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Key Points

• T-cell activation induces TCR
transactivation of CXCR4 to
stabilize cytokine mRNA
transcripts via a PREX1-
Rac1–signaling pathway.

• Inhibition of the TCR-
CXCR4–signaling pathway
impairs TCR-dependent and
TCR-independent cytokine
secretion by CTCL cells.

Aswith many immunopathologically driven diseases, the malignant T cells of cutaneous

T-cell lymphomas (CTCLs), such as Sézary syndrome, display aberrant cytokine secre-

tion patterns that contribute to pathology and disease progression. Targeting this

disordered release of cytokines is complicated by the changing cytokine milieu that

drives thephenotypicchangesofCTCLs.Here,wecharacterizeanovel signalingpathway

that can be targeted to inhibit the secretion of cytokines by modulating either CXCR4

or CXCR4-mediated signaling. We demonstrate that upon ligation of the T-cell antigen

receptor (TCR), the TCR associates with and transactivates CXCR4 via phosphorylation

of S339-CXCR4 in order to activate a PREX1-Rac1–signaling pathway that stabilizes

interleukin-2 (IL-2), IL-4, and IL-10 messenger RNA (mRNA) transcripts. Pharmacologic

inhibition of either TCR-CXCR4 complex formation or PREX1-Rac1 signaling in primary

human T cells decreased mRNA stability and inhibited secretion of IL-2, IL-4, and IL-10.

Applying this knowledge to Sézary syndrome, we demonstrate that targeting various

aspects of this signaling pathway blocks both TCR-dependent and TCR-independent

cytokinesecretion fromaSézarysyndrome–derivedcell lineandpatient isolates.Together, these results identifymultipleaspectsof a

novel TCR-CXCR4–signaling pathway that could be targeted to inhibit the aberrant cytokine secretion that drives the immunopatho-

genesis of Sézary syndrome and other immunopathological diseases. (Blood. 2017;130(8):982-994)

Introduction

Immunopathogenesis often involves the aberrant release of
T-lymphocyte–derived cytokines that promote autoimmunity,
immunosuppression, immunodeficiency, or tumor progression.
The cutaneous T-cell lymphomas (CTCLs), mycosis fungoides
and Sézary syndrome, are characterized by a specific pattern of
cytokine release that drives disease progression. High interleukin-2
(IL-2) levels, found early indisease, promoteproliferation and survival
of CTCL cells, adoption of a regulatory T-cell (Treg) phenotype by
effector T cells, and expression of FoxP3 in CTCL cells.1-3 Increased
IL-4 levels later in disease promote eosinophilia, immunosuppres-
sion, and susceptibility to infections.2-4 CTCL cells at end stages of
disease develop a Treg phenotype that leads to immunosuppression,
T-cell exhaustion, and suppression of antitumor immunity within
lesions by the release of IL-10.2-5 Identifying a signaling pathway that
mediates an aspect of cytokine release common to multiple cytokines
could provide new targets for treating the immunopathogenesis of
CTCLs.

The T-cell antigen receptor (TCR) is essential for the
recognition of foreign peptides and for initiating the activation
of T cells that leads to the cytokine production critical for
an immune response. CXCR4, a 7-transmembrane G-protein

coupled receptor, mediates T-cell migration toward antigen-
presenting cells producing its sole endogenous ligand, CXCL12
(also known as SDF-1), thereby enhancing TCR’s exposure to
foreign antigens. Signaling via either TCR or CXCR4 is often
critically affected by the presence or the activation state of the other
receptor. TCR expression is essential for CXCL12-induced gene
expression in T cells.6-10 Conversely, CXCL12/CXCR4 signaling
is necessary for TCR-initiated immune synapse formation, en-
hanced phosphorylation of early signaling molecules, and thymic
b selection.11-15 Because various receptor tyrosine kinases trans-
activate CXCR4 in order to mediate cell motility, cell growth, and
tumorigenesis,16-19 we explored the possibility that TCR might
similarly transactivate CXCR4 in order to mediate cytokine
production.

Messenger RNA (mRNA) stability of cytokine transcripts is
tightly regulated by activated T cells to carefully modulate an
immune response. Dysregulation of mRNA turnover may lead to
immunopathology including autoimmunity, immunosuppression,
or tumor progression. mRNA decay is regulated by cis elements
intrinsic to the mRNA and trans-acting factors such as RNA-
binding proteins.20-22 The GTPase, Rac1, has previously been
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linked to mRNA stabilization in various cell types.23-27 In T cells,
Rac1 has been mainly studied for its role in migration and cellular
signaling.28,29 CXCR4 has been shown to activate Rac1 via the
Rac-GEF, PREX1, in various cell types,17,19,30,31 however, a role
for PREX1 in T-cell signaling had not been previously described.

