;
supplemental Table 1). Increased numbers of immune and
granulocytic cells in Csk and DKO mice (supplemental Table 1)
may be an indirect consequence of nonspecific deletion of
floxed Csk and CD148 in other hematopoietic lineages by the
Pf4-Cre transgene, which is reported to be “leaky.”43 In-
terestingly, the proportions of P-selectin1aIIb1 platelets were

normal in Csk KO mice and only marginally elevated in DKO
mice (supplemental Figure 2B), pointing to only minimal
preactivation of these platelets in the circulation or down-
regulation of activation markers.

To explore whether increased platelet size and proportion of
young platelets correlate with changes in other platelet pa-
rameters, we quantified levels of receptors that regulate
platelet production and activation. Notably, several receptors
we focused on, including aIIbb3, GPIba, GPVI-FcR g-chain,
CLEC-2 ,and G6b-B, rely on SFKs to transmit signals.2 Surface
levels of integrin aIIb were marginally increased in DKO
platelets, whereas GPIba levels were increased by 63% and
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38% in Csk KO and DKO platelets, respectively (Figure 1Di).
Surface levels of GPVI were reduced by 77%, 44%, and 88% in
Csk KO, CD148 KO and DKO platelets, respectively, corre-
lating with total protein levels of GPVI and FcR g-chain
(Figure 1Di-ii). Surface and total protein levels of CLEC-2 were
reduced in Csk KO and DKO platelets, which were significantly
more pronounced in DKO (Figure 1Di-ii). In contrast, surface
expression of the inhibitory receptor G6b-B was increased by
61% and 73% in Csk KO and DKO platelets, respectively, cor-
relating with total protein levels (Figure 1Di-ii). Surface levels of
the integrin a2 subunit and metalloproteinase ADAM10 that
mediates shedding of GPVI were normal (supplemental
Figure 3A). Intriguingly, expression of surface receptors in aIIb1

bone marrow cells was normal in all 3 genotypes (supplemental
Figure 3B), suggesting autoregulation of these receptors in
platelets. Collectively, these findings demonstrate down-
regulation of the (hemi-)ITAM–containing activation receptors
GPVI-FcR g-chain and CLEC-2, and concomitant upregulation of
the ITIM-containing inhibitory receptor G6b-B in Csk-deficient
platelets.

To investigate the cause of low platelet counts, we measured
the rate of platelet recovery following anti-GPIba antibody–
mediated platelet depletion. This was significantly reduced in
Csk KO mice, marginally reduced in CD148 KO mice, and
normal in DKO mice (Figure 1Ei-ii). The clearance of bio-
tinylated platelets was normal in mice of all 3 genotypes
(supplemental Figure 4A-B). Both Csk KO and DKO mice
exhibited splenomegaly (supplemental Figure 5A-B). Elevated
MK counts were observed in spleens in all 3 genotypes, which
was associated with myelofibrosis (supplemental Figure 6A).
MK counts were moderately elevated in the bone marrow of
Csk KO mice, but with no associated myelofibrosis (supple-
mental Figure 6B). We observed more P-selectin1aIIb1 he-
matopoietic cells in Csk KO and DKO mice (supplemental
Figure 6C), which may explain the presence of myelofibrosis in
the spleen of these mice.44 Together, these findings suggest
defective MK activation in Csk KO and DKO mice.

Hemostatic and thrombotic defects in
Csk/CD148-deficient platelets
We hypothesized that Csk KO mice would be predisposed to
thrombosis because of increased SFK activity, rendering platelets
hyperactive. To test this, we analyzed mice of all 3 genotypes in
established in vivo models of hemostasis and thrombosis. Para-
doxically,CskKOmice exhibited increased bleeding in a tail injury
model (Figure 2A). CD148 KOmice exhibited normal hemostasis,
whereas DKO mice had increased bleeding compared with Csk
KOmice (Figure 2A). Increased bleeding inCskKOandDKOmice
could not be explained solely by reduced platelet count, which
was normal in DKO mice.

