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We appreciate the interest of Ulirsch et al1 in our recent publication
describing distinctive transcriptional profiles observed in ex vivo–
differentiated CD341 cells from Diamond-Blackfan anemia (DBA)
patients.2 Ulirsch et al highlight potential problems encountered when
comparing diseased and normal conditions, problems that apply to all
but the simplest of disease models, which raises a more philosophical
question: in the quest for perfect controls, can any diseased cell ever be
compared with any control? Ulirsch et al feel that these problems are
confounding variables that can undermine confidence in results to the
point where they can be discounted, specifically in the case of our
results. Ulirsch et al do a commendable job of explaining the concept
of confounding variables. We view their interpretations of our data
as highly selective and far short of definitive. We believe a broader
perspective is warranted.

The underlying pathophysiology of DBA at this time is not well
understood. The Sankaran group has published a study analyzing the
transcriptional profiles of bone marrow CD341CD71highCD45RA2

cells sorted from 3 DBA patients, 2 with RPS19 mutations and 1 of
unknown genotype, with ribosomal protein (RP) mutations that
suggested lower levels of GATA1 gene target expression compared
with control cells.3 This observation was supported by introduction of
short hairpin RNA (shRNA) vectors into normal CD341 cells to
knockdown eitherRPS19 orRPL11 as amodel for RP-mediatedDBA.
Based on these results, they proposed that the ribosome deficiency in

patients with RPmutations specifically causes defective translation of
GATA1 messenger RNA leading to downstream erythroid failure.

We evaluated a larger and more diverse population of ex vivo–
generated erythroid progenitor cells from DBA patients (defined as
CD441CD2352). Confronted by the need to test for expression
differences between 3 groups across thousands of genes, we chose to
adjust our significance levels by using a false discovery rate, with q
stringently selected as 0.10.This controls the probability of erroneously
labeling a difference as statistically significant; it does not assure that
all genes with differential expression will be identified in our data
set. Based on our results, we proposed an alternative model in which
DBAwithGATA1mutations leads to diminished expression ofGATA1
target genes, including many responsible for production of ribosomes,
thus leading to insufficient translation and erythroid failure. In DBA
patients with RP mutations, the primary deficiency of a ribosomal
protein causes ribosomal deficiency and reduced translation leading
to erythroid failure.2 The primary motivation for the reanalysis of our
work by Ulirsch et al appears to be that we did not observe the strong
GATA1-deficient signature in our RP patient samples. They proposed
that excessive heterogeneity among the analyzed cells confounded the
interpretation of our results.

To address heterogeneity, Ulirsch et al applied a complicated
statistical deconvolution procedure using previously published data
from 2 independent studies to classify cell mixtures that might have

1168 LETTERS TO BLOOD BLOOD, 31 AUGUST 2017 x VOLUME 130, NUMBER 9

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/130/9/1168/1405317/blood789107.pdf by guest on 03 M

ay 2024

https://julirsch.github.io/obrien_response/
https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2017-07-789107&domain=pdf&date_stamp=2017-08-31


confounded our study (we note that none of the studies considered here
uses the same marker sets although all can be reasonably expected to
enrich a primarily erythroid subpopulation). Although they claim their
method is robust, a careful analysis of their supplemental data4 suggests
that this method has significant limitations for the purpose they pro-
pose. For example, using the classification algorithm of Ulirsch et al to
compare theMerryweather-Clark et al5 based predictor to the erythroid
expression data of Novershtern et al,6 each of the 3 more differentiated
erythroid Novershtern populations (of 5 possible) had nearly identi-
cal abundance of all 4 of the possible Merryweather-Clark cell popu-
lations. Likewise, when the Novershtern predictor is applied to the
Merryweather-Clark data, similar proportions of cell types are observed
in both colony-forming unit erythroid and proerythroblast populations,
including nearly 25% of cells with a mature phenotype. In fact, using
either reference set to establish a classifier and then applying that
classifier to the very samedata set only predicts 60% to 85% identity for
the cells within these carefully controlled populations. The simplest
explanation for these discrepancies is that the classifier methods used
by Ulirsch et al have limitations. Indeed, published reports have cast
doubt on the utility of complex mixture deconvolutions, particularly in
separating cell types with closely cocorrelated expression.7

When Ulirsch et al applied their classifying methods to the DBA
progenitor transcriptional profiles in O’Brien et al,2 the results were
inconsistent. Results from Ulirsch et al suggest 15% to 25% of cells in
the CD441CD2352 populations generated from the RP patients were
late erythroid cells. Late erythroid cells defined in the Merryweather-
Clark et al study had a mature morphologic phenotype, with marked
nuclear pyknosis and clear evidenceof cytoplasmichemoglobinization.
No such cells were observed in cytospin examinations of these cultures
(supplemental Figure 1 in O’Brien et al2). Similarly, Ulirsch et al sug-
gested that cells expressing the short formofGATA1 (GATA1s) had an
accumulation of early progenitors, in contrast to themorphological and
surface phenotypes we reported.

Finally, to illustrate the potential problems associated with com-
parison of “imperfectly” stage-matched data, Ulirsch et al used their
analyses to generate a synthetic normal set of comparators in which
gene-expression signals were adjusted by the estimated expression of
the putative fraction of admixed cells. We were gratified to see that,
using the most favorable comparator for cell-composition adjustment
(eg, the one with the greatest proportion of early progenitors in the
GATA1group andmost differentiatedprogenitors in theRPgroup), the
expression of GATA1 target genes remained upregulated. Ulirsch et al
suggest that this discrepancy is “likely” ex vivo culture-based selection,
although theydo not provide an explanation as towhy selection should
be so different in progenitors with GATA1 and RP mutations when
they are postulated to have directly linked pathophysiology. We feel
that a more likely explanation, regardless of which model one finds
credible, is that the mixture estimates derived by Ulirsch et al have
limitations.

Our study used several layers of control in both process and
analysis: surface marker–based sorting, morphologic examination,
and stringent and rank-based gene-set evaluations. By these standards,
the ex vivo data presented in Ludwig et al could be subject to the same

confounding variables as our ex vivo data, including the stage of the
knockdown and control cells, the drug selection of the transduced
cells, and variable numbers of shRNA vectors and shRNA expression
in the population of transduced cells. Importantly, their analysis of
patient samples is complicated by analysis of only 3 DBA patients,
two-thirds of whom were on treatment with steroids that had
stimulated erythropoiesis at the time the sample was obtained.

The differences in interpretation seem to have provoked the pas-
sion in the Letter to Blood from Ulirsch et al. In our view, Ulirsch et al
promote a 1-sided argument in which perfection has become the
enemy of the good. Variation is inherent in biological experiments,
and reasonable scientists must always debate about how to deal with
experimental variability. It can be and should be questioned whether
any cell fromaDBApatientwith adeficiencyofmature 80S ribosomes,
primary or cultured, erythroid or nonerythroid, can have a perfectly
matched normal control. Philosophical debates about how to control
for confounding variables, especially in the case of comparing a disease
tissue to normal, are valuable to raise awareness within the field and to
help improve the rigor of the analysis. We accept the commentary of
Ulirsch et al in that spirit. But we believe that the best use of our time
and resources would be through a collaboration to design, execute, and
analyze experiments that will resolve the differences in the 2 models.
Wewelcome the authors ofUlirsch et al and any others to join us in this
endeavor.
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