Here, we used primary human T cells to characterize a novel
signaling pathway that regulates cytokine mRNA stability, and,
importantly, we used this new knowledge to disrupt this pathway
and inhibit cytokine secretion in malignant T cells derived from
Sézary syndrome. We show that upon ligation of the TCR, the

TCR associates with and transactivates CXCR4 in order to
activate a PREX1-Rac1–signaling pathway that stabilizes IL-2, IL-4,
and IL-10 mRNA transcripts. Importantly, we show, in a Sézary
syndrome–derived cell line and patient isolates, that inhibition
of various aspects of this signaling pathway blocks both inducible
TCR-dependent and constitutive TCR-independent cytokine secre-
tion. Together, these results identify multiple steps of a novel
signaling pathway that can be targeted as a means to reduce the
aberrant cytokine secretion ofCTCLs or other forms of T-cell–driven
immunopathology.
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Figure 1. CXCR4 is required for TCR-initiated production of IL-2, IL-4, and IL-10. (A) Purified, human PBMC T cells were stimulated with 1 mg/mL plate-bound OKT3 and

soluble CD28, cultured for 24 hours, and harvested for analysis via qRT-PCR for CXCL12 mRNA transcript levels. A human bone marrow mesenchymal stromal stem cell line

(BMSC) was used as a positive control for CXCL12 expression. The results shown are normalized to the reference gene GAPDH, where GAPDH is set to 100. Each point

denotes the mean mRNA transcript level 6 standard deviation (SD) for 5 independent donors (n 5 2 for BMSC samples). (B-E) Human PBMC T cells were purified,

transfected with either control siRNA, a pool of CXCR4 siRNAs (CXCR4 siRNA-1) or CXCR4 siRNA-2 (single siRNA), and cultured for 24 hours. (B-C) CXCR4 cell surface

levels were assayed via flow cytometry. Mean fluorescent intensities (MFI) are shown for a representative experiment. (C) Summarizes the results with each bar denoting the

mean 6 standard error of the mean (SEM). *Significantly different from control siRNA-transfected cells (P , .05; n 5 7-9). (D-E) Twenty-four hours after transfection, cells

were stimulated as in panel A, then cultured for an additional 24 hours prior to harvest of supernatants for cytokine analysis. Results from 7 to 9 donors, with the black line

denoting the average of all donors tested 6 SEM. *Significant difference compared with control siRNA-transfected cells (P , .05).
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Figure 2. TCR associates with and transactivates CXCR4; this interaction is disrupted by AMD3100. (A) Schematic diagram of FRET between fluorescent fusion

proteins of CXCR4 and CD3z. (B-H) Jurkat T cells were transfected with the indicated fluorescent fusion proteins and cultured for 16 to 18 hours. (B,E-F) Transfected cells

were analyzed via flow cytometry to assess cell surface levels of the indicated receptors or YFP. (C) Graph summarizing the mean fold increase of cell surface levels of

the indicated receptor in cells transfected with CXCR4-YFP and CD3z-CFP compared with vector control transfected cells, 6 SEM (n 5 3). (D,G-H) Sixteen to 18 hours

posttransfection, the cells were pretreated with 120 mM AMD3100 where indicated for 1 hour and then stimulated with 1 mg/mL OKT3 crosslinked with 0.1 mg/mL goat anti-

mouse immunoglobulin G (IgG) for 20 minutes. Spectra of the same cells were obtained before and after stimulation. (D,G) Representative spectra are shown. (H) Summary

of 3 to 4 independent experiments. Each bar denotes the percentage change in CFP or YFP in response to OKT3 stimulation. *Significant difference compared with CXCR4-

YFP/CD3z-CFP, vehicle sample (P , .05). (I) Schematic diagram of a PLA analyzing interactions between CXCR4-YFP and CD3z. (J-K) Jurkat T cells were transfected with

CXCR4-YFP, cultured for 16 to 18 hours, pretreated with AMD3100 for 1 hour, centrifuged onto fibronectin- and OKT3-coated coverslips, and incubated for 30 minutes at

37°C. Cells were then fixed and stained as described in “Methods.” PLA was visualized using an LSM780 laser-scanning confocal microscope (Carl Zeiss) with a 1003/1.46

oil objective and laser/emission filter: 488/500-554 for CXCR4-YFP to identify transfected cells, 405/411-481 for 49,6-diamidino-2-phenylindole (DAPI) (blue) and 594/624 for PLA

(red). ZEN software was used for acquisition of images. FIJI was used to assess total PLA fluorescence. (J) Representative results are shown (original magnification 3100). (K)

Summary of images acquired in 3 independent experiments for a total of 17 to 30 cells per condition, 6 SEM (P , .05). (L-M) Jurkat T cells were transfected with CXCR4-YFP,

incubated for 16 to 18 hours, treated with 60 mM AMD3100 for 1 hour, stimulated with crosslinked OKT3 as in panel D for 5 minutes, lysed, harvested for immunoprecipitation for

CXCR4, and immunoblotted for pS339-CXCR4 and total CXCR4. (L) Representative results are shown. (M) Summary of the mean fold increase in pS339-CXCR4 upon CD3

stimulation compared with unstimulated cells, 6 SEM (n 5 3; P , .05). DIC, differential interference contrast; Unstim., unstimulated.
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Methods

Materials

A complete list of materials can be found in supplemental Methods (available
on the BloodWeb site).

Cells

Normal human peripheral blood T cells (peripheral blood mononuclear cell
[PBMC] T cells) from healthy volunteers and T cells from residual diagnostic
patient specimenswere isolatedwith;98%purity (supplemental Figure3D) and
maintained as described.6 Blood and patient specimens were obtained and used
with informed consent and approval by the Mayo Institutional Review Board.
Jurkat T cells were maintained as described.6 HUT-78 cells were maintained
in Iscove modified Dulbecco medium, 20% fetal calf serum, 1% penicillin-
streptomycin, and 2 mM L-glutamine.