To explore the kinetics of arterial thrombus formation, we
employed the laser injury–induced thrombosis model in small
arterioles in mice. Thrombus formation and fibrin deposition
were moderately and severely reduced in Csk KO and DKO
mice, respectively (Figure 2Bi-iv; supplemental Videos 1 and 2).
Thrombus formation was also severely compromised in CD148
KOmice, whereas fibrin deposition was only moderately reduced
(Figure 2Bi-iv). Similar results were observed following FeCl3-
induced injury of the carotid artery, albeit thrombus formation
was marginally better in CD148 KO than in Csk KO mice (Figure
2Ci-iii; supplemental Video 3). These results demonstrate that
the ability of Csk KO and DKO mice to form thrombi in vivo is
markedly reduced, resulting in increased bleeding.

Aberrant platelet function underlies thrombotic
and defects
To determine the cause of reduced thrombus formation ob-
served in the different in vivo models, we employed the T-TAS
microfluidic device, which can differentiate between platelet-
and coagulation-driven defects. We found that platelets of all
3 genotypes displayed severe defects in forming stable platelet
thrombi on collagen surface, as we were unable to detect an
increase in the flow pressure (Figure 3Ai). However, under con-
ditions where platelets were flowed over collagen in the presence
of tissue factor to maximize coagulation, platelets of all 3 ge-
notypes formed equally stable thrombi (Figure 3Aii), suggesting
coagulation is unaltered in thesemice and that defects in thrombus
formation are intrinsic to platelets.

To identify specific platelet defects, we measured multiple
parameters of platelet function and thrombus formation ex vivo
at arterial shear rates on collagen I; von Willebrand factor–
binding peptide (vWF-BP) and laminin; and vWF-BP, laminin,
and the snake venom rhodocytin, which induces CLEC-2 sig-
naling. Platelet deposition and thrombus formation on collagen I
were markedly decreased Csk KO and CD148 KO samples and
further reduced in DKO samples (Figure 3Bi-iii,vi). a-Granule
secretion, integrin aIIbb3 activation, and phosphatidylserine
exposure (determined as P-selectin, JON/A, and Annexin V
staining, respectively) followed the same trends (Figure 3Biv-vi).
This likely is a consequence of markedly reduced surface levels
of GPVI-FcR g-chain, defective SFK signaling, and increased
inhibitorymechanisms.We found no difference between genotypes
in platelet deposition on the vWF-BP and laminin surface on which
adhesion is mediated by platelet GPIba via immobilized plasma
vWF and platelet integrin a6b1, which binds laminin,45 suggesting
that Csk and CD148 do not play major roles regulatingGPIba or
a6b1 signaling pathways (Figure 3Bi-ii,vi). Upon complementing
the vWF-BP and laminin surface with the CLEC-2 ligand rhodo-
cytin, which drives a more robust platelet deposition,46 adhesion

Figure 4. Csk and CD148 reciprocally regulate platelet SFKs. (Ai) Representative electropherograms of capillary-based immunoassays on platelet lysates with the indicated
antibodies and the quantification of peak areas (n5 6 mice/genotype. (Aii) Representative data from panel Ai displayed as blots. See also supplemental Figure 8. (B) Model of
SFK regulation in platelets. InWTplatelets, SFKs are constrained in an inactive conformation by Csk, which phosphorylates the C-terminal inhibitory tyrosine residue. SFKs can be
activated by dephosphorylation of the inhibitory residue by CD148. SFKs trans-autophosphorylate each other at the activation-loop tyrosine residue and become fully active.
CD148 can also dephosphorylate the activation-loop tyrosine leading to a decrease in SFK activity. In Csk KO platelets, CD148 dominates, resulting in the loss of inhibitory
phosphorylation and a net increase in SFK activity. In CD148 KO platelets, Csk dominates, resulting in increased inhibitory phosphorylation and markedly decreased activation-
loop phosphorylation. In DKO platelets, the absence of both Csk and CD148 leads to a dramatic increase in SFK activity. The differential phosphorylation of SFKs in Csk KO and
DKO platelets supports the hypothesis of CD148 dephosphorylating both the activation-loop and the C-terminal inhibitory tyrosine residues. Professional illustration by Patrick
Lane, ScEYEnce Studios. (C) Platelet lysates were blotted for the indicated proteins. *P , .05, **P , .01, ***P , .001; repeated measures 1-way ANOVA with Tukey’s test; data
represent mean 6 SEM.
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was significantly reduced in the 3 KOs (Figure 3Bi-ii,vi). Notably,
CLEC-2 expression was marginally and markedly reduced in Csk
KO and DKO platelets, respectively, demonstrating that Csk and
CD148 participate in SFK regulation during CLEC-2-evoked hemi-
ITAM signaling, as previously described.32