Cytokine production

Cells were treated with AMD3100 or NSC23766 or transfected with 750 nM
control small interfering RNA (siRNA), CXCR4 siRNA-1, PREX1 siRNA-1
(Dharmacon), or CXCR4 siRNA-2 or PREX1 siRNA-2 (Ambion) utilizing the
Human T-cell nucleofector kit (Lonza) with program U-014 prior to analysis of
cytokine production. Cytokine production was analyzed via intracellular cyto-
kine staining and enzyme-linked immunosorbent assay (ELISA) as described6,32

or via cytokine bead array analysis (BD Biosciences).

FRET

CXCR4–yellow fluorescent protein (YFP) and CD3z–cyan fluorescent protein
(CFP) were described previously.6 CCR7-YFP was prepared by subcloning
CCR7 from pcDNA-CCR7 (Missouri S&T cDNA Resource Center) into
pEYFP-N1 (Clontech). Cells were prepared for fluorescence resonance energy
transfer (FRET) analysis6,7 and placed in 96-well clear-bottom black tissue-
culture plates (Corning). Fluorescent emission spectra in response to 433 nm of
lightwere assayedusing theVarioskanFlash (ThermoScientific) before and after
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Figure 3. AMD3100 inhibits TCR-initiated production of IL-2, IL-4, and IL-10. Human PBMC T cells were treated with 60 mM AMD3100 for 1 hour and stimulated with

plate-bound OKT3 and soluble CD28 as in Figure 1 for 24 hours. (A) Graphs summarize cytokine production assayed via ELISA from 9 donors, with the black line denoting

the average of all donors tested6 SEM. *Significant difference compared with control cells (P , .05). (B-F) Following stimulation, cells were stained for CD3, CD4, CD45RO,

and the indicated intracellular cytokine and analyzed by flow cytometry. Graphs summarize results from 5 donors, with the black line denoting the average of all donors

tested 6 SEM. *Significant difference compared with control cells (P , .05). FSC, forward scatter.
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Figure 4. AMD3100 inhibits cytokine mRNA stability without altering TCR-initiated ERK-, NF-kB–, or NFAT-signaling pathways. (A-G) PBMC T cells were pretreated

with AMD3100 for 1 hour and stimulated as indicated. (A-D) T cells were stimulated with 1 mg/mL biotinylated OKT3 crosslinked with avidin and soluble CD28 for the indicated

time. (A) Representative results of ERK activation assayed by flow cytometry. (B) Summary of results in panel A; each bar denotes the mean fold increase of ERK activation
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stimulation. Spectra were read from the top of the plate at 37°C and used 12-nm
bandwidth3150msec readwith agitation between reads. Spectrawere analyzed
as described.6,7 Percent change in YFP or CFP in response to OKT3 was
determinedby calculating thedifference in emission intensity over theCFP range
(460-500) or the YFP range (525-550) and normalizing this change to the total
fluorescence of the unstimulated sample.

Proximity ligation assay

Jurkat T cells were transfected with CXCR4-YFP, cultured for 16 hours,
pretreated with AMD3100 for 1 hours, centrifuged onto fibronectin- andOKT3-
coated coverslips, and incubated for 30 minutes at 37°C. Cells were then fixed
with 3% paraformaldehyde, permeabilized with 0.15% Triton Surfact-amps
(Thermo Fisher), blocked with 5% bovine serum albumin/0.1% glycine/
phosphate-buffered saline, incubated with goat anti–green fluorescent protein
and rabbit anti-CD3z overnight at 4°C, and processed using the DUOLINK In
SITU kit (Sigma).

Rac1 activation, ERK activation, NFAT localization, luciferase

activity, and mRNA stability

For Rac1 activation, GST-PAK1-PBD (gift from Vijay Shah, Mayo Clinic,
Rochester,MN)werepreparedasdescribed.33PBMCTcellswere stimulated, lysed
in MLB buffer (Millipore) with protease inhibitors, and centrifuged to remove
nuclei. Supernatantswere rotatedwith 10mgofGST-PAK1-PBDfor 15minutes at
4°C, washed, and boiled in sample buffer. Extracellular signal-regulated kinase
(ERK) activation10 and IL-2 luciferase activity6,34 were assayed as described. For
NFAT localization, subcellular fractionation was performed as described.35 The
39untranslated region (UTR) luciferase reportervectorwasgeneratedbycloning the
complete IL-2 39UTR into pmirGLO (Promega) using the following primers:
59GGCGCCGCTAGCTAATTAAGTGCTTCCCAC39 and 59GCCCGCGTC
GACTTTTTTTTATATTTATCAAATTTATTAAATAGTTTTACTAACC39.
To assessmRNAstability, PBMCTcellswere stimulated and then treatedwith
8mg/mL actinomycinD for the indicated time.mRNAwas reverse transcribed
via the iScript cDNA synthesis kit (Bio-Rad) and measured via RT2 SYBR
Green Fluor quantitative reverse transcription–polymerase chain reaction
(qRT-PCR) (Qiagen) on a Roche Light Cycler 480 utilizing PrimeTime qPCR
primer sets (IDT). Transcript levels were normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (which remained relatively constant for
all treatments; supplemental Figure 4B-C) and quantified using the 2DDCt

method.

Statistical analysis

Two-tailed paired Student t tests (Microsoft Excel) were used for analysis unless
otherwise indicated. The means of 2 distributions were considered significantly
different if P was#.05.

Results

CXCR4 is required for TCR-initiated production of IL-2, IL-4,

and IL-10

Because TCR and CXCR4 crossregulate each other’s functions,6-15

we sought to determine the role of CXCR4 in TCR-initiated cytokine

production. We used crosslinked CD3 monoclonal antibody (mAb)
with soluble CD28 mAb to activate primary human T cells purified
from peripheral blood of healthy donors (PBMC T cells). Exogenous
CXCL12 was not added to these cultures, and these T cells expressed
10 000-fold less CXCL12 mRNA than IL-2 or IL-10 mRNA
(Figure 1A). Interestingly, depletion of CXCR4 with distinct CXCR4
siRNAs resulted in a significant decrease in the amount of IL-2, IL-4,
and IL-10 produced by T cells upon stimulation, but the effects on
interferon-g (IFN-g) varied from donor to donor (Figure 1B-E).
Results from T cells from multiple donors are summarized in
Figure 1D-E with the average response represented as a black line.
Depletion of CXCR4 did not induce apoptosis (supplemental
Figure 1A-B). These results indicate that CXCR4 expression is
required for IL-2, IL-4, and IL-10 production in response to T-cell
activation.

TCR associates with and transactivates CXCR4; this interaction

is disrupted by AMD3100

Several tyrosine kinase receptors transactivate CXCR4 in order to
mediate signal transduction in various cell types.16-19 Here, we asked
whether ligation of TCR induces an association between TCR and
CXCR4 and/or transactivation of CXCR4 in order to mediate cytokine
production. To determine whether this protein-protein interaction
occurs, we used FRET6,7 to detect TCR-CXCR4 complex forma-
tion (Figure 2A). YFP-tagged CXCR4 and CFP-tagged CD3z were
cotransfected into Jurkat T cells resulting in a twofold increase in
CXCR4 and TCR expression levels (Figure 2B-C). If these proteins
come within 10 nm of each other, FRET occurs with CFP donating
energy to YFP when exposed to 433 nm of light. Indeed, upon T-cell
activation, the YFP emission (525-550 nm) increased and the CFP
emission (460-500 nm) decreased, indicating that CD3z-CFP associates
with CXCR4-YFP upon T-cell activation resulting in the formation of
TCR-CXCR4 complexes (Figure 2D,H). Addition of CXCL12 and/or
CD28 did not enhance TCR-CXCR4 complex formation beyond CD3
stimulation (supplemental Figure 2A). We next sought to disrupt the
formation of this complex. Previous studies indicate that the CXCR4
antagonist AMD3100 binds to CXCR4 and alters the conformation
of CXCR4 in a manner that modifies its functions independent of
CXCL12.36-38 We hypothesized that AMD3100 might alter the
conformation of CXCR4 and thereby prevent TCR from interacting
with CXCR4 upon T-cell activation. Indeed, pretreatment with
AMD3100 prevented the donation of energy from CD3z-CFP to
CXCR4-YFP upon TCR ligation (Figure 2D,H; supplemental
Figure 2B), indicating inhibition of complex formation. Moreover,
AMD3100 inhibited TCR-CXCR4 complex formationwithout altering
CXCR4 cell surface levels (supplemental Figure 2C-F). As a control,
coexpression of CCR7-YFP with CD3z-CFP did not result in a change
in YFP and CFP fluorescence upon TCR ligation (Figure 2G-H),
despite similar levels of CXCR4-YFP and CCR7-YFP expression
(Figure 2E-F). To confirm the formation of TCR-CXCR4 complexes
uponT-cell activation,weusedaproximity ligationassay (PLA).39PLA
detects intimate protein-protein interactions spanning,40 nm.Afterfirst

Figure 4 (continued) over unstimulated cells,6 SEM (n 5 4). (C) Representative results of cellular lysates that were isolated and blotted for IkBa degradation. (D) Summary

of results in panel C; each bar denotes the mean percentage of IkBa remaining after stimulation compared with unstimulated cells (n 5 3). (E-I) Cells were stimulated with

CD31 CD28 as in Figure 1. (E) Representative results of subcellular fractions isolated after 6 hours of CD31 CD28 stimulation and immunoblotted for NFATc1. (F) Summary

of panel E; each bar denotes mean fold increase in NFAT nuclear localization after stimulation compared with unstimulated cells (n 5 3). (G) After stimulation with CD3 1

CD28 for the indicated time, the cells were harvested for analysis via qRT-PCR for the indicated mRNA transcript levels. The results shown are normalized to the reference

gene GAPDH, where GAPDH is set to 100. Each point denotes the mean mRNA transcript level 6 SEM for 4 independent donors. (H) Jurkat T cells were transfected with an

IL-2 promoter luciferase reporter construct, incubated for 16 to 18 hours, treated with 60 mM AMD3100 for 1 hour, stimulated as in Figure 1 for 16 hours, and assayed for

luciferase activity. Representative experiment is shown. Each bar denotes the mean relative light units,6 SD (n 5 4; P . .05) (unpaired Student t test). (I) PBMC T cells were

pretreated with AMD3100 for 1 hour and stimulated as in Figure 1 for 5.5 hours prior to addition of actinomycin D. mRNA levels were assayed via qRT-PCR following

actinomycin D treatment for the indicated times. Each point denotes the mean percentage of mRNA remaining 6 SEM. *Significantly different from control cells (n 5 3-4).