We next analyzed platelets of all 3 genotypes in a range of in
vitro functional assays. Consistent with previous findings, CD148
KO platelets exhibited reduced aggregation and ATP secretion
to collagen and CRP stimulation, which was overcome at high
concentrations of CRP (Figure 3Ci-ii). Csk KO and DKO platelets
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also exhibited reduced reactivity to collagen and failed to re-
spond to collagen-related peptide (CRP) (Figure 3Ci-ii). We also
investigated the aggregation and ATP secretion response of
platelets to anti-CLEC-2 antibody–mediated activation. CD148
KO platelets exhibited an increase in the lag time at low con-
centration of anti-CLEC-2 antibody and responded normally to a
high concentration (Figure 3Ciii). In contrast, Csk KO and DKO
platelets exhibited shortened lag times in response to anti-CLEC-2
antibody, despite expressing lower levels of CLEC-2 receptor
(Figures 1Di-ii and 3Ciii). Platelets from all 3 mouse models
responded normally to thrombin and the TxA2 analog U46619
(Figure 3Civ-v). As expected,WTplatelets prepared in the absence
of apyrase did not respond to 10 mM ADP because of P2Y1 and
P2Y12 receptor desensitization (Figure 3Cvi); however, Csk KO and

DKOplateletswere able to aggregate and secreteATP in response
to the same concentration of ADP (Figure 4Cvi), suggesting re-
duced P2Y1 and P2Y12 internalization or increased signaling via
these receptors, both of which use SFKs to transmit signals.2 In-
deed, washed platelets prepared in the presence of apyrase,
preventing receptor desensitization, responded normally to 3 and
10 mM ADP, but DKO platelets hyperresponded (Figure 3Cvii;
supplemental Figure 7), supporting the hypothesis of increased
P2Y12 signaling.

We investigated platelet adhesion and spreading on fibrinogen,
which is dependent on SFK-mediated aIIbb3 outside-in sig-
naling and cytoskeletal remodeling. As expected, Csk-deficient
platelets spread to a greater extent than WT platelets, whereas
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CD148-deficient platelets exhibited reduced spreading
(Figure 3Di-ii). However, DKO platelets and WT platelets
spread comparably, suggesting that negative feedback mech-
anisms were activated in DKO platelets. When platelets were
preactivated with thrombin, spreading of Csk KO and DKO
platelets was significantly increased compared with WT platelets
(Figure 3Di-ii).

To further test the role of Csk and CD148 in aIIbb3 signaling, we
assessed clot retraction in these mice in vitro, revealing a sig-
nificant reduction in clot retraction of CD148 KO platelets
(Figure 3E). These results strongly suggest an important role for
functional Src kinase activity in clot retraction.

Increased SFK activity in Csk/CD148-
deficient platelets
To determine the mechanism underlying the hypothrombotic
phenotypes, we assessed SFK activity in unstimulated platelets
of all three genotypes. We measured trans-autophosphorylation
of the activation loop tyrosine residue of SFKs (Src p-Tyr418)
as an indirect indicator of SFK activity in resting platelets
by quantitative capillary electrophoresis-based immunoassays
(ProteinSimple Wes). As expected, deletion of Csk resulted in a
significant increase in Src p-Tyr418, whereas deletion of CD148
resulted in a marked decrease in Src p-Tyr418 (Figure 4Ai-ii).
Deletion of both Csk and CD148 resulted in an unexpected
overall increase in Src p-Tyr418, demonstrating high activity
SFKs in these platelets (Figure 4Ai-ii,B).