C, cytoplasmic; N, nuclear; N.S., no significant difference (P . .05).
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Figure 5. Activation of TCR leads to CXCR4-mediated stabilization of cytokine mRNA by activation of a PREX1-Rac1–signaling pathway. (A-D) PBMC T cells were

treated with 60 mM AMD3100 or 50 mM NSC23766 for 1 hour, stimulated with 5 mg/mL biotinylated OKT3 crosslinked with avidin and soluble CD28 for 5 minutes, and assayed

for active, GTP-bound Rac1, or total Rac1. Vertical white lines between bands indicate removal of an irrelevant lane from the gel image. (B,D) Summary of results as in panels

A and C, respectively; each bar denotes the fold increase in activated Rac1 in stimulated cells compared with unstimulated cells, (n 5 3-5; P , .05). (E) PBMC T cells were

treated with 50 mM NSC23766 for 1 hour, stimulated with 1 mg/mL plate-bound OKT3 and soluble CD28 for 5.5 hours prior to addition of actinomycin D and assessment of

mRNA levels as in Figure 4I (n 5 7-10; P , .05). Donor samples were included in this analysis only if there was less than a twofold difference in starting transcript levels

between treated and untreated samples at 1 minute of actinomycin D treatment. (F) PBMC T cells were transfected with pmir-GLO empty vector or pmir-GLO-39UTR at 350 V
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binding specific primary antibodies to proteins of interest, oligo-linked
secondary antibodies are applied that, if in close proximity, act as a
template for the formation and amplificationofDNAcircles detectedvia
fluorescent probe hybridization (Figure 2I). Figure 2J-K show that few
TCR-CXCR4 complexes, detectable by PLA fluorescence, are seen in
the absenceofT-cell activation. In contrast, ligationofTCRsignificantly
increased PLA fluorescence, indicating that T-cell activation increases
the formation of TCR-CXCR4 complexes. AMD3100 prevented the
increase in PLA fluorescence upon T-cell activation (Figure 2J-K),
consistent with AMD3100 also preventing TCR-CXCR4 complex
formation detectable by FRET. Thus, Figure 2A-K show that TCR
ligation enhances formation of TCR-CXCR4 complexes and that this
complex formation can be inhibited by AMD3100.

To determine whether ligation of TCR alters the activation state
of CXCR4, we used antibodies specific for phosphorylated serine 339
of CXCR4 (pS339-CXCR4). Phosphorylation of S339-CXCR4
correlates with CXCR4 internalization and signaling.18,40,41 Interest-
ingly, ligation ofTCRsignificantly increased phosphorylation of S339-
CXCR4 (Figure 2L-M). Furthermore, AMD3100 inhibited this
phosphorylation, consistent with the inhibition of TCR-CXCR4
complex formation preventing TCR transactivation of CXCR4
(Figure 2L-M). Together, results in Figure 2 show that ligation of
TCR induces the formation of TCR-CXCR4complexes and activation
of CXCR4 via phosphorylation of S339, and that AMD3100 inhibits
both TCR-CXCR4 complex formation and activation of CXCR4.

AMD3100 inhibits IL-2, IL-4, and IL-10 production by multiple

T-cell subsets

Because AMD3100 blocks TCR-CXCR4 complex formation, we
sought to determine whether AMD3100, similar to CXCR4 depletion
(Figure 1),would also block cytokine production induced by ligation of
TCR. Indeed, IL-2 production was significantly inhibited over a range
of AMD3100 doses (from 1 to 30 mM) (Figure 3A; supplemental
Figure 3A). AMD3100 also significantly decreased the amount of IL-4
and IL-10 produced by activated T cells. In contrast, AMD3100 failed
to consistently inhibit IFN-g production, but showed a minute increase
in IFN-g (Figure 3A). Importantly, AMD3100 reduced IL-2, IL-4, and
IL-10 production without inducing apoptosis or altering CXCR4 cell
surface levels (supplemental Figures 1C and 3B-C).

To determine whether both naive and memory CD4 and CD8
T-cell subsets require TCR-CXCR4 complex formation for cytokine
production, we used intracellular cytokine staining of various T-cell
subsets 6 AMD3100. Unfortunately, IL-4–producing cells were not
detectable due to low production of this cytokine. Nonetheless,
AMD3100 significantly decreased the percentage of both CD4 naive
(CD41CD45RO2) and memory (CD41CD45RO1) T cells producing
IL-2 in response to CD31CD28 activation (Figure 3B-D). AMD3100
significantly decreased the percentage of CD4memory cells producing
IL-10 in response to CD31CD28 stimulation and had amodest effect
on CD8 memory cells (Figure 3F). The percentage of CD4 memory
cells producing IFN-g was significantly inhibited by AMD3100,
however, CD4 naive and CD8T cells were not (Figure 3E). The results
in Figure 3 indicate that inhibition of TCR-CXCR4 complex formation

by AMD3100 consistently impairs IL-2, IL-4, and IL-10 production,
and that various T-cell subsets including both naive and memory CD4
T cells use TCR-CXCR4 complex formation to mediate cytokine
production.