Phosphorylation of the C-terminal inhibitory tyrosine residues of
Lyn (Tyr507), Src (Tyr529), and Fyn (Tyr530) is typically inversely
related to SFK activity and Src p-Tyr418. Indeed, phosphorylated
Lyn Tyr507 (Lyn p-Tyr507) was not detected in resting

Csk-deficient platelets (Figure 4Ai-ii), and phosphorylation of Src
Tyr529 (Src p-Tyr529) and Fyn Tyr530 (Fyn p-Tyr530) were
markedly decreased, suggesting that Csk is the main kinase that
phosphorylates these residues and attenuates the activity of
these SFKs. Conversely, phosphorylation of all three inhibitory
tyrosine residues was increased in resting CD148-deficient
platelets (Figure 4Ai-ii), confirming previous findings that
CD148-induced dephosphorylation activates SFKs in platelets.31

A partial rescue of Lyn p-Tyr507, Src p-Tyr529, and Fyn p-Tyr530
was observed in DKO platelets (Figure 4Ai-ii), suggesting that in
the absence of Csk and CD148, another kinase phosphorylates
these residues, the obvious candidate being Chk, which was
upregulated inCsk KO andDKOplatelets (Figure 4C), explaining
the rescue of inhibitory site phosphorylation of SFKs in DKO
platelets. Expression of the tyrosine phosphatases PTP-1B, Shp1,
and Shp2, all of which have been implicated in regulating SFK
activity, were normal in all 3 genotypes (Figure 4C). Interestingly,
SFK activity (Src p-Tyr418) was highest in DKO platelets, despite
increased phosphorylation of the C-terminal inhibitory tyrosine
residues of Lyn, Src, and Fyn, compared with Csk KO platelets.
It remains to be determined whether phosphorylation of the
activation loop and C-terminal inhibitory tyrosine residues
coexist in the same molecules or in distinct pools of SFKs.
Dually phosphorylated SFKs have been reported to be active in
T cells.47

We next assessed whether SFK activity in MKs is comparable to
platelets. Indeed, SFKs were similarly phosphorylated in starved
bone marrow–derived MKs (supplemental Figure 8A-B) as they
were in resting platelets of the same genotype (Figure 4Ai-ii),
compatible with increased SFK activity in Csk KO and DKO MKs
and decreased SFK activity inCD148KOMKs, whichmay underlie
aberrantMK function andmyelofibrosis inCsk KO andDKOmice.
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Collectively, these findings demonstrate that Csk is an inhibitor
of SFK activity in platelets and MKs. The finding that DKO
platelets display markedly higher SFK activity than Csk KO
platelets suggests that CD148 can act as a dual activator and
inhibitor of SFK activity in platelets and MKs (Figure 4B).

ITAM and integrin receptor signaling is
differentially regulated by Csk and CD148
To determine why platelets with high SFK activity were hypo-
reactive, we investigated tyrosine phosphorylation downstream
of GPVI-FcR g-chain, CLEC-2, and aIIbb3, all of which rely on
SFKs and Syk to initiate and propagate signaling. Because of the
dramatic reduction of GPVI-FcR g-chain expression in Csk KO
and DKO platelets (Figure 1Di-ii), platelets were stimulated with
a high concentration of collagen (30 mg/mL), which signals
primarily through GPVI-FcR g-chain. Basal whole-cell tyrosine
phosphorylation (p-Tyr) and Src p-Tyr418 were significantly
higher in resting DKO platelets and collagen-stimulated Csk KO
and DKO platelets than WT platelets (Figure 5Ai-iii; supplemental
Figure 9A). In contrast, basal and collagen-mediated Src p-Tyr418
was significantly lower in CD148 KO platelets than WT platelets
(Figure 5Ai-iii; supplemental Figure 9A). Induced phosphorylation
of the FcR g-chain, which is directly mediated by SFKs and acts as
a docking site for Syk, was less pronounced in Csk KO and DKO
platelets (Figure 5Ai) due to reduced expression of the FcR g-chain
in these platelets (Figure 1Dii). Syk activation was indirectly
measured as phosphorylation of Syk tyrosine residues 525 and
526 (Syk p-Tyr525/6) and correlated directly with FcR g-chain
levels and phosphorylation. Syk p-Tyr525/6 was highest in
collagen-stimulated WT platelets and increased only marginally
in collagen-stimulated platelets of all 3 genotypes (Figure 5Aii-
iii; supplemental Figure 9A), despite Csk KO and DKO platelets
having high SFK activity. These findings support a model in which
receptor-mediated membrane localization of Syk is essential for
activation.