AMD3100 inhibits cytokine mRNA stability without altering

TCR-initiated ERK, NF-kB, or NFAT-signaling pathways

To identify the role of CXCR4 in TCR-mediated cytokine production,
we first assayed TCR-activated signaling pathways focusing on
AP-1–, NF-kB–, and NFAT-mediated pathways involved in cytokine
transcriptional regulation. Surprisingly, AMD3100 treatment of
primary human T cells did not alter TCR-initiated ERK activation,
IkBa degradation, or NFAT nuclear localization (Figure 4A-F). These
results suggested that CXCR4 is not required for cytokine gene
transcription. Indeed, AMD3100 did not significantly alter transcript
levels of IL-2, IFN-g, IL-4, or IL-10 at 2, 3, or 4 hours following T-cell
activation (Figure 4G). In addition, AMD3100 did not significantly
reduce either CD3- or CD3 1 CD28–stimulated IL-2 promoter
luciferase activity in the Jurkat T-cell line (Figure 4H), also suggesting
that inhibition of TCR-CXCR4 complex formation with AMD3100
does not prevent transcription of cytokine mRNAs.We next addressed
whether TCR-CXCR4 complex formation is required for cytokine
mRNA stability. Inhibition of TCR-CXCR4 complex formation via
AMD3100significantly increased the rateof degradationof IL-2, IFN-g,
IL-4, and IL-10mRNA transcripts (Figure 4I). AMD3100 decreased
the half-life from 41 to 26 minutes for IL-2 transcripts, from 53 to
29 minutes for IL-4 transcripts, and from 53 to 28 minutes for IL-10
transcripts, consistent with less IL-2, IL-4, and IL-10 secretion.
Despite the minimal effect of AMD3100 on IFN-g production, the
half-life for IFN-g mRNA decreased from 35 minutes to 24 minutes
with AMD3100 (Figure 4I), suggesting that other mechanisms may
partially compensate for decreased IFN-g transcript stability in
AMD3100-treated cells.42-44 Although CXCL12 has the ability to
enhance CD3 1 CD28–induced cytokine production via increasing
AP-1 activity,6,32,45 CXCL12 did not increase stability of IL-2, IFN-g,
IL-4, or IL-10 transcripts (supplemental Figure 4A). The results in
Figure4demonstrate that inhibitionofTCR-CXCR4complex formation
by AMD3100 inhibits cytokine mRNA stability without altering all
TCR-initiated signaling pathways including pathways required for
cytokine mRNA transcription.

Activation of TCR leads to CXCR4-mediated

stabilization of cytokine mRNA via activation of a

PREX1-Rac1–signaling pathway

Rac1 has previously been described to mediate mRNA stability in
various cell types23-27 and is activated in response to both TCR- and
CXCR4-induced signaling.8,28,29 Therefore, we hypothesized that
TCR-CXCR4 signaling activates Rac1 in order to stabilize cytokine
mRNA. Significantly, inhibiting TCR-CXCR4 complex formation
with AMD3100 impaired Rac1 activation arising from CD31CD28
stimulation (Figure 5A-B), suggesting that TCR transactivates
CXCR4 in order to activate Rac1. Pretreatment with NSC23766, a

Figure 5 (continued) on a BTX square wave electroporator, treated with 60 mM AMD3100 or 50 mM NSC23766 for 1 hour, stimulated with 1 mg/mL plate-bound OKT3 and

soluble CD28 Ab for 5.5 hours, harvested, lysed, and assayed for luciferase activity. Luciferase activity of pmir-GLO-39UTR was normalized to pmir-GLO empty vector.

Representative experiment is shown with each bar denoting mean relative light units 6 SD (n 5 3; P , .05) (unpaired t test). (G) PBMC T cells were treated with 50 mM

NSC23766 for 1 hour, stimulated as in panel F for 24 hours, and supernatants were analyzed for the indicated cytokines as in Figure 1D-E (n 5 6). (H-M) PBMC T cells

were transfected with PREX1 siRNA-1 (pool of siRNAs), PREX1 siRNA-2 (single siRNA) or control siRNA, cultured for 48 hours, and stimulated as indicated below. (H-I,

K-L) Cells were stimulated as in panel A and harvested to either immunoblot PREX1 and actin expression or assay GTP-bound Rac activation as in panels A and B

(n 5 3). (J,M) Forty-eight hours after transfection, cells were stimulated as in panel G for 24 hours and supernatants were analyzed for the indicated cytokines as in

Figure 1D-E (n 5 6).
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Rac-specific inhibitor,19,46,47 inhibited Rac1 activation as expected
(Figure 5C-D) and also increased the degradation rate of IL-2, IFN-g,
IL-4, and IL-10 mRNA transcripts (Figure 5E), suggesting a role for
Rac1 in stabilizing cytokine transcripts. To confirm these results, we
inserted the 39UTR of IL-2 into pmirGLO, a luciferase reporter
plasmid driven by a constitutive promotor, and then assessed
stabilization of this heterologous reporter upon TCR activation.

Indeed, CD3 1 CD28 stimulation increased luciferase expression,
and, importantly, both AMD3100 and NSC23766 significantly
inhibited CD3 1 CD28–induced luciferase expression (Figure 5F),
indicating that CXCR4 and Rac1 signaling mediates stabilization of
cytokine transcripts. NSC23766 also significantly inhibited the
production of IL-2, IL-4, and IL-10, but not IFN-g (Figure 5G)
similar to either AMD3100 pretreatment or CXCR4 depletion. Thus,
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Figure 6. Inhibition of the TCR-CXCR4–mediated Rac1 signaling blocks cytokine production by the Sézary syndrome cell line, HUT-78, and patient isolates. (A)

TCR-dependent IL-2 and IFN-g secretion in HUT78 cells was assayed following 1 hour pretreatment with vehicle, 60 mM AMD3100 or 50 mM NSC22766 and stimulation with

2 mg/mL plate-bound OKT3 for 24 hours as in Figure 1D-E. Each bar denotes the mean cytokine production, 6 SEM (n 5 3; P , .05). (B) HUT78 cells were transfected with

pmir-GLO empty vector or pmir-GLO-39UTR via electroporation at 315 V, treated with 60 mM AMD3100 or 50 mM NSC23766 for 1 hour, stimulated with 2 mg/mL plate-bound