Platelets were also stimulated with a high concentration of anti-
CLEC-2 antibody (10 mg/mL), mimicking podoplanin-mediated
cross-linking of the receptor. The pattern and intensity of whole-
cell p-Tyr and SFK phosphorylation generally mirrored that of
collagen-stimulation in the various genotypes (Figure 5Bi-iii;
supplemental Figure 9B). However, Syk p-Tyr525/6 was much
higher inCsk KO platelets than any of the other genotypes (Figure
5Bii-iii; supplemental Figure 9B), despite reduced CLEC-2
expression. Despite the reduced CLEC-2 and GPVI-FcR g-chain
levels in DKO platelets, stimulation by anti-CLEC-2 antibody
resulted in normal Syk p-Tyr525/6, whereas stimulation by col-
lagen led to significantly reduced Syk phosphorylation, correlating
with normal and reduced aggregation, respectively.

We also investigated aIIbb3 signaling to determine the cause of
increased spreading of Csk KO platelets on fibrinogen (Figure
3Di-ii). To initiate signaling, aIIbb3 relies mainly on Src and, to a
lesser extent, Fyn and is localized exclusively in nonlipid rafts.8,15,48,49

Whole-cell p-Tyr was increased in fibrinogen-adheredCsk KO and
DKO platelets (Figure 5Ci), demonstrating a general increase in
outside-in integrin signaling in these platelets. In agreement with
increased spreading of Csk KO platelets but normal spreading of
DKO platelets on fibrinogen (Figure 3Di-ii, basal), we found that
SFK and Syk activity was increased in Csk KO platelets, but not in
DKO platelets (Figure 5Cii-iv; supplemental Figure 9C).

In addition to the elevated expression of the ITIM-containing
receptor G6b-B in Csk KO and DKO platelets (Figure 1Di-ii),
we found a marked increase in G6b-B tyrosine phosphorylation
and binding of the tyrosine phosphatases Shp1 and Shp2 under
resting and collagen-stimulated conditions (Figure 5Di), sug-
gesting increased inhibitory signaling via the G6b-B-Shp1-Shp2
complex inCskKOandDKOplatelets (Figure 5Dii). Thus, increased
SFK activity in Csk KO and DKO platelets leads to compensatory
upregulation of inhibitory ITIM signaling and parallel down-
regulation of the (hemi-)ITAM–containing GPVI-FcR g-chain
and CLEC-2 receptors, explaining the reduced activity of these
platelets.

Csk is a critical inhibitor of ITAM- and
integrin-mediated platelet activation
To circumvent developmental and compensatory mechanisms
arising from deletion of Csk, we used a transgenic mouse model
expressing a PP1-analog (3-IB-PP1)–sensitive form of Csk (CskAS),
enabling rapid and specific inhibition of CskAS in these mice.39