OKT3 for 3.5 hours, harvested, lysed, and assayed for luciferase activity as in Figure 5F. Representative experiment is shown with each bar denoting mean relative light units6 SD

(n 5 3; P , .05) (unpaired Student t test). (C) HUT78 cells were treated with 60 mM AMD3100 or 100 mΜ NSC23766 for 1 hour, cultured6 2 mg/mL plate-bound OKT3 for 24

hours, and assayed for IL-10 secretion as in Figure 1 (n 5 3). (D-G) T cells isolated from residual diagnostic patient specimens (TCL-1, 3, 4) were pretreated where indicated

with 50 mM NSC23766, stimulated with 1 mg/mL plate-bound OKT3 and soluble CD28 for 24 hours, and assayed for IL-2 production as in Figure 1D. (F) Graph summarizes

results from panel E. Each bar denotes the percentage change in cytokine production normalized to the corresponding cytokine production by control-treated cells for

each stimulation condition (n 5 3; 6 SEM; P , .05). (G) Patient information.
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the results in Figure 5A-G indicate that T-cell activation induces TCR
to transactivate CXCR4 in order to activate a Rac1-signaling pathway
that stabilizes cytokine mRNA.

Transactivation of CXCR4 by EGFR can lead to activation of
the Rac-GEF PREX1.17,19 Therefore, we sought to determine
whether transactivation of CXCR4 by TCR ligation utilizes
PREX1 to activate Rac1. Human T cells transfected with distinct
PREX1 siRNAs failed to activate Rac1 upon T-cell activa-
tion compared with cells transfected with control siRNA
(Figure 5H-I,K-L). Moreover, depletion of PREX1 resulted in a
significant decrease in IL-2, IL-4, and IL-10 production
(Figure 5J,M). Together, the results in Figure 5 suggest that
upon ligation of TCR, TCR transactivates CXCR4 in order to
activate a PREX1-Rac1–signaling pathway that stabilizes
cytokine mRNA transcripts to increase cytokine secretion.

Inhibition of TCR-CXCR4–mediated Rac1 signaling blocks

cytokine production by the Sézary syndrome cell line, HUT-78,

and patient isolates

Malignant T cells of CTCLs, including Sézary syndrome, secrete
cytokines that contribute to disease progression by providing a
microenvironment that promotesmalignancy.1-5 To determinewhether
the cytokine production of these malignant T cells can be targeted
by inhibiting TCR-CXCR4 complex formation or its downstream
Rac1 signaling, we used the HUT-78 cell line derived from a patient
with Sézary syndrome, a variant of CTCL with widespread systemic
involvement. HUT-78 cells do not produce IL-2 or IFN-g constitu-
tively,48 however, IL-2 and IFN-g production were both significantly
increased upon stimulation with CD3 (Figure 6A). HUT-78 cells lack
CD28,48 therefore, we observed no increased IL-2 production with
CD28 costimulation (data not shown). Pretreatment with either
AMD3100 or NSC23766 significantly decreased both IL-2 and
IFN-g production in response to TCR ligation (Figure 6A). Similarly,
AMD3100 and NSC23766 inhibited CD3-induced luciferase expres-
sion from the pmirGLO-39UTR heterologous reporter, indicating that
CXCR4 and Rac1 activity are required to stabilize CD3-induced
cytokine mRNA via the 39UTR (Figure 6B). Interestingly, HUT-78
cells constitutively secrete IL-10,49 and CD3 stimulation does not
increase the amount of IL-10 secreted (Figure 6C), suggesting that
IL-10 production is TCR-independent. Accordingly, AMD3100 failed
to inhibit the constitutive IL-10 production byHUT78 cells (Figure 6C).

In contrast, targeting this pathway further downstreamwithNSC23766
significantly decreased constitutive IL-10 production (Figure 6C). IL-4
production was not detectable in HUT78 cells. In Figure 6D-G, we
show data obtained from rare residual diagnostic patient specimens
that were limited by the small amount of sample received. Nonetheless,
we assessed the effect of NSC23766 on the cells from a patient with
peripheral T-cell lymphoma (TCL-1) showing clinical features and
phenotype consistent with transformed mycosis fungoides or Sézary
syndrome. In addition, we assessed the effect of NSC23766 on cells
from bone marrow (TCL-3) and peripheral blood (TCL-4) specimens,
both of which contained abnormal CD41 T-cell populations pheno-
typically consistent with mycosis fungoides or Sézary syndrome. IL-2
production was increased in the presence of CD3 and CD28 mAbs in
specimens TCL-1 and TCL-4, with a more limited effect on TCL-4
which had lower expression of CD3 but higher levels of constitutive
IL-2 production (Figure 6D,G). Interestingly, NSC23766 signif-
icantly impaired CD3 1 CD28–induced IL-2 production in all
3 patient samples tested (Figure 6E-F). Thus, targeting either induc-
ible cytokine production or constitutive cytokine production by
malignant T cells appears feasible by inhibiting different points of
this TCR-CXCR4 to PREX1-Rac1–signaling pathway. Together,
the results in this article support the model shown in Figure 7;
activation of TCR induces the TCR to bind and activate CXCR4 on
S339, which leads to CXCR4-mediated stabilization of cytokine
mRNA via activation of a PREX1-Rac1–signaling pathway. More-
over, we show that targeting this pathway in malignant T cells
inhibits cytokine production.