Platelet count, volume, and receptor expression were normal in
CskAS mice (data not shown). Platelets from CskAS mice aggre-
gated and secreted normally to all agonists tested in the presence
of vehicle alone (dimethyl sulfoxide) (Figure 6Ai-iv) and marginally
more robustly to a subthreshold concentration of anti-CLEC-2 an-
tibody (3 mg/mL) in the presence of 10 mM 3-IB-PP1 (Figure 6Aiii).
Inhibitor-treated CskAS platelets also spread marginally better
than control on fibrinogen (Figure 6Bi-ii). Collectively, these
findings validate that Csk is an inhibitor of both ITAM- and
integrin receptor–mediated platelet functions. SFK activity (Src
p-Tyr418) was significantly increased in resting, CRP (30 mg/mL)–,
and anti-CLEC-2 antibody (10 mg/mL)–stimulated CskAS platelets
treated with 10 mM 3-IB-PP1 (Figure 6Ci-iii,Di-iii; supplemental
Figure 10A-B). However, Lyn p-Tyr507, Src p-Tyr529, and Fyn
p-Tyr530 were only minimally reduced in the presence of
3-IB-PP1 (Figure 6Cii-iii,Dii-iii; supplemental Figure 10A-B),
suggesting that tyrosine phosphatases do not automatically
dephosphorylate these residues in the absence of Csk. Syk
activity was significantly increased at later time points after
CRP stimulation (Figure 6Cii-iii; supplemental Figure 10A).
Concomitantly, G6b-B was hyperphosphorylated and had
more associated Shp1 and Shp2 in collagen-stimulated CskAS

platelets treated with 3-IB-PP1 (Figure 6E). Because G6b-B
KO platelets display markedly elevated Syk activity,28 we
hypothesized that the increased inhibitory signaling provided
by G6b-B impeded further enhancement of CRP- and CLEC-2
antibody–mediated aggregation and overall tyrosine phosphory-
lation in CskAS platelets. These findings suggest that SFKs activate
inhibitory pathways in parallel with activation pathways to prevent
platelet hyperactivation.

Discussion
Here, we describe a fundamental mechanism controlling SFK
activity in the MK lineage involving the kinase Csk and the
phosphataseCD148.We show that Csk is amajor inhibitor of SFKs
in platelets, whereas CD148 primarily activates SFKs but also
attenuates SFK activity under undefined conditions (Figures 4B
and 7A). These functions of Csk and CD148 correlate with what
has previously been described in immune cells.31,50-55 We show
that lack of Csk in the MK lineage in mice results in increased SFK
activity in platelets, paradoxical bleeding, and reduced thrombosis
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due to negative feedback mechanisms, including downregulation
of (hemi-)ITAM–containing receptors and concomitant upregula-
tion of the inhibitory ITIM-containing receptor G6b-B, ren-
dering platelets less responsive to vascular injury (Figure 7B). In
contrast, deletion of CD148 results in reduced SFK activity and

thrombus formation as a consequence of reduced (hemi-)ITAM
and integrin receptor signaling. However, bleeding was normal
in CD148 KO mice because of residual SFK activity and intact
positive feedback mechanisms. Intriguingly, deletion of both
Csk and CD148 markedly increased SFK activity, with more
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pronounced bleeding and thrombotic defects than in Csk
KO mice, because of enhanced negative feedback effects
(Figure 7B). A summary of the phenotypes of Csk KO, CD148 KO,
and DKO mice is provided in Table 1. Thus, sustained high
SFK activity in platelets does not culminate in a general in-
crease in platelet reactivity but results in overcompensation of
negative feedback mechanisms that attenuate the platelet
response to various thrombogenic substrates. Moreover, the
reduced platelet count in Csk KO mice was not due to in-
creased platelet clearance; rather, it was a result of a reduction
in platelet production, agreeing with a lack of activation and
phagocytosis markers on platelets in these mice. Although
mean platelet count was rescued in DKO mice, the variability
in count, platelet volume, and the proportion of reticulated
platelets in the circulation suggested a less robust system
controlling platelet homeostasis in the absence of Csk and
CD148.

Negative feedbackmechanisms activated in theCsk KO andDKO
mice, including downregulation of the (hemi-)ITAM–containing
receptors GPVI-FcR g-chain and CLEC-2 and upregulation of the
ITIM-containing receptor G6b-B and tyrosine kinase Chk, likely
represent cell-intrinsic adaptation of platelets to high SFK

activity. These findings are in agreement with the reduction of
the ITAM-containing T-cell receptor in Csk-deficient T cells56

and increased phosphorylation of the ITIM-containing re-
ceptor Sirpa, the lipid phosphatase SHIP1, and Shp1 following
inhibition of CskAS in immune cells.57 A plausible explanation for
the downregulation of (hemi-)ITAM–containing receptors is that
these receptors are direct substrates of CD148; similarly, the
ITAM-containing T-cell receptor subunit CD3 z-chain is sug-
gested to be a substrate of the tyrosine phosphatase CD45.58,59

A clear difference was observed in the downregulation of GPVI-
FcR g-chain and CLEC-2, suggesting differential regulation of
these receptors. Whereas the GPVI-FcR g-chain was severely
reduced in both Csk KO and DKO platelets, CLEC-2 was
markedly downregulated only in DKO platelets. This may be
explained by the different affinities of Syk to different phospho-
(hemi-)ITAMs,60,61 and thus the ability of the SH2 domains of
Syk to protect tyrosine residues within these motifs from de-
phosphorylation by CD148, as proposed for the related kinase
ZAP-70.62-64 We hypothesize that the higher affinity of the tan-
dem SH2 domains of Syk for the dual phosphotyrosine residues
of the FcR g-chain ITAM in Csk KO platelets prevents CD148-
mediated dephosphorylation. Sustained phosphorylation would
in turn lead to internalization and degradation of the GPVI-FcR

Figure 7. Regulation of platelet SFKs by the kinase
Csk and the phosphatase CD148. (A) Csk and CD148
are the main regulators of SFK activity in platelets and
impact different platelet signaling pathways. Csk inhibits
SFK activity, whereas CD148 activates SFKs, but it can
also inhibit SFK activity under conditions that have yet to
be defined. In turn, SFKs regulate ITAM, hemi-ITAM,
integrin, ITIM, and P2Y12 receptor signaling pathways.
See also Figures 4B and 5Dii. (B) Postactivated platelets.
Platelets possess remarkable positive-feedback pathways
(eg, ADP, TXA2), which further enhance platelet activa-
tion. Platelet activation is followed by receptor pro-
teolysis or internalization, de novo protein synthesis, and
downregulation of tyrosine phosphorylation pathways by
ITIM-containing receptors and phosphatases.Csk KO and
DKO platelets have increased SFK activity, which results
in reduced expression of the platelet activating recep-
tors GPVI and CLEC-2, increased expression of the ITIM-
containing receptor G6b-B, and increased ITIM signaling,
suggesting that these platelets exist in a postactivated
state. Professional illustration by Patrick Lane, ScEYEnce
Studios.
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g-chain complex. In contrast, because of the lower binding af-
finity of individual SH2 domains of Syk for single phosphotyr-
osine residues with the hemi-ITAM of CLEC-2, Syk is less capable
of protecting CLEC-2 from dephosphorylation by CD148. As a
consequence, less CLEC-2 is destined for degradation than FcR
g-chain in Csk KO platelets. However, this is not the case for
DKO platelets, where no CD148 is present to dephosphorylate
CLEC-2; hence, it is markedly downregulated. Further work is
needed to validate this hypothesis.

Analysis of tyrosine phosphorylation downstream of GPVI,
CLEC-2, and aIIbb3 revealed that activation of Syk is de-
pendent not only on SFK activity but also on the presence of
appropriate docking sites at the plasma membrane, providing
evidence that increased SFK activity alone is insufficient to
initiate downstream signaling. A growing body of evidence has
established G6b-B as a major inhibitor of (hemi-)ITAM–

containing receptor signaling in platelets, acting primarily at
the level of Syk.28,65 It is therefore likely that increased G6b-B
expression, phosphorylation, and Shp1 and Shp2 association
contributes to the attenuation of (hemi-)ITAM signaling in Csk
KO and DKO platelets. Upregulation of Chk in the absence
of Csk likely also contributes to the attenuation of SFK-
mediated signaling in these platelets, albeit less efficiently
than its structurally related counterpart, Csk. Although, Chk
was previously reported in platelets,66 it was not detected in
either human or mouse platelets by mass spectrometry,3,4 in

agreement with our findings from WT platelets. Thus, the
combination of reduced (hemi-)ITAM–containing receptor ex-
pression combined with increased ITIM-containing receptor
and Chk expression result in a reduction in platelet reactivity to
specific substrates. This is better tolerated than preactivated
platelets that can trigger disseminated intravascular co-
agulation and death.