Discussion

As with most immunopathological diseases, targeting the aberrant
immune responses of CTCLs has proven to be more effective than
cytotoxic chemotherapy. Immunotherapies that target CTCLs via
T-cell–specific mAbs have shown some efficacy, however, relapse
usually occurs within months to a few years.3,4,50 Targeting the
disordered immunological activity of CTCLs is complicated by
the changing cytokine milieu within the microenvironment that
drives phenotypic changes of CTCL cells.1-5 Therefore, inhibiting
the aberrant release of the cytokines that drive the T-cell phenotypic
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changes of CTCL cells would likely slow or inhibit the immunopath-
ological progression of the disease.

Here, we describe a novel signaling pathway that mediates the
mRNA stability of IL-2, IL-4, and IL-10 transcripts and, therefore,
promotes the production and secretion of these cytokines. Utiliz-
ing primary human T cells, we show that ligation of the TCR in-
duces the TCR to associate with and transactivate CXCR4 on
S339, which leads to stabilization of IL-2, IL-4, and IL-10 mRNA
transcripts via activation of a PREX1-Rac1–signaling pathway.
Importantly, we showed that the CXCR4 antagonist, AMD3100,
inhibited TCR-CXCR4 complex formation and thus Rac1 activation,
mRNA stabilization, and secretion of these cytokines. Additionally,
the Rac1 inhibitor, NSC23766, also inhibited the mRNA stabilization
and secretion of these cytokines. Applying this new knowledge to
CTCLs, we show that inhibition of the TCR-CXCR4 to the PREX1-
Rac1–signaling pathway inhibited the release of TCR-dependent and
TCR-independent cytokine production in the Sézary syndrome–
derived cell line, HUT78, and patient isolates. Thus, we describe here
a novel signaling pathway that can be targeted to disrupt the secretion
of cytokines to treat various immunopathological diseases including
CTCLs.

We have identified the transactivation of CXCR4 upon ligation
of TCR as a targetable phenomenon to regulate the secretion of
cytokines in multiple T-cell subsets. Transactivation of CXCR4 by
various receptor tyrosine kinases has been linked to both normal
and disease-related signaling in multiple cell types.16-19 This
transactivation often involves a physical association between
receptors and site-specific phosphorylation of CXCR4 that
activates various signaling outcomes.16-18,40,51 Similarly, we
found that TCR stimulation resulted in both TCR-CXCR4 complex
formation and phosphorylation of CXCR4 on serine 339. Previous
studies showed that AMD3100 binds to and alters the conforma-
tion of CXCR4 in a manner that modifies its function.36-38 Applying
that knowledge, we show here that AMD3100 disrupts TCR trans-
activation of CXCR4, most likely by altering the conformation of
CXCR4 such that TCR cannot associate. Remarkably, this
inhibition occurred in both naive and memory CD4 T cells,
suggesting that a similar pathway is intact in these T-cell subsets. In
contrast, ERK-, NFAT-, and NF-kB–signaling pathways were un-
affected by inhibition of TCR-CXCR4 complex formation, suggesting
that this complex does not alter all TCR-induced signaling pathways.
Additionally, IFN-g production was not consistently altered by target
ing TCR-CXCR4–specific signaling, despite a decrease in IFN-g
mRNA stability, suggesting that transcriptional or translational
mechanisms unique to IFN-g may compensate for decreased mRNA
stability. IFN-g expression levels are affected transcriptionally by
polymorphisms in the IFN-g gene as well as translationally by
metabolic mechanisms.42-44,52 Indeed, multiple factors contribute
to a T-cell cytokine expression profile, however, a common link for
IL-2, IL-4, and IL-10 production is the transactivation of CXCR4 by
the TCR to maintain cytokine mRNA stability.

We describe here a novel role for a PREX1-Rac1–signaling
pathway that mediates the mRNA stability of cytokines. Previous
studies demonstrate that Rac1 mediates the stability of various mRNA
transcripts inmultiple normal and cancerous cell types.23-27 Ramgolam
et al showed that Rac1 activation of p38MAPK stabilized IFN-g
mRNA stability,26 however, p38MAPK activity was unaffected upon
inhibition of TCR-CXCR4 complex formation (data not shown).
Therefore, future studies are necessary to identify the Rac1-mediated

mRNA-stabilizing mechanism. Nonetheless, we identified the
RacGEF PREX1 as an activator of Rac1 upon TCR ligation. Inter-
estingly, EGFR transactivation of CXCR4 leads to PREX1-
mediated activation of Rac1 in a tumor cell line.17,19 PREX1, Rac1,
and CXCR4 expression are often upregulated in cancerous
cells,19,53-57 suggesting that transactivation of CXCR4 by other
receptor tyrosine kinases could drive this mRNA-stabilizing
pathway in malignancy as well.

Targeting different aspects of this TCR-CXCR4mRNA-stabilizing
pathway has demonstrated that we can block both TCR-dependent and
TCR-independent cytokine secretion from a Sézary syndrome–derived
cell line and patient isolates. AMD3100 only blocked TCR-dependent
IL-2 and IFN-g secretion whereas NSC23766 blocked both TCR-
dependent and constitutive TCR-independent IL-10 secretion. In-
hibition of constitutive IL-10 secretion is critical as the CTCLs begin to
develop a Treg phenotype as the disease progresses.2-5 By character-
izing the signaling pathway downstream of TCR-CXCR4 complex
formation, we have identified a targetable signaling component, Rac1,
which remains intact in CTCL cells. Together, these results indicate
that targeting the TCR-CXCR4–signaling pathway may be a viable
approach to blocking aberrant cytokine secretion that leads to the
immunopathology of CTCL.
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