To circumvent masking effects of negative feedback mecha-
nisms inCsk KO or DKOmice, we usedCskASmice. Inhibition of
CskAS in platelets from these mice resulted in significantly re-
duced phosphorylation of the C-terminal inhibitory tyrosine
residues of SFKs and increased SFK and Syk activity, similar
to that reported in immune cells.39,57,67 However, inhibition of
CskAS in platelets failed to have an effect on platelet aggre-
gation. This can be partially explained by increased formation
of the G6b-B-Shp1-Shp2 complex, counteracting the effect of
increased SFK activity on Syk activation.25,28 Our findings also
suggest that Csk plays little role in attenuating GPVI and
CLEC-2 signaling once initiated, mainly providing a break prior
to ligand engagement and receptor clustering to prevent
unwanted signaling by the receptors. However, this was not the
case for aIIbb3-mediated platelet spreading on fibrinogen,
which was enhanced either in the absence of Csk or following
inhibition of CskAS, suggesting Csk differentially regulates
integrin and ITAM-containing receptor signaling. Previous
work from our group suggests that G6b-B facilitates rather than
inhibits integrin-mediated responses in platelets and MKs28;
thus, upregulation of the G6b-B-Shp1-Shp2 complex is pre-
dicted to enhance rather than attenuate platelet spreading, as
observed.

In addition to filling a major gap in our knowledge of how SFKs
are regulated in the MK lineage, findings from this study are
also clinically relevant, demonstrating for the first time that
either increased or decreased platelet SFK activity can lead to
reduced thrombus formation and bleeding. Our study high-
lights, that loss of an inhibitor of platelet activation, such as
Csk, can lead to paradoxical bleeding due to the robust
negative feedback mechanisms that get activated. This may
provide important mechanistic insights into the phenomenon
of early platelet dysfunction observed in severe trauma pa-
tients displaying “exhausted” platelets,68 showing reduced
thrombus formation on collagen.69 Our findings suggest that
platelets in the circulation can undergo cell-intrinsic changes,
leading to downregulation of activation pathways and
upregulation of inhibitory mechanisms, which may contribute
to platelet dysfunction in trauma patients. Moreover, certain
tyrosine kinase inhibitors used to treat cancer patients inhibit
SFKs or Csk and are accompanied by bleeding side effects.
Accordingly, the increased bleeding risk associated with use
of the Bcr-Abl inhibitor dasatinib is ascribed to its off-target
effects on platelet SFKs.70,71 Similarly, bleeding side effects of
the Btk inhibitor ibrutinib may be partially explained by its
potent off-target effect on Csk.72,73 Based on our findings,
CD148 is an attractive antithrombotic drug target, and its in-
hibition should attenuate, but not completely block, the main
platelet activation pathways and have minimal bleeding side
effects. Tyrosine phosphatases are increasingly considered to be
druggable,74 which is supported by the recent development of
the highly specific Shp2 inhibitor SHP09975; thus, targeting
CD148 is not inconceivable.

Table 1. Summary ofCskKO,CD148KO, andDKOmouse
phenotypes

Phenotype

Genotype

Csk
KO

CD148
KO DKO

Bleeding ↑ — ↑↑

Thrombosis
In vivo

Laser injury ↓ ↓ ↓↓

FeCl3 injury ↓↓ ↓ ↓

Ex vivo
T-TAS

Collagen ↓ ↓ ↓↓

Collagen, tissue factor — — —

Flow chamber
Collagen ↓ ↓ ↓↓

vWF-BP, laminin, rhodocytin ↓ ↓ ↓

Platelet count ↓ — —

Platelet receptors
Expression

GPVI-FcRg-chain ↓↓ ↓ ↓↓↓

CLEC-2 ↓ — ↓↓

G6b-B ↑↑ — ↑↑

Phosphorylation
G6b-B ↑↑ — ↑↑↑

SFK activity ↑ ↓ ↑↑

↑, upregulated; ↓, downregulated; —, normal.
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